CAMBRIDGE
UNIVERSITY PRESS

RESEARCH ARTICLE

Motivic Steenrod operations in characteristic p

Eric Primozic
Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, Canada; E-mail: primozic @ualberta.ca.

Received: 27 February 2020; Revised: 13 July 2020; Accepted: 6 July 2020
2020 Mathematics Subject Classification: Primary - 14F42, 19E15; Secondary - 55P43

Abstract

For a prime p and a field k of characteristic p, we define Steenrod operations P_{k}^{n} on motivic cohomology with $\mathbb{F}_{p^{-}}$ coefficients of smooth varieties defined over the base field k. We show that P_{k}^{n} is the p th power on $H^{2 n, n}\left(-, \mathbb{F}_{p}\right) \cong$ $C H^{n}(-) / p$ and prove an instability result for the operations. Restricted to $\bmod p$ Chow groups, we show that the operations satisfy the expected Adem relations and Cartan formula. Using these new operations, we remove previous restrictions on the characteristic of the base field for Rost's degree formula. Over a base field of characteristic 2, we obtain new results on quadratic forms.

Contents

1 Introduction 1
2 Prior results on the dual Steenrod algebra and setup 3
3 Definition of operations 6
4 Adem relations 11
5 Coaction map for smooth X 12
6 Cartan formula 16
7 pth power and instability 16
8 Proper push-forward 19
9 Rost's degree formula 19
10 Specialization map 20
11 Applications to quadratic forms 22

1. Introduction

Voevodsky constructed motivic reduced power operations P_{F}^{n} for $n \geq 0$ where the base field F is a perfect field with $\operatorname{char}(F)$ not equal to the characteristic $p>0$ of the coefficient field [35]. These operations were used in the proof of the Bloch-Kato conjecture. Hoyois, Kelly and Østvær later obtained operations and completeley determined the Steenrod algebra for a general base field F with $\operatorname{char}(F) \neq p$ [17]. Brosnan gave an elementary construction of Steenrod operations on mod p Chow groups over a base field of characteristic $\neq p$ [1]. Steenrod operations on Chow groups have been used succesfully in the study of quadratic forms over a base field of characteristic $\neq 2$ and to prove degree formulas in algebraic geometry, as in [6] and [24].

For a prime p, Voevodsky's construction of Steenrod operations for the coefficient field \mathbb{F}_{p} uses the calculation of the motivic cohomology of $B S_{p}$. However, when defined over a base field k of characteristic $p, B \mathbb{Z} / p$ is contractible [25, Proposition 3.3]. Hence, over the base field k, $H^{*, *}\left(B S_{p}, \mathbb{F}_{p}\right) \cong H^{*, *}\left(k, \mathbb{F}_{p}\right)$, and so one cannot carry out Voevodsky's construction. It has also been an open problem to just define Steenrod operations on the mod p Chow groups of smooth schemes over a field of characteristic p. Haution made progress on this problem by constructing the first $p-1$ homological Steenrod operations on Chow groups mod p and p-primary torsion over any base field [12], defining the first Steenrod square on mod 2 Chow groups over any base field [13] and constructing weak forms of the second and third Steenrod squares over a field of characteristic 2 [15]. Note that in articles where Steenrod squares (or weak forms of Steenrod squares) on mod 2 Chow groups are used, the nth Steenrod square on mod 2 Chow groups corresponds to the $2 n$th Steenrod square on mod 2 motivic cohomology, since the Bockstein homomorphism is 0 on mod 2 Chow groups.

For p a prime, we use the results of Frankland and Spitzweck in [8] to define Steenrod operations $P_{k}^{n}: H^{i, j}\left(-, \mathbb{F}_{p}\right) \rightarrow H^{i+2 n(p-1), j+n(p-1)}\left(-, \mathbb{F}_{p}\right)$ for $n \geq 0$ on the $\bmod p$ motivic cohomology of smooth schemes over a field k of characteristic p. Note that some authors use the notation $H^{i}(-, \mathbb{Z}(j))$ in place of $H^{i, j}(-, \mathbb{Z})$ to denote motivic cohomology. For $n \geq 1$, we show that P_{k}^{n} is the p th power on $H^{2 n, n}\left(-, \mathbb{F}_{p}\right)=C H^{n}(-) / p$, and we prove an instability result for the Steenrod operations. Restricted to mod p Chow groups, I prove that the P_{k}^{i} satisfy expected properties such as Adem relations and the Cartan formula. we also show that the operations P_{k}^{n} agree with the operations P_{K}^{n}, constructed by Voevodsky for $\operatorname{char}(K)=0$, on the $\bmod p$ Chow rings of flag varieties in characteristic 0 .

To show that the P_{k}^{i} satisfy the Adem relations and Cartan formula on mod p Chow groups, we show that the Steenrod operations satisfy the Adem relations and Cartan formula on mod p motivic cohomology up to some error terms. These error terms vanish when we restrict to mod p Chow groups. If the dual Steenrod algebra has the conjectured form (meaning that the map Ψ_{k} from Theorem 2.3 is an isomorphism), then the error terms encountered in these arguments vanish on mod p motivic cohomology. Our proofs would then simplify to give the Adem relations and Cartan formula for motivic cohomology with mod p coefficients.

In Section 9, I extend Rost's degree formula [24, Theorem 6.4] to a base field of arbitrary characteristic. The degree formula we obtain at odd primes seems to be new.

In Section 11, we use the new operations to study quadratic forms defined over a base field of characteristic 2. Previous results or proofs have avoided the case of quadratic forms in characteristic 2, since Steenrod squares were not available. We recall a conjecture of Hoffmann and Totaro on the possible values of the first Witt index of an anisotropic quadratic form.

Conjecture 1.1. Let φ be an anisotropic quadratic form over a field F such that $\operatorname{dim} \varphi \geq 2$. Then $\mathfrak{i}_{1}(\varphi) \leq 2^{v_{2}\left(\operatorname{dim} \varphi-\mathfrak{i}_{1}(\varphi)\right)}$.

As documented in [20], Conjecture 1.1 was first made by Hoffmann in 1998 assuming that the base field is of characteristic $\neq 2$. Using Steenrod squares on mod 2 Chow groups, Karpenko proved this conjecture for anisotropic quadratic forms over base fields fields of characteristic $\neq 2$ [18]. In [31], Totaro extended Conjecture 1.1 to fields of characteristic 2. Using algebraic methods, Scully proved Conjecture 1.1 for totally singular anisotropic quadratic forms over base fields of characteristic 2 [28]. We also remark that Haution previously used a weak form of the first homological Steenrod square to prove a result on the parity of the first Witt index for nonsingular anisotropic quadratic forms over a field of characteristic 2 [14, Theorem 6.2].

In this article, we prove Conjecture 1.1 for nonsingular anisotropic quadratic forms over base fields of characteristic 2 . Our My proof copies the arguments of [18] and makes use of the new Steenrod squares defined on mod 2 Chow groups over base fields of characteristic 2. In a recent preprint, Karpenko proved Conjecture 1.1 for the remaining cases of anisotropic quadratic forms over base fields of characteristic 2 [20]. That proof uses the Steenrod squares constructed in this article, along with other new ideas.

Other new results on quadratic forms over base fields of characteristic 2 are also included in Section 11. Using the Steenrod squares defined in this article, it should be possible to extend other results on quadratic forms to the case where the base field has characteristic 2 .

2. Prior results on the dual Steenrod algebra and setup

Let k be a field of characteristic $p>0$. For a base scheme S, let Sm_{S} denote the category of quasiprojective separated smooth schemes of finite type over S, let $H(S)$ denote the unstable motivic homotopy category of spaces over S defined by Morel and Voevodsky [25], let $H_{\bullet}(S)$ denote the pointed unstable motivic homotopy category of spaces over S and let $S H(S)$ denote the stable motivic homotopy category of spectra over S [33]. Let

$$
\begin{gathered}
\Sigma_{+}^{\infty}: \operatorname{Sm}_{S} \rightarrow S H(S), \\
\Sigma_{+}^{\infty}: H(S) \rightarrow H \cdot(S) \rightarrow S H(S)
\end{gathered}
$$

denote the infinite \mathbb{P}^{1}-suspension functors.
We recall some results from [8] and [30] in the categories $H(k)$ and $S H(k)$. Let $B \mu_{p} \in H(k)$ denote the geometric motivic classifying space of the group scheme μ_{p} over k of the p th roots of unity. Let $H \mathbb{F}_{p}^{k} \in S H(k)$ denote the motivic Eilenberg-MacLane spectrum representing mod p motivic cohomology. Let $v \in H^{2,1}\left(B \mu_{p}, \mathbb{F}_{p}\right)$ denote the pullback of the first Chern class $c_{1} \in H^{2,1}\left(B \mathbb{G}_{m}, \mathbb{F}_{p}\right)$. From the computation of the motivic cohomology of $B \mu_{p}$ in [35, Theorem 6.10], there exists a unique $u \in H^{1,1}\left(B \mu_{p}, \mathbb{F}_{p}\right)$ such that $\beta(u)=v$, where β denotes the Bockstein homomorphism on mod p motivic cohomology. The class of $\rho=-1$ in $H^{1,1}\left(k, \mathbb{F}_{p}\right)=k^{*} / k^{* p}$ is 0 , and the class $\tau \in H^{0,1}\left(k, \mathbb{F}_{p}\right)=$ $\mu_{p}(k)=0$ described in [35, Theorem 6.10] is also 0 . We need the following computation, which can be deduced from [35, Theorem 6.10] by setting $\rho=0$ and $\tau=0$.

Theorem 2.1. There is an isomorphism

$$
H^{*, *}\left(B \mu_{p}, \mathbb{F}_{p}\right) \cong H^{*, *}\left(k, \mathbb{F}_{p}\right) \llbracket v, u \rrbracket /\left(u^{2}\right) .
$$

Note that $H^{*, *}\left(B \mu_{p}, \mathbb{F}_{p}\right)$ is defined in [35] as a limit of motivic cohomology rings of smooth schemes over the base field. This explains why power series appear in this theorem.

