ON UNIFORMLY DISTRIBUTED SEQUENCES OF INTEGERS AND POINCARÉ RECURRENCE III

R. NAIR

Let S be a semigroup contained in a locally compact Abelian group G. Let \widehat{G} denote the Bohr compactification of G. We say that a sequence $\mathbf{k}=\left(k_{n}\right)_{n=1}^{\infty}$ contained in S is Hartman uniform distributed on G if

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \chi\left(k_{n}\right)=0
$$

for any character χ in \widehat{G}. Suppose that $\left(T_{g}\right)_{g \in S}$ is a semigroup of measurable measure preserving transformations of a probability space (X, β, μ) and B is an element of the σ-algebra β of positive μ measure. For a map $T: X \rightarrow X$ and a set $A \subseteq X$ let $T^{-1} A$ denote $\{x \in X: T x \in A\}$. In an earlier paper, the author showed that if \mathbf{k} is Hartman uniform distributed then

$$
\lim _{M \rightarrow \infty} \frac{1}{M} \sum_{n=1}^{M} \mu\left(B \cap\left(T_{k_{n}}\right)^{-1} B\right) \geqslant \mu(B)^{2}
$$

In this paper we show that \geqslant cannot be replaced by $=$. A more detailed discussion of this situation ensues.

Let G be a locally compact Abelian group and let $\mathbf{k}=\left(k_{n}\right)_{n=1}^{\infty}$ be a sequence contained in a semigroup S contained in G. We say that $\mathbf{k}=\left(k_{n}\right)_{n=1}^{\infty}$ is Hartman uniform distributed if for each non-trivial character χ in the dual group \hat{G} of G we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \chi\left(k_{n}\right)=0
$$

For a set X let β denote a σ-algebra of its subsets and let μ be a probability measure defined on them. We say that a measurable map T from X to itself is measure preserving if for any element A of β, denoting by $T^{-1} A$ the set $\{x \in X: T x \in A\}$, we have $\mu\left(T^{-1} A\right)=\mu(A)$ for all A in β. In [1] the following is shown.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/03 \$A2.00+0.00.

Theorem A. Suppose that $\mathbf{k}=\left(k_{j}\right)_{j=1}^{\infty}$ is Hartman uniformly distributed on a locally compact Abelian group G, containing a semigroup S containing \mathbf{k}. Suppose that $\left(T_{g}\right)_{g \in S}$ is a semigroup of measurable measure preserving transformations of a probability space (X, β, μ) and that B is an element of β of positive μ measure. Then

$$
\lim _{M \rightarrow \infty} \frac{1}{M} \sum_{n=1}^{M} \mu\left(B \cap\left(T_{k_{n}}\right)^{-1} B\right) \geqslant \mu(B)^{2}
$$

The existence of the limit is part of the conclusion to Theorem A. We however have the following theorem.

Theorem B. The \geqslant in the statement of Theorem A can't be replaced by $=$.
Proof: Suppose otherwise and we shall specialise to the case $G=\mathbf{Z}$. Recall that a sequence of real numbers $\left(x_{n}\right)_{n=1}^{\infty}$ is said to be uniformly distributed modulo one, if for each interval I that is closed on the left and open on the right we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \chi_{I}\left(\left\{x_{n}\right\}\right)=|I|
$$

Here $\{x\}$ denotes the fractional part of the real number x, χ_{I} denotes the characteristic function of the interval I and $|I|$ denotes its Lebesgue measure. As no ambiguity should arise, for a finite set F we denote its cardinality also by $|F|$. We say that a sequence of natural numbers $\mathbf{k}=\left(k_{j}\right)_{j=1}^{\infty}$ is uniformly distributed on \mathbf{Z} if for each integer m in \mathbf{N} and each integer l in $[0, m-1] \cap \mathrm{Z}$ we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{j \in[0, N-1) \cap \mathbf{Z}: k_{j} \equiv l \bmod m\right\}\right|=\frac{1}{m}
$$

