ON UNIFORMLY DISTRIBUTED SEQUENCES OF INTEGERS AND POINCARÉ RECURRENCE III

R. NAIR

Let S be a semigroup contained in a locally compact Abelian group G. Let \widehat{G} denote the Bohr compactification of G. We say that a sequence $\mathbf{k} = (k_n)_{n=1}^{\infty}$ contained in S is Hartman uniform distributed on G if

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N\chi(k_n)=0,$$

for any character χ in \widehat{G} . Suppose that $(T_g)_{g\in S}$ is a semigroup of measurable measure preserving transformations of a probability space (X,β,μ) and B is an element of the σ -algebra β of positive μ measure. For a map $T: X \to X$ and a set $A \subseteq X$ let $T^{-1}A$ denote $\{x \in X : Tx \in A\}$. In an earlier paper, the author showed that if k is Hartman uniform distributed then

$$\lim_{M\to\infty}\frac{1}{M}\sum_{n=1}^M\mu(B\cap (T_{k_n})^{-1}B)\geqslant \mu(B)^2.$$

In this paper we show that \geq cannot be replaced by =. A more detailed discussion of this situation ensues.

Let G be a locally compact Abelian group and let $\mathbf{k} = (k_n)_{n=1}^{\infty}$ be a sequence contained in a semigroup S contained in G. We say that $\mathbf{k} = (k_n)_{n=1}^{\infty}$ is Hartman uniform distributed if for each non-trivial character χ in the dual group \hat{G} of G we have

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N\chi(k_n)=0.$$

For a set X let β denote a σ -algebra of its subsets and let μ be a probability measure defined on them. We say that a measurable map T from X to itself is measure preserving if for any element A of β , denoting by $T^{-1}A$ the set $\{x \in X : Tx \in A\}$, we have $\mu(T^{-1}A) = \mu(A)$ for all A in β . In [1] the following is shown.

Received 29th April, 2003

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/03 \$A2.00+0.00.

R. Nair

THEOREM A. Suppose that $\mathbf{k} = (k_j)_{j=1}^{\infty}$ is Hartman uniformly distributed on a locally compact Abelian group G, containing a semigroup S containing \mathbf{k} . Suppose that $(T_g)_{g\in S}$ is a semigroup of measurable measure preserving transformations of a probability space (X, β, μ) and that B is an element of β of positive μ measure. Then

$$\lim_{M\to\infty}\frac{1}{M}\sum_{n=1}^M \mu\Big(B\cap (T_{k_n})^{-1}B\Big) \ge \mu(B)^2.$$

The existence of the limit is part of the conclusion to Theorem A. We however have the following theorem.

THEOREM B. The \geq in the statement of Theorem A can't be replaced by =.

PROOF: Suppose otherwise and we shall specialise to the case $G = \mathbb{Z}$. Recall that a sequence of real numbers $(x_n)_{n=1}^{\infty}$ is said to be uniformly distributed modulo one, if for each interval I that is closed on the left and open on the right we have

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N\chi_I(\{x_n\})=|I|.$$

Here $\{x\}$ denotes the fractional part of the real number x, χ_I denotes the characteristic function of the interval I and |I| denotes its Lebesgue measure. As no ambiguity should arise, for a finite set F we denote its cardinality also by |F|. We say that a sequence of natural numbers $\mathbf{k} = (k_j)_{j=1}^{\infty}$ is uniformly distributed on \mathbf{Z} if for each integer m in \mathbf{N} and each integer l in $[0, m-1] \cap \mathbf{Z}$ we have

$$\lim_{N\to\infty}\frac{1}{N}\Big|\big\{j\in[0,N-1)\cap\mathbf{Z}:k_j\equiv l \bmod m\big\}\Big|=\frac{1}{m}.$$