Let $\mathcal{A}_{*, *}^{k}:=\pi_{*, *}\left(H \mathbb{F}_{p}^{k} \wedge H \mathbb{F}_{p}^{k}\right)$. As described in [30, Chapter 10.2], there is a coaction map

$$
\begin{equation*}
H^{*, *}\left(B \mu_{p}, \mathbb{F}_{p}\right) \rightarrow \mathcal{A}_{-*,-*}^{k} \widehat{\otimes}_{\pi_{-*,-*} H \mathbb{F}_{p}^{k}} H^{*, *}\left(B \mu_{p}, \mathbb{F}_{p}\right) \tag{1}
\end{equation*}
$$

We use the left $H \mathbb{F}_{p}^{k}$-module structure on $H \mathbb{F}_{p}^{k} \wedge H \mathbb{F}_{p}^{k}$ for this coaction map. For $i \geq 0$ and $j \geq 1$, classes $\tau_{i} \in \mathcal{A}_{2 p^{i}-1, p^{i}-1}^{k}$ and $\xi_{j} \in \mathcal{A}_{2 p^{j}-2, p^{j}-1}^{k}$ are defined by the coaction map:

$$
\begin{aligned}
u & \mapsto u+\Sigma_{i \geq 0} \tau_{i} \otimes v^{p^{i}}, \\
v & \mapsto v+\Sigma_{j \geq 1} \xi_{j} \otimes v^{p^{j}} .
\end{aligned}
$$

Proposition 2.2. $\tau_{i}^{2}=0$ for all $i \geq 0$.
Proof. We use the argument of [35, Theorem 12.6]. First, we assume that $\operatorname{char}(k)=2$. Under the coaction map 1,

$$
u^{2}=0 \mapsto u^{2}+\Sigma_{i \geq 0} \tau_{i}^{2} \otimes v^{i^{i+1}}=0
$$

For $i \geq 0$, the coefficient of $v^{2^{i+1}}$ equals $0=\tau_{i}^{2}$.
Now we assume that $p=\operatorname{char}(k)$ is odd. Let $i \geq 0$. As $\mathcal{A}_{*, *}^{k}$ is graded-commutative under the first grading, we have $\tau_{i}^{2}=(-1)^{\left(2 p^{i}-1\right)\left(2 p^{i}-1\right)} \tau_{i}^{2}=-\tau_{i}^{2}$, which implies that $\tau_{i}^{2}=0$.

In this article, we shall consider finite sequences $\alpha=\left(\epsilon_{0}, r_{1}, \epsilon_{1}, r_{2}, \ldots\right)$ of integers such that $\epsilon_{i} \in$ $\{0,1\}$ and $r_{j} \geq 0$ for all $i \geq 0$ and $j \geq 1$. From now on, it will be assumed that any sequence α in this article satisfies these conditions. To a sequence α, associate a monomial $\omega(\alpha)=\tau_{0}^{\epsilon_{0}} \xi_{1}^{r_{1}} \tau_{1}^{\epsilon_{1}} \cdots \in \mathcal{A}_{*, *}^{k}$ of bidegree $\left(p_{\alpha}, q_{\alpha}\right)$. The sequences α induce a morphism

$$
\Psi_{k}: \bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k} \rightarrow H \mathbb{F}_{p}^{k} \wedge H \mathbb{F}_{p}^{k}
$$

of left $H \mathbb{F}_{p}^{k}$-modules. Frankland and Spitzweck proved the following theorem [8, Theorem 1.1], which allows us to define Steenrod operations on $\bmod p$ motivic cohomology over the base field k.
Theorem 2.3. The morphism

$$
\Psi_{k}: \bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k} \rightarrow H \mathbb{F}_{p}^{k} \wedge H \mathbb{F}_{p}^{k}
$$

is a split monomorphism of left $H \mathbb{F}_{p}^{k}$-modules.
It is conjectured that Ψ_{k} is an isomorphism. Frankland and Spitzweck proved this theorem by comparing Ψ_{k} to the corresponding isomorphism

$$
\begin{equation*}
\Psi_{K}: \bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{K} \rightarrow H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K} \tag{2}
\end{equation*}
$$

of left $H \mathbb{F}_{p}^{K}$-modules for char $(K)=0$. From now on, $\bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{K}$ will be identified with $H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}$ as left $H \mathbb{F}_{p}^{K}$-modules through Ψ_{K} whenever K is a field of characteristic 0 . Let D be a complete unramified discrete valuation ring with closed point $i: \operatorname{Spec}(k) \rightarrow \operatorname{Spec}(D)$ and generic point j : $\operatorname{Spec}(K) \rightarrow \operatorname{Spec}(D)$, where $K=\operatorname{Frac}(D)$. For example, when $k=\mathbb{F}_{p}, D=\mathbb{Z}_{p}$ and $K=\mathbb{Q}_{p}$.

For a morphism $f: S_{1} \rightarrow S_{2}$ of base schemes, let $f_{*}:=R f_{*}: \operatorname{SH}\left(S_{1}\right) \rightarrow \operatorname{SH}\left(S_{2}\right)$ and $f^{*}:=L f^{*}: S H\left(S_{2}\right) \rightarrow S H\left(S_{1}\right)$ denote the right derived push-forward and left derived pullback functors, respectively. Pullback f^{*} is strongly monoidal, while f_{*} is lax monoidal. Furthermore, f_{*} commutes with all suspensions $\Sigma^{i, j}$ [8, Lemma 7.5]. Note also that f_{*} preserves coproducts [8, Lemma 7.4].

For a separated Noetherian scheme S of finite dimension, let $\widehat{H} \mathbb{Z}^{S} \in S H(S)$ denote the motivic E_{∞} ring spectrum constructed by Spitzweck in [30] and let $\widehat{H} \mathbb{F}_{p}^{S}:=\widehat{H} \mathbb{Z}^{S} / p$. Let $D\left(\widehat{H} \mathbb{Z}^{S}\right)$ denote the homotopy category of left \widehat{H}^{S}-modules. See [3, Section 7.2] and [8, Sections 2 and 3] for a discussion on the homotopy category of left R-modules $D(R)$ for a highly structured ring spectrum R. There is a forgetful functor $U_{S}: D\left(\widehat{H} \mathbb{Z}^{S}\right) \rightarrow S H(S)$.

The spectrum $\widehat{H} \mathbb{Z}^{S}$ enjoys a number of desirable properties. It is Cartesian, which means that for a morphism $f: S_{1} \rightarrow S_{2}$ of base schemes, the induced morphism $f^{*} \widehat{H} \mathbb{Z}^{S_{2}} \rightarrow \widehat{H} \mathbb{Z}^{S_{1}}$ is an isomorphism in $S H\left(S_{1}\right)$ of E_{∞} ring spectra [30, Chapter 9]. Throughout this article, we will frequently identify $f^{*} \widehat{H} \mathbb{Z}^{S_{2}}$ with $\widehat{H} \mathbb{Z}^{S_{1}}$ whenever we are given a morphism $f: S_{1} \rightarrow S_{2}$ of base schemes (see also [8, Section 2]). Hence, the square

commutes.
For $S=\operatorname{Spec}(F)$ with F a field, $\widehat{H} \mathbb{Z}^{S}$ is isomorphic as an E_{∞} ring spectrum to the usual EilenbergMacLane spectrum $H \mathbb{Z}^{S}$ constructed by Voevodsky [30, Theorem 6.7]. For the discrete valuation ring $D, \widehat{H} \mathbb{Z}^{D}$ represents Bloch-Levine motivic cohomology as defined in [23].

We briefly describe the definition of Bloch-Levine motivic cohomology in [23] for a discrete valuation ring D. Let $X \rightarrow \operatorname{Spec}(D)$ be a morphism of finite type with X irreducible. If the image of the generic point η_{X} of X is $\operatorname{Spec}(k)$, then define $\operatorname{dim}(X):=\operatorname{dim}\left(X_{\operatorname{Spec}(k)}\right)$. Otherwise, define $\operatorname{dim}(X):=\operatorname{dim}\left(X_{\operatorname{Spec}(K)}\right)+1$. For $n \geq 0$, let $\Delta^{n}:=\operatorname{Spec}\left(D\left[t_{0}, \ldots, t_{n}\right] / \Sigma_{i} t_{i}-1\right)$ denote the algebraic n-simplex over D. Let $z_{q}(X, r)$ denote the free abelian group generated by all irreducible closed subschemes $C \subset \Delta^{r} \times_{\operatorname{Spec}(D)} X$ of dimension $r+q$ such that C meets each face of $\Delta^{r} \times_{\mathrm{Spec}(D)} X$ properly. Then set $z^{q}(X, r)=z_{\operatorname{dim}(X)-q}(X, r)$ to get a pullback homomorphism $z^{q}(X, r) \rightarrow z^{q}(X, r-1)$ for each face of Δ^{r}. Then the Zariski hypercohomology of the complex $z^{q}(X, *)$ with alternating face maps is Bloch-Levine motivic cohomology (with the appropriate shift).

Theorem 2.4. The morphism $H \mathbb{F}_{p}^{k} \cong i^{*}\left(\widehat{H} \mathbb{F}_{p}^{D}\right) \rightarrow i^{*} j_{*} H \mathbb{F}_{p}^{K} \cong i^{*} j_{*} j^{*} \widehat{H} \mathbb{F}_{p}^{D}$ in $D\left(H \mathbb{F}_{p}^{k}\right)$ induced by adjunction induces a splitting $i^{*} j_{*} H \mathbb{F}_{p}^{K} \cong H \mathbb{F}_{p}^{k} \oplus \Sigma^{-1,-1} H \mathbb{F}_{p}^{k}$ in $D\left(H \mathbb{F}_{p}^{k}\right)$. There is also a splitting $i^{*} j_{*} H \mathbb{Z}^{K} \cong H \mathbb{Z}^{k} \oplus \Sigma^{-1,-, 1} H \mathbb{Z}^{k}$ in $D\left(H \mathbb{Z}^{k}\right)$ [8, Lemma 4.10].

Definition 2.1. Let $\pi: i^{*} j_{*} H \mathbb{F}_{p}^{K} \rightarrow H \mathbb{F}_{p}^{k}$ and $\pi_{0}: i^{*} j_{*} H \mathbb{F}_{p}^{K} \rightarrow \Sigma^{-1,-1} H \mathbb{F}_{p}^{k}$ denote the projections induced by the splitting from Theorem 2.4.

Let $\eta: i d . \rightarrow j_{*} j^{*}$ denote the unit map. From now on, we shall denote all adjunction morphisms $i^{*} E \rightarrow i^{*} j_{*} j^{*} E$ for $E \in S H(D)$ by $i^{*} \eta$. We will also denote all $\Sigma^{s, t} \pi, \Sigma^{s, t} \pi_{0}$ by π and π_{0}, respectively, to make the text easier to read. The morphisms Ψ_{k} and Ψ_{K} lift to a morphism

$$
\Psi_{D}: \bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} \widehat{H} \mathbb{F}_{p}^{D} \rightarrow \widehat{H} \mathbb{F}_{p}^{D} \wedge \widehat{H} \mathbb{F}_{p}^{D}
$$

in $D\left(\widehat{H} \mathbb{F}_{p}^{D}\right)$ [8, Lemma 3.10]. Applying $i^{*} \eta$ to Ψ_{D} gives a commuting square

$$
\begin{gather*}
\underset{\alpha}{\bigoplus} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k} \xrightarrow{\Psi_{k}} H \mathbb{F}_{p}^{k} \wedge H \mathbb{F}_{p}^{k} \\
\underset{\alpha}{\operatorname{li}^{i^{*} \eta}} \Sigma^{p_{\alpha}, q_{\alpha} i^{*} j_{*} H \mathbb{F}_{p}^{K}} \xrightarrow{i^{*} j_{*} \Psi_{K}} i^{*} j_{*}\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) \tag{3}
\end{gather*}
$$

in $D\left(H \mathbb{F}_{p}^{k}\right)$. Let $r: H \mathbb{F}_{p}^{k} \wedge H \mathbb{F}_{p}^{k} \rightarrow \bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}$ be the retraction of Ψ_{k} defined by the following composite [8, Theorem 5.1]:

$$
\begin{aligned}
& H \mathbb{F}_{p}^{k} \wedge H \mathbb{F}_{p}^{k} \xrightarrow{i^{*} \eta} i^{*} j_{*}\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) \stackrel{i^{*} j_{*} \Psi_{K}^{-1}}{\longrightarrow} \underset{\alpha}{\bigoplus} \Sigma^{p_{\alpha}, q_{\alpha} i^{*} j_{*}} H \mathbb{F}_{p}^{K} \\
& \bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \pi \\
& \mathbb{F}_{p}^{k}
\end{aligned}
$$

For $S=k, K$, or $D\left(\right.$ use $\widehat{H} \mathbb{F}_{p}^{D}$), let $\mu_{1}^{S}: H \mathbb{F}_{p}^{S} \wedge H \mathbb{F}_{p}^{S} \rightarrow H \mathbb{F}_{p}^{S}$ denote the multiplication morphism. There is also a multiplication morphism

$$
\mu_{2}^{S}:\left(H \mathbb{F}_{p}^{S} \wedge H \mathbb{F}_{p}^{S}\right) \wedge\left(H \mathbb{F}_{p}^{S} \wedge H \mathbb{F}_{p}^{S}\right) \rightarrow H \mathbb{F}_{p}^{S} \wedge H \mathbb{F}_{p}^{S}
$$

defined in the standard way by interchanging the two middle $H \mathbb{F}_{p}^{S}$ terms and then applying $\mu_{1}^{S} \wedge \mu_{1}^{S}$.