In [1] it is shown that $\mathbf{k}=\left(k_{n}\right)_{n=1}^{\infty}$ is Hartman uniform distributed on \mathbf{Z} if \mathbf{k} is uniformly distributed on \mathbf{Z} and for each irrational number α, the sequence $\left(k_{n} \alpha\right)_{n=1}^{\infty}$ is uniformly distributed modulo one. Also in [1] it is shown that there are many sequences with this property. Suppose (X, β, μ) is any probability space, $T: X \rightarrow X$ is any measurable, measure preserving transformation of X and B is a T invariant set in β in the sense that $T^{-1} B=B$. Then for any sequence of natural numbers $\mathbf{k}=\left(k_{n}\right)_{n=1}^{\infty}$ and any natural number M

$$
\frac{1}{M} \sum_{n=1}^{M} \mu\left(B \cap T^{-k_{n}} B\right)=\mu(B)
$$

for each $M \geqslant 1$. Hence if

$$
\begin{equation*}
\lim _{M \rightarrow \infty} \frac{1}{M} \sum_{n=1}^{M} \mu\left(B \cap\left(T^{k_{n}}\right)^{-1} B\right)=\mu(B)^{2} \tag{1}
\end{equation*}
$$

then

$$
\mu(B)=\mu(B)^{2}
$$

Therefore $\mu(B)$ is either zero or one. Now set $X=[0,1), \mu$ is equal to the Lebesgue measure, $T x=\langle x+1 / 2\rangle$ and $B=[0,(1 / 4)) \cup[(1 / 2),(3 / 4))$. Then T preserves μ and B is obviously T invariant while $\mu(B)=1 / 2$. This is a contradiction.

Recall that a measurable, measure preserving map $T: X \rightarrow X$ of a probability space (X, β, μ) is ergodic if given any B in β with $T^{-1} B=B$ then $\mu(B)$ is either zero or one. Plainly our example above works because T is not ergodic. It is unclear to the author whether Theorem A remains true with \geqslant replaced by $=$ under the additional assumption that T is ergodic.

We need to establish some standard notation. We say that a statement is true μ almost everywhere if the subset of X on which it is true has full μ measure. We also say that two functions f and g are equivalent if $f-g=0 \mu$ almost everywhere. Let $\|f\|=\left(\int_{X}|f|^{2} d \mu\right)^{1 / 2}$ and let $L^{2}=L^{2}(X, \beta, \mu)$ denote the space of equivalence classes for μ measurable functions such that the norm $\|f\|$ is finite. Given a sequence of functions $\left(f_{N}\right)_{N=1}^{\infty}$ defined on a probability space (X, β, μ) we say that $\left(f_{N}\right)_{N=1}^{\infty}$ converges to a function g defined on (X, β, μ) in L^{2} norm if $\lim _{N \rightarrow \infty}\left\|f_{N}-g\right\|=0$. We say that $\left(f_{N}\right)_{N=1}^{\infty}$ converges almost everywhere to g if $\mu\left(\left\{x \in X: \lim _{N \rightarrow \infty} f_{N}(x)\right.\right.$ $=g(x)\})=1$. In [2] it is shown that if $\mathbf{k}=\left(k_{n}\right)_{n \geqslant 1}$ is Hartman uniformly distributed on \mathbf{Z} then this is equivalent to the statement that if $f \in L^{2}(X, \beta, \mu)$ and $T: X \rightarrow X$ is measurable and measure preserving, then

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left\|\frac{1}{N} \sum_{n=1}^{N} f\left(T^{k_{n}} x\right)-\mathbf{E}(f \mid \mathcal{I})\right\| \tag{2}
\end{equation*}
$$

Here $\mathbf{E}(f \mid \mathcal{I})$ is the projection of f onto the subspace of L^{2} of T invariant functions. Suppose that instead of being Hartman uniform distributed on \mathbf{Z} the sequence k $=\left(k_{n}\right)_{n \geqslant 1}$ has the property that if $f \in L^{2}(X, \beta, \mu)$ and $T: X \rightarrow X$ is measurable and measure preserving then