In [1] it is shown that $\mathbf{k} = (k_n)_{n=1}^{\infty}$ is Hartman uniform distributed on Z if k is uniformly distributed on Z and for each irrational number α , the sequence $(k_n \alpha)_{n=1}^{\infty}$ is uniformly distributed modulo one. Also in [1] it is shown that there are many sequences with this property. Suppose (X, β, μ) is any probability space, $T: X \to X$ is any measurable, measure preserving transformation of X and B is a T invariant set in β in the sense that $T^{-1}B = B$. Then for any sequence of natural numbers $\mathbf{k} = (k_n)_{n=1}^{\infty}$ and any natural number M

$$\frac{1}{M}\sum_{n=1}^{M}\mu(B\cap T^{-k_n}B)=\mu(B),$$

for each $M \ge 1$. Hence if

(1)
$$\lim_{M \to \infty} \frac{1}{M} \sum_{n=1}^{M} \mu(B \cap (T^{k_n})^{-1}B) = \mu(B)^2.$$

then

$$\mu(B)=\mu(B)^2.$$

Therefore $\mu(B)$ is either zero or one. Now set $X = [0, 1), \mu$ is equal to the Lebesgue measure, $Tx = \langle x + 1/2 \rangle$ and $B = [0, (1/4)] \cup [(1/2), (3/4)]$. Then T preserves μ and B is obviously T invariant while $\mu(B) = 1/2$. This is a contradiction. П

Recall that a measurable, measure preserving map $T: X \to X$ of a probability space (X, β, μ) is ergodic if given any B in β with $T^{-1}B = B$ then $\mu(B)$ is either zero or one. Plainly our example above works because T is not ergodic. It is unclear to the author whether Theorem A remains true with \geq replaced by = under the additional assumption that T is ergodic.

We need to establish some standard notation. We say that a statement is true μ almost everywhere if the subset of X on which it is true has full μ measure. We also say that two functions f and g are equivalent if f - g = 0 μ almost everywhere. Let $||f|| = (\int_X |f|^2 d\mu)^{1/2}$ and let $L^2 = L^2(X, \beta, \mu)$ denote the space of equivalence classes for μ measurable functions such that the norm ||f|| is finite. Given a sequence of functions $(f_N)_{N=1}^{\infty}$ defined on a probability space (X, β, μ) we say that $(f_N)_{N=1}^{\infty}$ converges to a function g defined on (X, β, μ) in L^2 norm if $\lim_{N \to \infty} ||f_N - g|| = 0$. We say that $(f_N)_{N=1}^{\infty}$ converges almost everywhere to g if $\mu\Big(\big\{x\in X: \lim_{N\to\infty}f_N(x)$ $=g(x)\}$ = 1. In [2] it is shown that if $\mathbf{k} = (k_n)_{n \ge 1}$ is Hartman uniformly distributed on Z then this is equivalent to the statement that if $f \in L^2(X,\beta,\mu)$ and $T: X \to X$ is measurable and measure preserving, then

(2)
$$\lim_{N\to\infty} \left\| \frac{1}{N} \sum_{n=1}^{N} f(T^{k_n} x) - \mathbf{E}(f \mid \mathcal{I}) \right\|.$$

Here $\mathbf{E}(f \mid \mathcal{I})$ is the projection of f onto the subspace of L^2 of T invariant functions. Suppose that instead of being Hartman uniform distributed on Z the sequence k $=(k_n)_{n\geq 1}$ has the property that if $f\in L^2(X,\beta,\mu)$ and $T:X\to X$ is measurable and measure preserving then

(3)
$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}f(T^{k_n}x)=\mathbf{E}(f\mid\mathcal{I}),$$

almost everywhere with respect to μ . Note that hypothesis (2) says that if f is in $L^2(X,\beta,\mu)$ then the sequence $\left(1/N\sum_{n=1}^N f(T^{k_n}x)\right)_{N=1}^{\infty}$ converges to $\mathbf{E}(f \mid \mathcal{I})(x)$ in L^2 norm and (3) says the convergence is almost everwhere. In general convergence

almost everywhere does not necessarily imply convergence in norm, nor vice-versa. The hypothesis (3) does however imply the hypothesis (2). See [4, Lemma 4] for a proof of this. Also, in the case where $G = \mathbb{Z}$, to prove (3) we need a much more refined condition on k than (1). See [3] for details of this. A number of families of sequences of natural numbers for which (3) is true can also be found in [3]. In [2] it is shown that in the presence of (3) the ergodicity of T is equivalent to