For a sequence α_{0}, define $i^{*} \eta_{\alpha_{0}}: H \mathbb{F}_{p}^{k} \wedge H \mathbb{F}_{p}^{k} \rightarrow \Sigma^{p_{\alpha_{0}}, q_{\alpha_{0}}} H \mathbb{F}_{p}^{k}$ in $D\left(H \mathbb{F}_{p}^{k}\right)$ to be the composite

$$
H \mathbb{F}_{p}^{k} \wedge H \mathbb{F}_{p}^{k} \xrightarrow{i^{*} \eta} i^{*} j_{*}\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) \xrightarrow{i^{*} j_{*} \Psi_{K}^{-1}} \bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha} i^{*} j_{*}} H \mathbb{F}_{p}^{K}
$$

The morphism $i^{*} \eta_{\alpha_{0}}$ is a retraction of the morphism

$$
H \mathbb{F}_{p}^{k} \wedge \omega\left(\alpha_{0}\right): \Sigma^{p_{\alpha_{0}}, q_{\alpha_{0}}} H \mathbb{F}_{p}^{k} \rightarrow H \mathbb{F}_{p}^{k} \wedge H \mathbb{F}_{p}^{k}
$$

From the work of Friedlander and Suslin [9, Corollary 12.2] and Voevodsky [34], Bloch's higher Chow groups are isomorphic to motivic cohomology as defined by Voevodsky. The isomorphism between motivic cohomology and Bloch's higher Chow groups is compatible with pullback maps and product structures [30, Theorem 6.7]. See also [22].

Theorem 2.5. Let F be a field and let $X \in \operatorname{Sm}_{F}$. Then

$$
H^{n, i}(X, \mathbb{Z}) \cong C H^{i}(X, 2 i-n)
$$

for all n and $i \geq 0$.
Let $n, i \geq 0$ such that $n>2 i$. From Theorem 2.5, $H^{n, i}(X, A)=0$ for any coefficient ring A and $X \in \operatorname{Sm}_{F}$.

3. Definition of operations

In this section, we use the results of Frankland and Spitzweck in [8] to define new Steenrod operations P_{k}^{n} for $n \geq 0$. Let

$$
i_{L}, i_{R}: H \mathbb{F}_{p}^{S} \rightarrow H \mathbb{F}_{p}^{S} \wedge H \mathbb{F}_{p}^{S}
$$

denote the left and right $H \mathbb{F}_{p}^{S}$-module maps, respectively, for $S=D$ (use $\widehat{H} \mathbb{F}_{p}^{D}$), k, or K. Motivated by the corresponding duality in characteristic 0 , we want to define operations $P_{k}^{n} \in H \mathbb{F}_{p}^{k *, *} H \mathbb{F}_{p}^{k}$ for $n \geq 0$ by taking operations dual to the ξ_{1}^{n}.
Definition 3.1. Let α be a sequence. Define $P_{k}^{\alpha} \in H \mathbb{F}_{p}^{k,{ }^{*}} H \mathbb{F}_{p}^{k}$ by $P_{k}^{\alpha}:=i^{*} \eta_{\alpha} \circ i_{R}$. For $n \geq 0$, let $P_{k}^{n}=P_{k}^{(0, n, 0, \ldots)}$. Let $\beta_{k}=P_{k}^{(1,0, \ldots)}$.

There are corresponding operations P_{K}^{α} in characteristic 0 defined from 2 by

$$
H \mathbb{F}_{p}^{K} \xrightarrow{i_{R}} H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K} \xrightarrow{\text { proj }} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{K}
$$

Definition 3.2. To define a homomorphism

$$
\Phi: H \mathbb{F}_{p}^{K *, *} H \mathbb{F}_{p}^{K} \rightarrow H \mathbb{F}_{p}^{k *, *} H \mathbb{F}_{p}^{k}
$$

of graded additive groups, let $f: H \mathbb{F}_{p}^{K} \rightarrow \Sigma^{k, l} H \mathbb{F}_{p}^{K}$ be given. Define $\Phi(f): H \mathbb{F}_{p}^{k} \rightarrow \Sigma^{k, l} H \mathbb{F}_{p}^{k}$ by $\Phi(f)=\pi \circ i^{*} j_{*}(f) \circ i^{*} \eta$.

$$
\begin{equation*}
H \mathbb{F}_{p}^{k} \xrightarrow{i^{*} \eta} i^{*} j_{*} H \mathbb{F}_{p}^{K} \xrightarrow{i^{*} j_{*}(f)} \Sigma^{k, l_{i}^{*}} j_{*} H \mathbb{F}_{p}^{K} \xrightarrow{\pi} \Sigma^{k, l} H \mathbb{F}_{p}^{k} . \tag{5}
\end{equation*}
$$

From the definition of Φ, it is clear that $\Phi(i d)=.i d$. The following lemma will be important for proving that the operations P_{k}^{n} restricted to mod p Chow groups satisfy the Adem relations and Cartan formula:

Lemma 3.1. Let $X \in \operatorname{Sm}_{k}$ and let $f: \Sigma_{+}^{\infty} X \rightarrow \Sigma^{2 m, m} H \mathbb{F}_{p}^{k}$ be given.

1. Let α_{0} be a sequence. Consider the morphism

$$
g_{\alpha_{0}}: H \mathbb{F}_{p}^{k} \rightarrow \Sigma^{p_{\alpha_{0}}-1, q_{\alpha_{0}}-1} H \mathbb{F}_{p}^{k}
$$

given by the composite

$$
H \mathbb{F}_{p}^{k} \xrightarrow{i^{*} \eta} i^{*} j_{*} H \mathbb{F}_{p}^{K^{*}} \xrightarrow{j_{j}\left(P_{K}^{\alpha_{0}}\right.} i^{*} j_{*} \Sigma^{p_{\alpha_{0}}, q_{\alpha_{0}}} H \mathbb{F}_{p}^{K} \xrightarrow{\pi_{0}} \Sigma^{p_{\alpha_{0}}-1, q_{\alpha_{0}}-1} H \mathbb{F}_{p}^{k} .
$$

Then $\Sigma^{2 m, m} g_{\alpha_{0}} \circ f=0$.
2. The composite

$$
\begin{aligned}
& \Sigma_{+}^{\infty} X \xrightarrow{f} \Sigma^{2 m, m} H \mathbb{F}_{p}^{k} \xrightarrow{i_{R}} \Sigma^{2 m, m} H \mathbb{F}_{p}^{k} \wedge H \mathbb{F}_{p}^{k} \\
& \downarrow^{i^{*} \eta} \\
& i^{*} j_{*}\left(\Sigma^{2 m, m} H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) \\
& \downarrow^{i^{*}{ }^{*}{ }_{*} \Psi_{K}^{-1}} \\
& \bigoplus_{\alpha} \Sigma^{p_{\alpha}+2 m, q_{\alpha}+m_{i} j_{*}} j_{*} H \mathbb{F}_{p}^{K} \\
& \downarrow{ }^{\oplus \pi_{0}} \\
& \bigoplus_{\alpha} \Sigma^{2 m+p_{\alpha}-1, m+q_{\alpha}-1} H \mathbb{F}_{p}^{k}
\end{aligned}
$$

is equal to 0 .
3. Let $g: \Sigma_{+}^{\infty} X \rightarrow i^{*} j_{*} \Sigma^{2 m, m} H \mathbb{F}_{p}^{K}$ for some $m \in \mathbb{N}$. Then $g=i^{*} \eta \circ g_{0}$ for some $g_{0}: \Sigma_{+}^{\infty} X \rightarrow \Sigma^{2 m, m} H \mathbb{F}_{p}^{k}$. Here we can take $g_{0}=g \circ r_{0}$, where r_{0} is any retraction of $i^{*} \eta$.

Proof. Note that for any sequence α of bidegree $\left(p_{\alpha}, q_{\alpha}\right), p_{\alpha} \geq 2 q_{\alpha}$, which implies that $p_{\alpha}-1>$ $2\left(q_{\alpha}-1\right)$. For (1) and (2), Theorem 2.5 implies that

$$
\operatorname{Hom}_{S H(k)}\left(\Sigma_{+}^{\infty} X, \Sigma^{2 m+p_{\alpha}-1, m+q_{\alpha}-1} H \mathbb{F}_{p}^{k}\right)=H^{2 m+p_{\alpha}-1, m+q_{\alpha}-1}\left(X, \mathbb{F}_{p}\right)=0
$$

for any sequence α.

Theorem 3.2.