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f\left(T^{k_{n}} x\right)=\mathbf{E}(f \mid \mathcal{I}) \tag{3}
\end{equation*}
$$

almost everywhere with respect to μ. Note that hypothesis (2) says that if f is in $L^{2}(X, \beta, \mu)$ then the sequence $\left(1 / N \sum_{n=1}^{N} f\left(T^{k_{n}} x\right)\right)_{N=1}^{\infty}$ converges to $\mathbf{E}(f \mid \mathcal{I})(x)$ in L^{2} norm and (3) says the convergence is almost everwhere. In general convergence
almost everywhere does not necessarily imply convergence in norm, nor vice-versa. The hypothesis (3) does however imply the hypothesis (2). See [4, Lemma 4] for a proof of this. Also, in the case where $G=Z$, to prove (3) we need a much more refined condition on \mathbf{k} than (1). See [3] for details of this. A number of families of sequences of natural numbers for which (3) is true can also be found in [3]. In [2] it is shown that in the presence of (3) the ergodicity of T is equivalent to

$$
\begin{equation*}
\lim _{M \rightarrow \infty} \frac{1}{M} \sum_{n=1}^{M} \mu\left(A \cap T^{-k_{n}} B\right)=\mu(B) \mu(A) \tag{4}
\end{equation*}
$$

for each pair $A, B \in \beta$. This of course implies (1) for the particular transformation T. In the absence of (3) condition (4) still implies the ergodicity of T. For ergodic T, property (1) for $k=\left(k_{n}\right)_{n \geqslant 1}$, is not obviously implied by (2) but is implied by (3). It is however possible to establish (1) for particular $\mathbf{k}=\left(k_{n}\right)_{n \geqslant 1}$ for ergodic T without recourse to (3) as the following Theorem demonstates. This suggests that (1) for ergodic T is not equivalent to either (2) or (3).

Theorem C. For a sequence of integers $\mathbf{k}=\left(k_{i}\right)_{i=1}^{\infty}$ suppose that the system of neighbourhoods $A_{n}=[1, n] \cap k(n=1,2, \cdots)$ satisfies

$$
\left|A_{n} \Delta\left(h+A_{n}\right)\right|=o\left(\left|A_{n}\right|\right),
$$

for any h in \mathbf{N}, where Δ denotes the symmetric difference of two sets, and the set $h+A_{n}$ denotes $\left\{h+k: k \in A_{n}\right\}$. Then (3) follows if for each set A in the σ-algebra β we have

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} \mu\left(T^{-k_{i}} A \cap A\right)=\mu(A)^{2} \tag{5}
\end{equation*}
$$

Proof: Recall that L^{2} is a Hilbert space under the inner product $\langle f, g\rangle$ $=\int_{X} f \bar{g} d \mu$, where \bar{g} is the complex conjugate of g. Let $U f(x)=f(T x)$. Then $\|U f\|=\|f\|$ because T is measure preserving.

In the special case where for A in β we set $a=\chi_{A}$ (the characteristic function of A) the hypothesis (5) may be rewritten

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N}\left\langle U^{k_{i}} a, a\right\rangle=\langle a, 1\rangle\langle 1, a\rangle
$$

By taking linear combinations of characteristic functions, this statement is also seen to remain true for simple functions a. For arbitrary L^{2} functions f given $\varepsilon>0$ we can
find simple functions a such that $\|f-a\|_{2} \leqslant \varepsilon$. Further by (5^{\prime}) we can find a natural number $n=n(\varepsilon)$ such that if $N \geqslant n(\varepsilon)$ then

$$
\left|\frac{1}{N} \sum_{i=1}^{N}\left\langle U^{k_{i}} a, a\right\rangle-\langle a, 1\rangle\langle 1, a\rangle\right| \leqslant \varepsilon
$$

Thus, also if $N \geqslant n(\varepsilon)$ then

$$
\begin{aligned}
\left|\frac{1}{N} \sum_{i=1}^{N}\left\langle U^{k_{i}} f, f\right\rangle-\langle f, 1\rangle\langle 1, f\rangle\right| \leqslant & \left|\frac{1}{N} \sum_{i=1}^{N}\left\langle U^{k_{i}} f, f\right\rangle-\frac{1}{N} \sum_{i=1}^{N}\left\langle U^{k_{i}} a, f\right\rangle\right| \\
& +\left|\frac{1}{N} \sum_{i=1}^{N}\left\langle U^{k_{i}} a, f\right\rangle-\frac{1}{N} \sum_{i=1}^{N}\left\langle U^{k_{i}} a, f\right\rangle\right| \\
& +\left|\sum_{i=1}^{N}\left\langle U^{k_{i}} a, a\right\rangle-\langle a, 1\rangle\langle 1, a\rangle\right| \\
& +|\langle a, 1\rangle\langle 1, a\rangle-\langle f, 1\rangle\langle 1, a\rangle| \\
& +|\langle f, 1\rangle\langle 1, a\rangle-\langle f, 1\rangle\langle 1, a\rangle| \\
\leqslant & \frac{1}{N} \sum_{i=1}^{N}\left|\left\langle U^{k_{i}}(f-a), f\right\rangle\right| \\
& +\frac{1}{N} \sum_{i=1}^{N}\left|\left\langle U^{k_{i}} a, f-a\right\rangle\right| \\
& +\varepsilon+|\langle f-a, 1\rangle\langle 1, a\rangle|+|\langle f, 1\rangle\langle 1, f-a\rangle|
\end{aligned}
$$