(4)
$$\lim_{M\to\infty}\frac{1}{M}\sum_{n=1}^M\mu(A\cap T^{-k_n}B)=\mu(B)\mu(A),$$

for each pair $A, B \in \beta$. This of course implies (1) for the particular transformation T. In the absence of (3) condition (4) still implies the ergodicity of T. For ergodic T, property (1) for $\mathbf{k} = (k_n)_{n \ge 1}$, is not obviously implied by (2) but is implied by (3). It is however possible to establish (1) for particular $\mathbf{k} = (k_n)_{n \ge 1}$ for ergodic T without recourse to (3) as the following Theorem demonstates. This suggests that (1) for ergodic T is not equivalent to either (2) or (3).

THEOREM C. For a sequence of integers $\mathbf{k} = (k_i)_{i=1}^{\infty}$ suppose that the system of neighbourhoods $A_n = [1, n] \cap \mathbf{k}$ $(n = 1, 2, \cdots)$ satisfies

$$|A_n \bigtriangleup (h + A_n)| = o(|A_n|),$$

for any h in N, where \triangle denotes the symmetric difference of two sets, and the set $h + A_n$ denotes $\{h + k : k \in A_n\}$. Then (3) follows if for each set A in the σ -algebra β we have

(5)
$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \mu(T^{-k_i} A \cap A) = \mu(A)^2.$$

PROOF: Recall that L^2 is a Hilbert space under the inner product $\langle f, g \rangle = \int_X f \overline{g} d\mu$, where \overline{g} is the complex conjugate of g. Let Uf(x) = f(Tx). Then ||Uf|| = ||f|| because T is measure preserving.

In the special case where for A in β we set $a = \chi_A$ (the characteristic function of A) the hypothesis (5) may be rewritten

(5')
$$\lim_{N\to\infty}\frac{1}{N}\sum_{i=1}^{N}\langle U^{k_{i}}a,a\rangle = \langle a,1\rangle\langle 1,a\rangle$$

By taking linear combinations of characteristic functions, this statement is also seen to remain true for simple functions a. For arbitrary L^2 functions f given $\varepsilon > 0$ we can

find simple functions a such that $||f - a||_2 \leq \varepsilon$. Further by (5') we can find a natural number $n = n(\varepsilon)$ such that if $N \ge n(\varepsilon)$ then

$$\left|\frac{1}{N}\sum_{i=1}^{N} \langle U^{k_{i}}a,a\rangle - \langle a,1\rangle \langle 1,a\rangle\right| \leqslant \varepsilon.$$

Thus, also if $N \ge n(\varepsilon)$ then

$$\begin{split} \left| \frac{1}{N} \sum_{i=1}^{N} \langle U^{k_i} f, f \rangle - \langle f, 1 \rangle \langle 1, f \rangle \right| &\leq \left| \frac{1}{N} \sum_{i=1}^{N} \langle U^{k_i} f, f \rangle - \frac{1}{N} \sum_{i=1}^{N} \langle U^{k_i} a, f \rangle \right| \\ &+ \left| \frac{1}{N} \sum_{i=1}^{N} \langle U^{k_i} a, f \rangle - \frac{1}{N} \sum_{i=1}^{N} \langle U^{k_i} a, f \rangle \right| \\ &+ \left| \sum_{i=1}^{N} \langle U^{k_i} a, a \rangle - \langle a, 1 \rangle \langle 1, a \rangle \right| \\ &+ \left| \langle a, 1 \rangle \langle 1, a \rangle - \langle f, 1 \rangle \langle 1, a \rangle \right| \\ &+ \left| \langle f, 1 \rangle \langle 1, a \rangle - \langle f, 1 \rangle \langle 1, a \rangle \right| \\ &\leq \frac{1}{N} \sum_{i=1}^{N} \left| \langle U^{k_i} (f - a), f \rangle \right| \\ &+ \frac{1}{N} \sum_{i=1}^{N} \left| \langle U^{k_i} a, f - a \rangle \right| \\ &+ \varepsilon + \left| \langle f - a, 1 \rangle \langle 1, a \rangle \right| + \left| \langle f, 1 \rangle \langle 1, f - a \rangle \right|. \end{split}$$