1. We have $\Phi\left(H^{*, *}\left(K, \mathbb{F}_{p}\right)\right) \subset H^{*, *}\left(k, \mathbb{F}_{p}\right)$.
2. Let α be a sequence. Then $\Phi\left(P_{K}^{\alpha}\right)=P_{k}^{\alpha}$. In particular, for the Bockstein β_{K} and reduced power operations P_{K}^{n} constructed by Voevodsky in characteristic $0, \Phi\left(P_{K}^{n}\right)=P_{k}^{n}$ for $n \geq 0$ and $\Phi\left(\beta_{K}\right)=\beta_{k}$. Also, P_{k}^{0} is the identity, since P_{K}^{0} is the identity.
3. Let $X \in \operatorname{Sm}_{k}$ and let $f: \Sigma_{+}^{\infty} X \rightarrow \Sigma^{2 m, m} H \mathbb{F}_{p}^{k}$ be given. Let α be a sequence and let $h: H \mathbb{F}_{p}^{K} \rightarrow$ $\Sigma^{i, j} H \mathbb{F}_{p}^{K}$ be given. Then

$$
\Phi\left(h \circ P_{K}^{\alpha}\right)(f)=\Phi(h)\left(P_{k}^{\alpha}(f)\right) .
$$

Proof. We first prove (1). Let $a \in H^{*, *}\left(K, \mathbb{F}_{p}\right)$. The element a corresponds to a morphism f_{a} : $H \mathbb{F}_{p}^{K} \rightarrow \Sigma^{m, n} H \mathbb{F}_{p}^{K}$ in $D\left(H \mathbb{F}_{p}^{K}\right)$. The functors i^{*}, j_{*} restrict to functors $i^{*}: D\left(\widehat{H} \mathbb{F}_{p}^{D}\right) \rightarrow D\left(H \mathbb{F}_{p}^{k}\right)$ and $j_{*}: D\left(H \mathbb{F}_{p}^{K}\right) \rightarrow D\left(\widehat{H} \mathbb{F}_{p}^{D}\right)$. Hence, $i^{*} j_{*}\left(f_{a}\right)$ is a morphism in $D\left(H \mathbb{F}_{p}^{k}\right)$. From the definition of Φ, it follows that $\Phi\left(f_{a}\right)$ is a morphism in $D\left(H \mathbb{F}_{p}^{k}\right)$. Thus, $\Phi(a):=\Phi\left(f_{a}\right) \in H^{*, *}\left(k, \mathbb{F}_{p}\right)$.

We now prove (2). Let α be a sequence. Applying the natural transformation $i^{*} \rightarrow i^{*} j_{*} j^{*}$ to $i_{R}: \widehat{H} \mathbb{F}_{p}^{D} \rightarrow \widehat{H} \mathbb{F}_{p}^{D} \wedge \widehat{H}_{p}^{D}$, we obtain the following commuting square in $S H(k)$:

From the definition of $i^{*} \eta_{\alpha} 4$, the following diagram commutes:

Putting these two diagrams together yields the following commuting diagram:

The top row of this diagram gives P_{k}^{α}, while the composite starting at $H \mathbb{F}_{p}^{k}$ in the top left and continuing along the bottom, row ending with π, gives $\Phi\left(P_{K}^{\alpha}\right)$. Hence, $\Phi\left(P_{K}^{\alpha}\right)=P_{k}^{\alpha}$.

Now we prove (3). Consider the following diagram:

As $\Phi\left(P_{K}^{\alpha}\right)=P_{k}^{\alpha}$, Lemma 3.1 implies that the composite

$$
i^{*} \eta \circ P_{k}^{\alpha} \circ f: \Sigma_{+}^{\infty} X \rightarrow i^{*} j_{*} \Sigma^{2 m+p_{\alpha}, m+q_{\alpha}} H \mathbb{F}_{p}^{K}
$$

in diagram (7) is equal to

$$
i^{*} j_{*} P_{K}^{\alpha} \circ i^{*} \eta \circ f .
$$

Thus, from diagram (7),

$$
\Phi(h)\left(P_{k}^{\alpha}(f)\right)=\pi \circ i^{*} \eta \circ \Phi(h) \circ P_{k}^{\alpha} \circ f=\pi \circ i^{*} j_{*}(h) \circ i^{*} j_{*}\left(P_{K}^{\alpha}\right) \circ i^{*} \eta \circ f=\Phi\left(h \circ P_{K}^{\alpha}\right)(f)
$$

as desired.
Remark 1. Theorem 3.2 says that Φ commutes with compositions, up to some error terms. These error terms vanish on mod p Chow groups. In the next section, we will use the third part of this theorem to get Adem relations for the Steenrod operations P_{k}^{n} restricted to mod p Chow groups. Essentially, we just apply Φ to the Adem relations in characteristic 0 .

We next prove that the operations P_{k}^{n} commute with base change of the field k on $\bmod p$ Chow groups. For a morphism of fields $f: \operatorname{Spec}\left(F_{1}\right) \rightarrow \operatorname{Spec}\left(F_{2}\right)$, the pullback functor $f^{*}: \operatorname{SH}\left(F_{2}\right) \rightarrow \operatorname{SH}\left(F_{1}\right)$ induces a homomorphism $H \mathbb{F}_{p}^{F_{2} *, *} H \mathbb{F}_{p}^{F_{2}} \rightarrow H \mathbb{F}_{p}^{F_{1} *, *} H \mathbb{F}_{p}^{F_{1}}$. For $\operatorname{char}\left(F_{2}\right) \neq p, f^{*}\left(P_{F_{2}}^{n}\right)=P_{F_{1}}^{n}$, since the dual Steenrod algebra has the expected form in this case [17, Theorem 1.1]. However, for our situation where the base field is of characteristic p, we do not yet know the full structure of the dual Steenrod algebra.

Let $f_{1}: \operatorname{Spec}(k) \rightarrow \operatorname{Spec}\left(\mathbb{F}_{p}\right)$ be the structure map. In the following commuting diagram, f_{2}, f_{3}, i_{0}, and j_{0} are maps compatible with f_{1} :

Proposition 3.3. Let $X \in \operatorname{Sm}_{k}$ and let $g: \Sigma_{+}^{\infty} X \rightarrow \Sigma^{2 m, m} H \mathbb{F}_{p}^{k}$ be given. Then $P_{k}^{n}(g)=f_{1}^{*}\left(P_{\mathbb{F}_{p}}^{n}\right)(g)$ for all $n \geq 0$.
Proof. Let $\eta_{0}: 1 \rightarrow j_{0 *} j_{0}^{*}$ denote the unit map. Let $f_{2}^{*} \widehat{H} \mathbb{F}_{p}^{\mathbb{Z}_{p}} \rightarrow f_{2}^{*} j_{0 *} H \mathbb{F}_{p}^{\mathbb{Q}_{p}}$ be the map $f_{2}^{*} \eta_{0}$ induced by the isomorphism $j_{0}^{*} \widehat{H} \mathbb{F}_{p}^{Z_{p}} \rightarrow H \mathbb{F}_{p}^{\mathbb{Q}_{p}}$. The exchange transformation $f_{2}^{*} j_{0 *} \rightarrow j_{*} f_{3}^{*}$ induces a morphism $f_{2}^{*} j_{0 *} H \mathbb{F}_{p}^{\mathbb{Q}_{p}} \rightarrow j_{*} f_{3}^{*} H \mathbb{F}_{p}^{\mathbb{Q}_{p}}$. Let $f_{2}^{*} \widehat{H} \mathbb{F}_{p}^{Z_{p}} \rightarrow j_{*} f_{3}^{*} H \mathbb{F}_{p}^{\mathbb{Q}_{p}}$ be the map ηf_{2}^{*} induced by the isomorphism

$$
j^{*} f_{2}^{*} \widehat{H} \mathbb{F}_{p}^{\mathbb{Z}_{p}} \cong f_{3}^{*} j_{0}^{*} \widehat{H} \mathbb{F}_{p}^{Z_{p}} \rightarrow f_{3}^{*} H \mathbb{F}_{p}^{\mathbb{Q}_{p}}
$$

Putting these maps together, we get the following square, which commutes by adjunction:

Applying the exchange transformation $f_{2}^{*} j_{0 *} \rightarrow j_{*} f_{3}^{*}$ to $P_{\mathbf{Q}_{p}}^{n}$, we get the following commuting square:

Applying i^{*} (and the connection isomorphism $i^{*} f_{2}^{*} \cong f_{1}^{*} i_{0}^{*}$) to these two squares and combining with $g: \Sigma_{+}^{\infty} X \rightarrow \Sigma^{2 m, m} H \mathbb{F}_{p}^{k}$, we obtain the following commuting diagram:

Let $\pi^{\prime}: i_{0}^{*} j_{0 *} H \mathbb{F}_{p}^{\mathbb{Q}_{p}} \rightarrow H \mathbb{F}_{p}^{\mathbb{F}_{p}}$ and $\pi_{0}^{\prime}: i_{0}^{*} j_{0 *} H \mathbb{F}_{p}^{\mathbb{Q}_{p}} \rightarrow \Sigma^{-1,-1} H \mathbb{F}_{p}^{\mathbb{F}_{p}}$ be projection morphisms induced by the isomorphism $i_{0}^{*} j_{0 *} H \mathbb{F}_{p}^{\mathbb{Q}_{p}} \cong H \mathbb{F}_{p}^{\mathbb{F}_{p}} \oplus \Sigma^{-1,-1} H \mathbb{F}_{p}^{\mathbb{F}_{p}}$ of Theorem 2.4. Consider the following diagram:

From Theorem 3.2, the composite $\Sigma_{+}^{\infty} X \rightarrow \Sigma^{2(m+n(p-1)), m+n(p-1)} H \mathbb{F}_{p}^{k}$ given by the upper half of diagram (10) is equal to $f_{1}^{*}\left(P_{\mathbb{F}_{p}}^{n}\right)(g)$, and the composite $\Sigma_{+}^{\infty} X \rightarrow \Sigma^{2(m+n(p-1)), m+n(p-1)} H \mathbb{F}_{p}^{k}$ given by the lower half is equal to $P_{k}^{n}(g)$. As diagram (9) commutes, Lemma 3.1 then implies that $f_{1}^{*}\left(P_{\mathbb{F}_{p}}^{n}\right)(g)=$ $P_{k}^{n}(g)$.

We can now prove that the Steenrod operations P_{k}^{n} commute with base change on mod p Chow groups. Let $f: \operatorname{Spec}\left(k_{1}\right) \rightarrow \operatorname{Spec}\left(k_{2}\right)$ be given, where k_{1}, k_{2} are fields of characteristic p. Let $h: \operatorname{Spec}\left(k_{2}\right) \rightarrow \operatorname{Spec}\left(\mathbb{F}_{p}\right)$ be the structure map.
Corollary 3.4. Let $X \in \operatorname{Sm}_{k_{2}}$. Let $n \geq 0$. The following square commutes:

Proof. From Proposition 3.3, $h^{*} P_{\mathbb{F}_{p}}^{n}$ agrees with $P_{k_{2}}^{n}$ on $C H^{*}(X) / p$ and $f^{*} h^{*} P_{\mathbb{F}_{p}}^{n}$ agrees with $P_{k_{1}}^{n}$ on $C H^{*}\left(X_{k_{1}}\right) / p$. Let $g: \Sigma_{+}^{\infty} X \rightarrow \Sigma^{2 m, m} H \mathbb{F}_{p}^{k_{2}}$ be given. Then

$$
f^{*}\left(P_{k_{2}}^{n}(g)\right)=f^{*}\left(h^{*} P_{\mathbb{F}_{p}}^{n}(g)\right)=f^{*} h^{*}\left(P_{\mathbb{F}_{p}}^{n}\right)\left(f^{*} g\right)=P_{k_{1}}^{n}\left(f^{*} g\right),
$$

as required.
Proposition 3.5. The morphism $\beta_{k}=P_{k}^{(1,0, \ldots)}$ defined in Definition 3.1 is equal to the Bockstein homomorphism β on mod p motivic cohomology.