Using the fact that $\|f\|=\langle f, f\rangle^{1 / 2}$ and Cauchy's inequality this is

$$
\leqslant \varepsilon\|f\|+\varepsilon(\|f\|+\varepsilon)+\varepsilon+\varepsilon(\|f\|+\varepsilon)+\varepsilon\|f\| \text {. }
$$

Thus we have shown that if $f \in L^{2}$ then

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N}\left\langle U^{k_{i}} f, f\right\rangle=\langle f, 1\rangle\langle 1, f\rangle \tag{6}
\end{equation*}
$$

Now $L^{2}=H \oplus H^{\perp}$ where $H=\bigcap_{n=1}^{\infty} U^{n} L^{2}(X, \beta, \mu)$ and note that if

$$
V=L^{2} \ominus U L^{2}=\left\{f \in L^{2}(X, \beta, \mu): f \perp L^{2}\left(X, T^{-1} \beta, \mu\right)\right\}
$$

where $T^{-1} \beta$ is the σ algebra generated by $\left\{A=T^{-1} B: B \in \beta\right\}$, then

$$
H^{\perp}=\bigoplus_{n=0}^{\infty} U^{n} V .
$$

Since the spaces are mutually orthogonal it is clear that for $f \in U^{i} V$ and $g \in U^{j} V$ with $i \neq j$ different we have

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N}\left\langle U^{k_{i}} f, g\right\rangle=0 \tag{7}
\end{equation*}
$$

By taking linear combinations of such f and g and using approximation arguments in the $L^{2}(X, \beta, \mu)$ norm, we must have (7) for all f and g in H^{\perp}. Of course for f in H and g in H^{\perp} or vice versa then (7) is still true and we see that in order to prove Theorem C it suffices to show (7) assuming that $\int_{X} f(x) d \mu=0$. This is the only point at which we need to use the hypothesis on the sequence of integers \mathbf{k}. We first note that $U H=H$ and therefore U is a unitary operator on H, that is, in particular it has an inverse there. Let $S(f)=\left\{U^{n} f: n \in \mathbf{Z}\right\}$, and let $Z(f)$ be the $\|$.$\| closure of$ the linear span of $S(f)$. Now by (6) for arbitrary positive integers ℓ

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N}\left\langle U^{k_{i}+\ell} f, U^{\ell} f\right\rangle=0
$$

Also by the hypothesis on the sequence \mathbf{k} we have

$$
\sum_{i=1}^{N}\left\langle U^{k_{i}+\ell} f, U^{\ell} f\right\rangle=\sum_{i=1}^{N}\left\langle U^{k_{i}} f, U^{\ell} f\right\rangle+o(N)
$$

Taking linear combinations of the $U^{\ell} f$ and then taking limits completes the proof. []

References

[1] R. Nair, 'On uniformly distributed sequences of integers and Poincaré recurrence', Indag. Math. (N.S.) 9 (1998), 55-63.
[2] R. Nair, 'On Hartman uniform distribution and measures on compact groups', in Harmonic Analysis and Hypergroups, (M. Anderson, A.I. Singh and K. Ross, Editors), Trends in Mathematics 3 (Birkhauser, Boston, M.A., 1998), pp. 59-75.
[3] R. Nair, 'On uniformly distributed sequences of integers and Poincaré recurrence II', Indag. Math. (N. S.) 9 (1998), 405-415.
[4] R. Nair and M. Weber, 'On random perturbations of some intersective sets', Indag. Math. (to appear).

Mathematical Sciences
University of Liverpool
Liverpool L69 7ZL
United Kingdom

[^0]: Received 29th April, 2003