Using the fact that $\|f\| = \langle f, f \rangle^{1/2}$ and Cauchy's inequality this is

$$\leqslant \varepsilon \|f\| + \varepsilon (\|f\| + \varepsilon) + \varepsilon + \varepsilon (\|f\| + \varepsilon) + \varepsilon \|f\|$$

Thus we have shown that if $f \in L^2$ then

(6)
$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \langle U^{k_i} f, f \rangle = \langle f, 1 \rangle \langle 1, f \rangle$$

Now $L^2 = H \oplus H^{\perp}$ where $H = \bigcap_{n=1}^{\infty} U^n L^2(X, \beta, \mu)$ and note that if

$$V = L^2 \ominus UL^2 = \left\{ f \in L^2(X, \beta, \mu) : f \perp L^2(X, T^{-1}\beta, \mu) \right\}$$

where $T^{-1}\beta$ is the σ algebra generated by $\{A = T^{-1}B : B \in \beta\}$, then

$$H^{\perp} = \bigoplus_{n=0}^{\infty} U^n V.$$

R. Nair

Since the spaces are mutually orthogonal it is clear that for $f \in U^i V$ and $g \in U^j V$ with $i \neq j$ different we have

(7)
$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \langle U^{k_i} f, g \rangle = 0.$$

By taking linear combinations of such f and g and using approximation arguments in the $L^2(X,\beta,\mu)$ norm, we must have (7) for all f and g in H^{\perp} . Of course for f in H and g in H^{\perp} or vice versa then (7) is still true and we see that in order to prove Theorem C it suffices to show (7) assuming that $\int_X f(x)d\mu = 0$. This is the only point at which we need to use the hypothesis on the sequence of integers \mathbf{k} . We first note that UH = H and therefore U is a unitary operator on H, that is, in particular it has an inverse there. Let $S(f) = \{U^n f : n \in \mathbf{Z}\}$, and let Z(f) be the $\|.\|$ closure of the linear span of S(f). Now by (6) for arbitrary positive integers ℓ

$$\lim_{N\to\infty}\frac{1}{N}\sum_{i=1}^N \langle U^{k_i+\ell}f, U^\ell f\rangle = 0.$$

Also by the hypothesis on the sequence \mathbf{k} we have

$$\sum_{i=1}^{N} \langle U^{k_i+\ell}f, U^{\ell}f \rangle = \sum_{i=1}^{N} \langle U^{k_i}f, U^{\ell}f \rangle + o(N).$$

Taking linear combinations of the $U^{\ell}f$ and then taking limits completes the proof.

References

- R. Nair, 'On uniformly distributed sequences of integers and Poincaré recurrence', Indag. Math. (N.S.) 9 (1998), 55-63.
- [2] R. Nair, 'On Hartman uniform distribution and measures on compact groups', in Harmonic Analysis and Hypergroups, (M. Anderson, A.I. Singh and K. Ross, Editors), Trends in Mathematics 3 (Birkhauser, Boston, M.A., 1998), pp. 59-75.
- [3] R. Nair, 'On uniformly distributed sequences of integers and Poincaré recurrence II', Indag. Math. (N. S.) 9 (1998), 405-415.
- [4] R. Nair and M. Weber, 'On random perturbations of some intersective sets', Indag. Math. (to appear).

Mathematical Sciences University of Liverpool Liverpool L69 7ZL United Kingdom