Proof. We let β denote the Bockstein homomorphism on mod p motivic cohomology over any base scheme. The Bockstein homomorphism β in characteristic 0 is known to be dual to τ_{0}. Hence,
$\beta=P_{K}^{(1,0, \ldots)}=\beta_{K}$. Applying the natural transformation $i^{*} \rightarrow i^{*} j_{*} j^{*}$ to the diagram

in $S H(D)$ yields the following commuting diagram in $S H(k)$:

From Theorem 3.2, $\Phi\left(\beta_{K}\right)=\beta_{k}$. The composite in diagram (11) that starts at $H \mathbb{F}_{p}^{k}$ in the top row and goes immediately down to $\Sigma^{1,0} H \mathbb{F}_{p}^{k}$ is equal to $\Phi\left(\beta_{K}\right)$. As the diagram commutes and $\pi \circ i^{*} \eta=i d$., it follows that $\Phi\left(\beta_{K}\right)=\beta=\beta_{k}$.

4. Adem relations

In this section we use the map $\Phi: H \mathbb{F}_{p}^{K *, *} H \mathbb{F}_{p}^{K} \rightarrow H \mathbb{F}_{p}^{k *, *} H \mathbb{F}_{p}^{k} 5$ and Theorem 3.2 to show that the operations P_{k}^{n} for $n \geq 0$ satisfy the expected Adem relations when restricted to $\bmod p$ Chow groups. The proof uses the corresponding Adem relations in characteristic 0 , which can be found in [27, Théorème 4.5.1] for $p=2$ and [27, Théorème 4.5.2] for odd p. First we state the Adem relations for $p=2$ over the base K of characteristic 0 . Let $\tau \in H^{0,1}\left(K, \mathbb{F}_{2}\right)$ denote the class of $-1 \in \mu_{2}(K)$ and let $\rho \in H^{1,1}\left(K, \mathbb{F}_{2}\right)$ denote the class of $-1 \in K^{*} / K^{* 2}$. Set $\mathrm{Sq}_{k}^{2 n}:=P_{k}^{n}$ and $\mathrm{Sq}_{k}^{2 n+1}=\beta_{k} \mathrm{Sq}_{k}^{2 n}$ for $n \geq 0$.
Theorem 4.1. Let $a, b \in \mathbb{N}$ with $a<2 b$.
1.

$$
\mathrm{Sq}_{K}^{a} \mathrm{Sq}_{K}^{b}=\sum_{j=0}^{\left\lfloor\frac{a}{2}\right\rfloor}\binom{b-1-j}{a-2 j} \mathrm{Sq}_{K}^{a+b-j} \mathrm{Sq}_{K}^{j}+\sum_{\substack{j=1 \\ j \text { odd }}}^{\left\lfloor\frac{a}{2}\right\rfloor} \rho\binom{b-1-j}{a-2 j} \mathrm{Sq}_{K}^{a+b-j-1} \mathrm{Sq}_{K}^{j}
$$

if a is even and bis odd.
2.

$$
\mathrm{Sq}_{K}^{a} \mathrm{Sq}_{K}^{b}=\sum_{\substack{j=0 \\ j \text { odd }}}^{\left\lfloor\frac{a}{2}\right\rfloor}\binom{b-1-j}{a-2 j} \mathrm{Sq}_{K}^{a+b-j} \mathrm{Sq}_{K}^{j}
$$

if a and b are odd.
3.

$$
\mathrm{Sq}_{K}^{a} \mathrm{Sq}_{K}^{b}=\sum_{j=0}^{\left\lfloor\frac{a}{2}\right\rfloor} \tau^{j \bmod 2}\binom{b-1-j}{a-2 j} \mathrm{Sq}_{K}^{a+b-j} \mathrm{Sq}_{K}^{j}
$$

if a and b are even.
4.

$$
\mathrm{Sq}_{K}^{a} \mathrm{Sq}_{K}^{b}=\sum_{\substack{j=0 \\ j \text { even }}}^{\left\lfloor\frac{a}{2}\right\rfloor}\binom{b-1-j}{a-2 j} \mathrm{Sq}_{K}^{a+b-j} \mathrm{Sq}_{K}^{j}+\sum_{\substack{j=1 \\ j \text { odd }}}^{\left\lfloor\frac{a}{2}\right\rfloor} \rho\binom{b-1-j}{a-1-2 j} \mathrm{Sq}_{K}^{a+b-j-1} \mathrm{Sq}_{K}^{j}
$$

if a is odd and b is even.
Next we state the characteristic 0 Adem relations for p odd.
Theorem 4.2. 1. Let $a, b \in \mathbb{N}$ with $a<p b$. Then

$$
P_{K}^{a} P_{K}^{b}=\sum_{j=0}^{\left\lfloor\frac{a}{p}\right\rfloor}(-1)^{a+j}\binom{(p-1)(b-j)-1}{a-p j} P_{K}^{a+b-j} P_{K}^{j}
$$

2. Let $a, b \in \mathbb{N}$ with $a \leq p b$. Then

$$
\begin{gathered}
P_{K}^{a} \beta_{K} P_{K}^{b}=\sum_{j=0}^{\left\lfloor\frac{a}{p}\right\rfloor}(-1)^{a+j}\binom{(p-1)(b-j)-1}{a-p j} \beta_{K} P_{K}^{a+b-j} P_{K}^{j}+ \\
\sum_{j=0}^{\left\lfloor\frac{a-1}{p}\right\rfloor}(-1)^{a+j+1}\binom{(p-1)(b-j)-1}{a-p j-1} P_{K}^{a+b-j} \beta_{K} P_{K}^{j}
\end{gathered}
$$

The Adem relations can now be proven for the operations P_{k}^{n} restricted to $\bmod p$ Chow groups.
Theorem 4.3. Let $X \in \operatorname{Sm}_{k}$ and let $x \in H^{2 m, m}\left(X, \mathbb{F}_{p}\right)=C H^{m}(X) / p$ for some $m \geq 0$. Let $a, b \in \mathbb{N}$ such that $a<p b$. Then

$$
P_{k}^{a}\left(P_{k}^{b}(x)\right)=\sum_{j=0}^{\left\lfloor\frac{a}{p}\right\rfloor}(-1)^{a+j}\binom{(p-1)(b-j)-1}{a-p j} P_{k}^{a+b-j}\left(P_{k}^{j}(x)\right) .
$$

Proof. From Theorem 3.2, $P_{k}^{a}\left(P_{k}^{b}(x)\right)=\Phi\left(P_{K}^{a} P_{K}^{b}\right)(x)$. Then use the Adem relations in characteristic 0 to rewrite $P_{K}^{a} P_{K}^{b} \in H \mathbb{F}_{p}^{K *, *} H \mathbb{F}_{p}^{K}$. Note that the Bockstein β_{k} is the 0 homomorphism on $\bmod p$ Chow groups. If $p=2, \Phi\left(\mathrm{Sq}_{K}^{n}\right)(x)=\mathrm{Sq}_{k}^{n}(x)=0$ whenever n is odd. Thus, applying Theorem 3.2 yields

$$
\begin{aligned}
P_{k}^{a}\left(P_{k}^{b}(x)\right)= & \Phi\left(P_{K}^{a} P_{K}^{b}\right)(x)=\Phi\left(\sum_{j=0}^{\left\lfloor\frac{a}{p}\right\rfloor}(-1)^{a+j}\binom{(p-1)(b-j)-1}{a-p j} P_{K}^{a+b-j} P_{K}^{j}\right)(x) \\
= & \sum_{j=0}^{\left\lfloor\frac{a}{p}\right\rfloor}(-1)^{a+j}\binom{(p-1)(b-j)-1}{a-p j} P_{k}^{a+b-j}\left(P_{k}^{j}(x)\right) .
\end{aligned}
$$

5. Coaction map for smooth X

In this section, for $X \in \mathrm{Sm}_{k}$, we describe a coaction map

$$
\lambda_{X}: H^{*, *}\left(X, \mathbb{F}_{p}\right) \rightarrow \pi_{-*,-*}\left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right) \otimes_{\pi_{-*,-*} H \mathbb{F}_{p}^{k}} H^{*, *}\left(X, \mathbb{F}_{p}\right)
$$

such that the actions of the cohomology operations P_{k}^{n} defined in Section 3 on $H^{*, *}\left(X, \mathbb{F}_{p}\right)$ are determined by λ_{X}. We show that λ_{X} is a ring homomorphism when restricted to $\bmod p$ Chow groups. This will allow us to prove the Cartan formula in the next section.

There is a multiplication morphism

$$
\begin{equation*}
m:\left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right) \wedge\left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right) \rightarrow \bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k} \tag{12}
\end{equation*}
$$

defined as $m=r \circ \mu_{2}^{k} \circ\left(\Psi_{k} \wedge \Psi_{k}\right)$. The morphism m defines multiplication on

$$
\left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right)^{*, *}\left(\Sigma_{+}^{\infty} X\right)
$$

and

$$
\pi_{*, *}\left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right)
$$

For sequences α_{1}, α_{2}, Proposition 2.2 allows us to calculate the product

$$
r_{*}\left(\omega\left(\alpha_{1}\right)\right) r_{*}\left(\omega\left(\alpha_{2}\right)\right) \in \pi_{*, *}\left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right)
$$

in terms of another sequence $\alpha_{1}+\alpha_{2}$ by using the relations $\tau_{i}^{2}=0$ for $i \geq 0$.
Proposition 5.1. The natural ring homomorphism

$$
\pi_{-*,-*}\left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right) \otimes_{\pi_{-*,-*}} H \mathbb{F}_{p}^{k} H^{*, *}\left(X, \mathbb{F}_{p}\right) \rightarrow\left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right)^{*, *}\left(\Sigma_{+}^{\infty} X\right)
$$

is an isomorphism.
Proof. The suspension spectrum $\Sigma_{+}^{\infty} X \in S H(k)$ is compact. Hence,

$$
\operatorname{Hom}_{S H(k)}\left(\Sigma^{s, t} \Sigma_{+}^{\infty} X, \bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right) \cong \bigoplus_{\alpha} \operatorname{Hom}_{S H(k)}\left(\Sigma^{s, t} \Sigma_{+}^{\infty} X, \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right)
$$

for all $s, t \in \mathbb{Z}$.
Definition 5.1. Using the isomorphism

$$
\left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right)^{*, *}\left(\Sigma_{+}^{\infty} X\right) \cong \pi_{-*,-*}\left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right) \otimes_{\pi_{-*,-*} H \mathbb{F}_{p}^{k}} H^{*, *}\left(X, \mathbb{F}_{p}\right)
$$

from Proposition 5.1, define an additive homomorphism of graded abelian groups

$$
\lambda_{X}: H^{*, *}\left(X, \mathbb{F}_{p}\right) \rightarrow \pi_{-*,-*}\left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right) \otimes_{\pi_{-*,-} H \mathbb{F}_{p}^{k}} H^{*, *}\left(X, \mathbb{F}_{p}\right)
$$

by the composite

Proposition 5.2. Restricted to mod p Chow groups, λ_{X} preserves multiplication.
Proof. Let $f: \Sigma_{+}^{\infty} X \rightarrow \Sigma^{2 m, m} H \mathbb{F}_{p}^{k}$ and $g: \Sigma_{+}^{\infty} X \rightarrow \Sigma^{2 n, n} H \mathbb{F}_{p}^{k}$ be given. We need to show that $\lambda_{X}(f g)=\lambda_{X}(f) \lambda_{X}(g)$. The right $H \mathbb{F}_{p}^{k}$ map i_{R} is a morphism of commutative ring spectra. Hence, $i_{R *}$ is a homomorphism of rings. Hence, we need to prove that $r_{*}\left(i_{R *}(f) i_{R *}(g)\right)=r_{*}\left(i_{R *}(f)\right) r_{*}\left(i_{R *}(g)\right)$.

Applying the natural transformation $i^{*} \rightarrow i^{*} j_{*} j^{*}$ to μ_{2}^{D}, we get a commuting diagram:

$$
\begin{align*}
&\left(H \mathbb{F}_{p}^{k} \wedge H \mathbb{F}_{p}^{k}\right) \wedge\left(H \mathbb{F}_{p}^{k} \wedge H \mathbb{F}_{p}^{k}\right) \xrightarrow{\mu_{2}^{k}} H \mathbb{F}_{p}^{k} \wedge H \mathbb{F}_{p}^{k} \\
& \downarrow^{i^{*} \eta} \downarrow_{i^{*} \eta} \\
& i^{*} j_{*}\left(\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) \wedge\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right)\right) \xrightarrow{i^{i^{*} j_{*} \mu_{2}^{K}}} i^{*} j_{*}\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) \tag{14}\\
& \underset{\sim}{\bullet \oplus \pi} \\
& \bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}
\end{align*}
$$

We will factor the left vertical morphism in this diagram. Consider the triangle

$$
\begin{align*}
& \left(\widehat{\left.H \mathbb{F}_{p}^{D} \wedge \widehat{H} \mathbb{F}_{p}^{D}\right) \wedge\left(\widehat{H} \mathbb{F}_{p}^{D} \wedge \widehat{H}_{P}^{D}\right) \xrightarrow{\eta \wedge \eta} j_{*}\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) \wedge j_{*}\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right)}\right. \\
& \downarrow_{\eta} \eta \tag{15}\\
& j_{*}\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right),
\end{align*}
$$

where the morphism on the hypotenuse is defined by the lax monoidal property of j_{*}. Note that the counit morphism $\epsilon: j^{*} j_{*} \rightarrow i d$. is an isomorphism, since j is open. By adjunction, the morphism on the hypotenuse of diagram (15) is induced by the isomorphism

$$
\epsilon \wedge \epsilon: j^{*} j_{*}\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) \wedge j^{*} j_{*}\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) \rightarrow\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) \wedge\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right)
$$

The morphism η on the left leg of triangle (15) is induced by the isomorphism

$$
j^{*} \eta: j^{*}\left(\left(\widehat{H}_{p}^{D} \wedge \widehat{H}_{p}^{D}\right) \wedge\left(\widehat{H}_{p}^{D} \wedge \widehat{H}_{p}^{D}\right)\right) \rightarrow\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) \wedge\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right)
$$

Using the property that pullback is strongly monoidal, we then have the following commuting triangle:

$$
\begin{aligned}
& j^{*}\left(\widehat{H} \mathbb{F}_{p}^{D} \wedge \widehat{H} \mathbb{F}_{p}^{D}\right) \wedge j^{*}\left(\widehat{H} \mathbb{F}_{p}^{D} \wedge \widehat{H} \mathbb{F}_{p}^{D}\right)^{j^{*} \eta \wedge j^{*} \eta} j^{*} j_{*}\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) \wedge j^{*} j_{*}\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) \\
& \downarrow_{j^{*} \eta} \\
&\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) \wedge\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) .
\end{aligned}
$$

Thus, by adjunction, triangle (15) commutes.
Applying i^{*} to triangle (15) shows that the commuting diagram (14) is a subdiagram of the commuting diagram

From diagram (3),

$$
\left(i^{*} \eta \wedge i^{*} \eta\right) \circ\left(\Psi_{k} \wedge \Psi_{k}\right):\left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right) \wedge\left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right) \rightarrow i^{*} j_{*}\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) \wedge i^{*} j_{*}\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right)
$$

is equal to the composite $\left(i^{*} j_{*} \Psi_{K} \wedge i^{*} j_{*} \Psi_{K}\right) \circ\left(i^{*} \eta \wedge i^{*} \eta\right)$. Hence, diagram (16) implies that the multiplication morphism $m=r \circ \mu_{2}^{k} \circ\left(\Psi_{k} \wedge \Psi_{k}\right)$ on

$$
\left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right) \wedge\left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right)
$$

is equal to the following composite:

$$
\begin{align*}
& \left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right) \wedge\left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right) \\
& \downarrow\left(\left(i^{*} j_{*} \Psi_{K}\right) \circ i^{*} \eta\right) \wedge\left(\left(i^{*} j_{*} \Psi_{K}\right) \circ i^{*} \eta\right) \\
& i^{*} j_{*}\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) \wedge i^{*} j_{*}\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) \\
& \begin{array}{r}
\stackrel{\downarrow}{i^{*} j_{*}\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right)} \xrightarrow{{\stackrel{i}{ }{ }^{*} j_{*} \mu_{2}^{K}}_{\longrightarrow} i^{*} j_{*}\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right)} \\
\downarrow^{\oplus \pi}
\end{array} \tag{17}\\
& \underset{\alpha}{\bigoplus} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k} .
\end{align*}
$$

To show that $r_{*}\left(i_{R *}(f) i_{R *}(g)\right)=r_{*}\left(i_{R *}(f)\right) r_{*}\left(i_{R *}(g)\right)$, consider the following commuting diagram, where Δ is the diagonal morphism:

The composite $\oplus \pi \circ i^{*} \eta \circ \mu_{2}^{k} \circ\left(i_{R} \wedge i_{R}\right) \circ(f \wedge g) \circ \Delta$ in this diagram is equal to $r_{*}\left(i_{R *}(f) i_{R *}(g)\right)$. From Lemma 3.1, we can replace $i^{*} \eta \wedge i^{*} \eta$ in this diagram with $i^{*} \eta \wedge i^{*} \eta \circ r \wedge r$ to obtain an equivalent map:

$$
\begin{align*}
& \begin{array}{c}
\Sigma_{+}^{\infty} X \\
\Sigma_{+}^{\infty} X \wedge \Sigma_{+}^{\infty} X
\end{array} \\
& \downarrow f \wedge g \\
& \Sigma^{2 m, m} H \mathbb{F}_{p}^{k} \wedge \Sigma^{2 n, n} H \mathbb{F}_{p}^{k} \\
& \downarrow^{i} R^{\wedge i} R \\
& \left(\Sigma^{2 m, m} H \mathbb{F}_{p}^{k} \wedge H \mathbb{F}_{p}^{k}\right) \wedge\left(\Sigma^{2 n, n} H \mathbb{F}_{p}^{k} \wedge H \mathbb{F}_{p}^{k}\right) \\
& \downarrow r \wedge r \tag{19}\\
& \left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}+2 m, q_{\alpha}+m} H \mathbb{F}_{p}^{k}\right) \wedge\left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}+2 n, q_{\alpha}+n} H \mathbb{F}_{p}^{k}\right) \\
& \downarrow^{i^{*} \eta \wedge i^{*} \eta} \\
& i^{*} j_{*}\left(\Sigma^{2 m, m} H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) \wedge i^{*} j_{*}\left(\Sigma^{2 n, n} H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) \\
& i^{*} j_{*}\left(\Sigma^{2(m+n), m+n} H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) \xrightarrow{i^{*} j_{*} \mu_{2}^{K}} i^{*} j_{*}\left(\Sigma^{2(m+n), m+n} H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right)
\end{align*}
$$

From diagram (17), the composite given by diagram (19) is equal to $\Sigma^{2(m+n), m+n} m \circ(r \wedge r) \circ\left(i_{R} \wedge i_{R}\right) \circ$ $(f \wedge g) \circ \Delta=r_{*}\left(i_{R *}(f)\right) r_{*}\left(i_{R *}(g)\right)$. Thus, $r_{*}\left(i_{R *}(f) i_{R *}(g)\right)=r_{*}\left(i_{R *}(f)\right) r_{*}\left(i_{R *}(g)\right)$, as desired.

6. Cartan formula

In this section, we use the coaction map constructed in the previous section to prove a Cartan formula for the operations P_{k}^{n} restricted to mod p Chow groups. Let $X \in \operatorname{Sm}_{k}$. Let $\langle\cdot, \cdot\rangle$ denote the pairing between $\mathcal{A}_{*, *}^{k}$ and $H \mathbb{F}_{p}^{k *, *} H \mathbb{F}_{p}^{k}$. Let $n \geq 0$. For $x \in H^{*, *}\left(X, \mathbb{F}_{p}\right)$ with $\lambda_{X}(x)=\Sigma y_{i} \otimes x_{i}$, we have $P_{k}^{n}(x)=\Sigma\left\langle y_{i}, P_{k}^{n}\right\rangle x_{i}$.
Proposition 6.1. Let $x, y \in C H^{*}(X) / p$ and $i \geq 0$. Then

$$
P_{k}^{i}(x y)=\sum_{j=0}^{i} P_{k}^{j}(x) P_{k}^{i-j}(y)
$$

Proof. From the definition of $P_{k}^{i},\left\langle\xi_{1}^{i}, P_{k}^{i}\right\rangle=1$ and $\left\langle\omega(\alpha), P_{k}^{i}\right\rangle=0$ for all sequences $\alpha \neq(0, i, 0,0, \ldots)$. Using coaction map (13), write

$$
\lambda_{X}(x)=\sum_{q} \omega\left(\alpha_{q}^{1}\right) \otimes x_{q}
$$

and

$$
\lambda_{X}(y)=\sum_{r} \omega\left(\alpha_{r}^{2}\right) \otimes y_{r}
$$

for some sequences $\alpha_{q}^{1}, \alpha_{r}^{2}$. Then

$$
\lambda_{X}(x y)=\sum_{q, r}\left(\left(\omega\left(\alpha_{q}^{1}\right) \omega\left(\alpha_{r}^{2}\right) \otimes x_{q} y_{r}\right)\right.
$$

For any 2 sequences $\alpha_{q}^{1}, \alpha_{r}^{2}$ appearing in these sums, we have $\omega\left(\alpha_{q}^{1}\right) \omega\left(\alpha_{r}^{2}\right)=0$ if the relation $\tau_{m}^{2}=0$ from Proposition 2.2 applies for some $m \geq 0$, or else $\omega\left(\alpha_{q}^{1}\right) \omega\left(\alpha_{r}^{2}\right)= \pm \omega\left(\alpha_{q}^{1}+\alpha_{r}^{2}\right)$.

From the definition of λ_{X},

$$
P_{k}^{i}(x y)=\sum_{q, r}\left\langle\left(\omega\left(\alpha_{q}^{1}\right) \omega\left(\alpha_{r}^{2}\right), P_{k}^{i}\right\rangle x_{q} y_{r} .\right.
$$

Proposition 2.2 implies that if $\omega\left(\alpha_{1}\right) \omega\left(\alpha_{2}\right)=a \xi_{1}^{i}$ for two sequences α_{1}, α_{2} and $a \neq 0 \in H^{*, *}\left(k, \mathbb{F}_{p}\right)$, then $a=1$ and $\omega\left(\alpha_{1}\right)=\xi_{1}^{j}, \omega\left(\alpha_{2}\right)=\xi_{1}^{i-j}$ for some $0 \leq j \leq i$. As P_{k}^{i} is dual to ξ_{1}^{i}, the only terms for which $\left\langle\omega\left(\alpha_{q}^{1}+\alpha_{r}^{2}\right), P_{k}^{i}\right\rangle \neq 0$ are of the form $\omega\left(\alpha_{q_{j}}^{1}\right)=\xi_{1}^{j}, \omega\left(\alpha_{r_{j}}^{2}\right)=\xi_{1}^{i-j}$ for $0 \leq j \leq i$. Hence,

$$
\begin{equation*}
P_{k}^{i}(x y)=\sum_{j=0}^{i}\left\langle\omega\left(\alpha_{q_{j}}^{1}+\alpha_{r_{j}}^{2}\right), P_{k}^{i}\right\rangle x_{q_{j}} y_{r_{j}}=\sum_{j=0}^{i} P_{k}^{j}(x) P_{k}^{i-j}(y), \tag{20}
\end{equation*}
$$

as required.

7. \boldsymbol{p} th power and instability

In this section, for $n \in \mathbb{N}$, we prove that P_{k}^{n} is the p th power on $C H^{n}(-) / p$. Letting $f: \operatorname{Spec}(k) \rightarrow$ $\operatorname{Spec}\left(\mathbb{F}_{p}\right)$ denote the structure map, it suffices to prove that $f^{*}\left(P_{\mathbb{F}_{p}}^{n}\right)\left(\iota_{n}\right)=t_{n}^{p}$ for the canonical element $\iota_{n} \in H^{2 n, n}\left(K_{n, k}, \mathbb{F}_{p}\right)$, where $K_{n, k} \in H(k)$ is the motivic Eilenberg-MacLane space representing $H^{2 n, n}\left(-, \mathbb{F}_{p}\right)$. This proof makes use of Morel's S^{1}-recognition principle.

We refer to [7, Section 3] as a reference for the S^{1}-recognition principle. For a base scheme S, let $\mathrm{PSh}_{\text {nis }}\left(\mathrm{Sm}_{S}\right)$ denote the category of Nisnevich local presheaves of spaces on Sm_{S}. The unstable motivic homotopy category $H(S)$ can be described as the full subcategory of $\mathrm{PSh}_{\text {nis }}\left(\mathrm{Sm}_{S}\right)$ of presheaves that are \mathbb{A}^{1}-invariant. Let $L_{\text {mot }}: \mathrm{PSh}_{\text {nis }}\left(\mathrm{Sm}_{S}\right) \rightarrow H(S)$ denote the \mathbb{A}^{1}-localization functor. Let $S H^{S^{1}}(S)$ denote the stable motivic homotopy category of S^{1}-spectra. For a morphism $f: S_{1} \rightarrow S_{2}$ of base schemes, we have the adjoint functors of pullback $f^{*}:=L f^{*}$ and push-forward $f_{*}:=R f_{*}$:

$$
f^{*}: H\left(S_{2}\right) \rightleftarrows H\left(S_{2}\right): f_{*}
$$

For $f: S_{1} \rightarrow S_{2}$ smooth, f^{*} admits a left adjoint $f_{\#}$ such that $f_{\#}(X)=X \in H\left(S_{2}\right)$ for any $X \in \operatorname{Sm}_{S_{1}}$.
For $C=\mathrm{PSh}_{\text {nis }}\left(\mathrm{Sm}_{S}\right)$, consider the n-fold bar constructions $\mathrm{B}_{\text {nis }}^{n}$ that are adjoint to the nth S^{1} deloopings Ω^{n} :

$$
\mathrm{B}_{\mathrm{nis}}^{n}: \operatorname{Mon}_{\varepsilon_{n}}(C) \rightleftarrows C: \Omega^{n} .
$$

We also consider the infinite bar construction

$$
\mathrm{B}_{\mathrm{nis}}^{\infty}: \operatorname{CMon}(C)=\operatorname{Mon}_{\varepsilon_{\infty}}(C) \rightleftarrows \operatorname{Stab}(C): \Omega^{\infty},
$$

where $\operatorname{Stab}(C):=C \otimes \operatorname{Spt}$ denotes the S^{1}-stabilization of C. Similarly, for $C=H(S)$ we have the nth S^{1}-deloopings Ω^{n} :

$$
\mathrm{B}_{\mathrm{mot}}^{n}: \operatorname{Mon}_{\varepsilon_{n}}(C) \rightleftarrows C: \Omega^{n}
$$

and infinite bar construction

$$
\mathrm{B}_{\mathrm{mot}}^{\infty}: \operatorname{CMon}(C)=\operatorname{Mon}_{\varepsilon_{\infty}}(C) \rightleftarrows \operatorname{Stab}(C): \Omega^{\infty} .
$$

For later use, note that $\mathrm{B}_{\text {nis }}^{n}$ and $\mathrm{B}_{\text {nis }}^{\infty}$ commute with pullbacks.
Definition 7.1. Define $X \in \operatorname{Mon}(H(S))$ to be strongly \mathbb{A}^{1}-invariant if $\mathrm{B}_{\text {nis }} X \simeq \mathrm{~B}_{\mathrm{mot}} X$. Define $X \in$ CMon $(H(S))$ to be strictly \mathbb{A}^{1}-invariant if $\mathrm{B}_{\text {nis }}^{n} X \simeq \mathrm{~B}_{\text {mot }}^{n} X$ for all $n \geq 0$.

Most of the proof of the following proposition was suggested by Marc Hoyois.
Proposition 7.1. Let k be a perfect field of characteristic p and let $i: \operatorname{Spec}(k) \rightarrow \operatorname{Spec}(D)$ be a closed embedding where D is a complete unramified discrete valuation ring with generic point $j: \operatorname{Spec}(K) \rightarrow \operatorname{Spec}(D)$. Fix $n>0$. Let $K_{n, D}:=\Omega_{\mathbb{P}^{1}}^{\infty} \Sigma^{2 n, n} \widehat{H}_{\mathbb{F}}^{D}$. Then the morphism $i^{*} K_{n, D} \rightarrow K_{n, k}$ induced by $i^{*} \Sigma^{2 n, n} \widehat{H} \mathbb{F}_{p}^{D} \cong \Sigma^{2 n, n} H \mathbb{F}_{p}^{k}$ is an isomorphism in $H(k)$.

Proof. We first prove that $K_{n, D}$ is connected. Let R be a Henselian local ring that is essentially smooth over D. From [11, Corollary 4.2], the Bloch-Levine Chow groups $C H^{m}(R)$ of R vanish for $m \geq 1$. Thus, $\pi_{0}^{\text {nis }}\left(K_{n, D}(\operatorname{Spec}(R))\right) \simeq *$, since $K_{n, D} \in H(D)$ represents the codimension $n \bmod p$ BlochLevine Chow group.

Now we prove that $i^{*} K_{n, D}$ is connected. As $j: \operatorname{Spec}(K) \rightarrow \operatorname{Spec}(D)$ is smooth, $j^{*} K_{n, D} \simeq K_{n, K}$. Consider the homotopy pushout P in $\mathrm{PSh}_{\text {nis }}\left(\mathrm{Sm}_{D}\right)$ of the following diagram:

The morphism $j_{\#} K_{n, K} \rightarrow \operatorname{Spec}(K)$ induces a bijection on π_{0}^{nis}. Hence, $\pi_{0}^{\mathrm{nis}}\left(K_{n, D}\right) \simeq \pi_{0}^{\mathrm{nis}}(P)$. From the gluing square [25, Theorem 2.21],

$$
L_{\mathrm{mot}}(P) \simeq i_{*} i^{*}\left(K_{n, D}\right)
$$

From [25, Corollary 3.22], it follows that $i_{*} i^{*}\left(K_{n, D}\right)$ is connected, since $K_{n, D}$ is connected. Let $k \rightarrow S_{k}$ be an essentially smooth homomorphism of rings, where S_{k} is Henselian local. The ring S_{k} admits a lift S_{D} where $D \rightarrow S_{D}$ is essentially smooth and S_{D} is Henselian local. Hence, $i^{*}\left(K_{n, D}\right)\left(S_{k}\right) \simeq$ $i_{*} i^{*}\left(K_{n, D}\right)\left(S_{D}\right)$ is connected. Thus, $i^{*} K_{n, D} \in H(k)$ is connected. In particular, $\pi_{0}^{\text {nis }}\left(i^{*}\left(K_{n, D}\right)\right)$ is strongly \mathbb{A}^{1}-invariant. The S^{1}-recognition principle [7, Theorem 3.1.12] then implies that $i^{*} K_{n, D}$ is strictly \mathbb{A}^{1} invariant. Note that $K_{n, k}$ is also strictly \mathbb{A}^{1}-invariant, since $\pi_{0}^{\text {nis }}\left(K_{n, k}\right)$ is strongly \mathbb{A}^{1}-invariant.

From [30, Theorem 8.18], we have

$$
\mathrm{B}_{\mathrm{mot}}^{\infty} i^{*}\left(K_{n, D}\right) \cong i^{*}\left(\mathrm{~B}_{\mathrm{mot}}^{\infty} K_{n, D}\right) \cong i^{*}\left(\Omega_{\mathbb{G}_{m}}^{\infty} \Sigma^{2 n, n} \widehat{H F} \mathbb{F}_{p}^{D}\right) \cong \Omega_{\mathbb{G}_{m}}^{\infty} \Sigma^{2 n, n} H \mathbb{F}_{p}^{k} \cong \mathrm{~B}_{\mathrm{mot}}^{\infty} K_{n, k}
$$

in $S H^{S^{1}}(k)$. Then [7, Corollary 3.1.15] implies that $i^{*} K_{n, D} \cong K_{n, k}$ in $H(k)$.
Proposition 7.2. Let k be a field of characteristic p with structure map $f: \operatorname{Spec}(k) \rightarrow \operatorname{Spec}\left(\mathbb{F}_{p}\right)$ and let $\iota_{n} \in H^{2 n, n}\left(K_{n, k}, \mathbb{F}_{p}\right)$ be the canonical element. Then $f^{*} P_{\mathbb{F}_{p}}^{n}\left(\iota_{n}\right)=\iota_{n}^{p}$.
Proof. First, assume that k is perfect. Let D be a discrete valuation ring having k as a residue field with inclusion morphism $i: \operatorname{Spec}(k) \rightarrow \operatorname{Spec}(D)$ and generic point $j: \operatorname{Spec}(K) \rightarrow \operatorname{Spec}(D)$. From Proposition 7.1, $i^{*} K_{n, D} \cong K_{n, k}$. Over all base schemes S, let ι_{n} denote the canonical element in $H^{2 n, n}\left(K_{n, S}, \mathbb{F}_{p}\right)$. Apply $i^{*} \rightarrow i^{*} j_{*} j^{*}$ to the natural morphism $\iota_{n}: \Sigma_{+}^{\infty} K_{n, D} \rightarrow \Sigma^{2 n, n} \widehat{H} \mathbb{F}_{p}^{D}$ to get the following commuting square:

Apply $i^{*} \eta: i^{*} \rightarrow i^{*} j_{*} j^{*}$ to the morphism $\Sigma_{+}^{\infty} K_{n, D} \rightarrow \Sigma^{2 p n, p n} \widehat{H} \mathbb{F}_{p}^{D}$ in $S H(D)$ corresponding to ι_{n}^{p} to get the commutative diagram

From [35, Lemma 9.8], $i^{*} j_{*} l_{n}^{p}=i^{*} j_{*} P_{K}^{n}\left(\iota_{n}\right)$. Hence, the bottom row of diagram (21) can be rewritten as

$$
i^{*} j_{*} \Sigma_{+}^{\infty} K_{n, K} \xrightarrow{i^{*} j_{*} \iota \eta} i^{*} j_{*} \Sigma^{2 n, n} H \mathbb{F}_{p}^{K} \xrightarrow{i^{*} j_{*} P_{K}^{n}} i^{*} j_{*} \Sigma^{2 p n, p n} H \mathbb{F}_{p}^{K} \xrightarrow{\pi} \Sigma^{2 p n, p n} H \mathbb{F}_{p}^{k} .
$$

From Theorem 3.2 and the foregoing commuting diagrams, $P_{k_{p}}^{n}\left(\iota_{n}\right)=\pi \circ\left(i^{*} j_{*} P_{K}^{n}\right) \circ\left(i^{*} j_{*} \iota_{n}\right) \circ i^{*} \eta$. Hence, from diagram (21) we have $P_{k}^{n}\left(\iota_{n}\right)=\pi \circ\left(i^{*} j_{*} \iota_{n}^{p}\right) \circ i^{*} \eta=\iota_{n}^{p}$.

For k not perfect, we have an essentially smooth morphism $f: \operatorname{Spec}(k) \rightarrow \operatorname{Spec}\left(\mathbb{F}_{p}\right)$, and $f^{*}\left(K_{n, \mathbb{F}_{p}}\right) \cong K_{n, k}$ [17, Theorem 2.11]. As \mathbb{F}_{p} is perfect, we then have $f^{*}\left(P_{\mathbb{F}_{p}}^{n}\left(\iota_{n}\right)\right)=f^{*}\left(P_{\mathbb{F}_{p}}^{n}\right)\left(\iota_{n}\right)=$ $f^{*}\left(\iota_{n}^{p}\right)=\iota_{n}^{p}$.

From Proposition 3.3, we have the following corollary:
Corollary 7.3. Let $X \in \operatorname{Sm}_{k}$. Then P_{k}^{n} is the pth power on $C H^{n}(X) / p$.
Now that we know that $f^{*}\left(P_{\mathbb{F}_{p}}^{n}\right)$ is the p th power on $H^{2 n, n}\left(-, \mathbb{F}_{p}\right)$ for all $n \geq 1$, we can prove an instability result. Let $f: \operatorname{Spec}(k) \rightarrow \operatorname{Spec}\left(\mathbb{F}_{p}\right)$ be the structure morphism.
Proposition 7.4. Let $m, q, n \geq 0$ be integers such that $n>m-q$ and $n \geq q$. Let $X \in H(k)$ and let $x \in H^{m, q}\left(X, \mathbb{F}_{p}\right)$. Then $f^{*}\left(P_{\mathbb{F}_{p}}^{n}\right)(x)=0$.

Proof. Voevodsky's proof in [35, Lemma 9.9] works here, since $f^{*}\left(P_{\mathbb{F}_{p}}^{n}\right)$ is the p th power on $H^{2 n, n}\left(-, \mathbb{F}_{p}\right)$ by Proposition 7.2.

Corollary 7.5. Let $X \in \operatorname{Sm}_{k}$. Then P_{k}^{n} is the 0 map on $C H^{m}(X) / p$ for $m<n$.

8. Proper push-forward

In this section, we restrict our attention to mod p Chow groups on Sm_{k}. The ring of mod p Chow groups is an oriented cohomology pretheory in the sense of [26, Section 1], with perfect integration given by proper push-forward on Chow groups. Consider the total cohomological Steenrod operation $P_{k}:=P_{k}^{0}+P_{k}^{1}+P_{k}^{2}+\cdots: C H^{*}(-) / p \rightarrow C H^{*}(-) / p$. From the Cartan formula (Section 6), P_{k} is a ring morphism of oriented cohomology pretheories in the sense of [26, Definition 1.1.7].

Let $\mathbb{Z}\left[\left[c_{1}, c_{2}, \ldots\right]\right]$ denote the power series ring on Chern classes c_{i} for $i \geq 1$, and let $w \in$ $\mathbb{Z}\left[\left[c_{1}, c_{2}, \ldots\right]\right]$ denote the total characteristic class corresponding to the polynomial $f(x)=1+x^{p-1}$. For $p=2, w$ is the total Chern class. Let $X \in \operatorname{Sm}_{k}$. For a line bundle L on $X, w(L)=1+c_{1}^{p-1}(L) \in C H^{*}(X)$. For a vector bundle V on X that has a filtration by subbundles with quotients given by line bundles $L_{1}, \ldots, L_{m}, w(V)=w\left(L_{1}\right) \cdots w\left(L_{m}\right)$. Let w_{i} denote the i th homogeneous component of w for $i \geq 0$. We have $w_{i}=0$ if $p-1$ does not divide i. Define the total homological Steenrod operation $P^{X}:=w\left(-T_{X}\right) \circ P_{k}: C H^{*}(X) / p \rightarrow C H^{*}(X) / p$, where T_{X} is the tangent bundle on X. For $i \geq 0$, let P_{i}^{X} denote the $(p-1) i$ th homogeneous component of P^{X}. The following proposition is a consequence of the general Riemann-Roch formulas proved by Panin in [26]:

Proposition 8.1. Let $f: X \rightarrow Y$ be a projective morphism with $X, Y \in \operatorname{Sm}_{k}$. Then

commutes.
Proof. This is [26, Theorem 2.5.4]. See [26, Section 2.6] for a discussion relevant to our situation. The main ingredients are that the operations P_{k}^{n} satisfy the Cartan formula and that P_{k}^{n} is the p th power on $C H^{n}(-) / p$.

Restricting to the case $p=\operatorname{char}(k)=2$, we obtain a Wu formula from the work of Panin [26, Theorem 2.5.3]. Here, $w=c$ is the total Chern class and Sq denotes the total Steenrod square P_{k} on $C H^{*}(-) / 2$.

Proposition 8.2. Let $X, Y \in \operatorname{Sm}_{k}$ and let $i: X \hookrightarrow Y$ be a closed embedding with normal bundle N. Then

$$
i_{*}(c(N))=\operatorname{Sq}([X])
$$

in $\mathrm{CH}^{*}(Y) / 2$, where $[X] \in \mathrm{CH}^{*}(Y) / 2$ denotes the mod 2 cycle class of X.

9. Rost's degree formula

Now that we have Steenrod operations on mod p Chow groups of Sm_{k}, we can prove Rost's degree formula [24, Theorem 6.4] without any restrictions on the characteristic of the base field. We closely follow the presentation of Merkurjev [24], where Steenrod operations (assuming restrictions on the characteristic of the base field) are used to prove degree formulas. In [16], Haution extended the Rost degree formulas to base fields of characteristic 2 .

For a variety X over k, let n_{X} denote the greatest common divisor of $\operatorname{deg}(x)$ over all closed points $x \hookrightarrow X$. Let $X \in \operatorname{Sm}_{k}$ be projective of dimension $d>0$. Applying Proposition 8.1 to the structure morphism $X \rightarrow \operatorname{Spec}(k)$ and $[X] \in C H_{d}(X) / p$, we see that $p \mid \operatorname{deg}\left(w_{d}\left(-T_{X}\right)\right)$.

Proposition 9.1. Let $f: X \rightarrow Y$ be a morphism of projective varieties $X, Y \in \operatorname{Sm}_{k}$ of dimension $d>0$. Then $n_{Y} \mid n_{X}$ and

$$
\frac{\operatorname{deg}\left(w_{d}\left(-T_{X}\right)\right)}{p} \equiv \operatorname{deg}(f) \cdot \frac{\operatorname{deg}\left(w_{d}\left(-T_{Y}\right)\right)}{p} \bmod n_{Y}
$$

Proof. The proof in [24, Theorem 6.4] works here. From Proposition 8.1, $f_{*}\left(w_{d}\left(-T_{X}\right)\right) \equiv$ $\operatorname{deg}(f) w_{d}\left(-T_{Y}\right) \in C H_{0}(Y) / p$. We then take the degree homomorphism to finish the proof.

10. Specialization map

Fix a complete unramified discrete valuation ring D with residue field $i: \operatorname{Spec}(k) \rightarrow \operatorname{Spec}(D)$ and fraction field $j: \operatorname{Spec}(K) \rightarrow \operatorname{Spec}(D)$ as before. Let $X \in \operatorname{Sm}_{D}$ with special fiber X_{k} and generic fiber X_{K}. As described in [10, Chapter 20.3], there are specialization maps $\sigma_{n}: \operatorname{CH}^{n}\left(X_{K}\right) \rightarrow \operatorname{CH}^{n}\left(X_{k}\right)$ defined for all $n \geq 0$. The specialization maps can be defined at the level of cycles. Namely, for an irreducible closed subvariety $Z_{K} \subset X_{K}$ of codimension n, let Z_{k} denote the special fiber of the reduced closed subscheme $\overline{Z_{K}} \subset X$ associated to $Z_{K} \subset X$. Then $\sigma_{n}\left(\left\langle Z_{K}\right\rangle\right)=\left\langle Z_{k}\right\rangle \in C H^{n}\left(X_{k}\right)$. Also let σ_{n} denote the specialization map induced on mod p Chow groups.

We now show that the Steenrod operations P_{k}^{n} defined on $C H^{*}\left(X_{k}\right) / p$ are compatible with the operations P_{K}^{n} defined on $C H^{*}\left(X_{K}\right) / p$.

Proposition 10.1. Let $m \geq 0$ and let $Z_{K} \subset X_{K}$ be a closed subvariety of codimension n. Let $\left\langle Z_{K}\right\rangle \in$ $C H^{n}\left(X_{K}\right) / p$ denote the mod p cycle class of Z_{K}. Then

$$
P_{k}^{m}\left(\sigma_{n}\left(\left\langle Z_{K}\right\rangle\right)\right)=\sigma_{n+m(p-1)}\left(P_{K}^{m}\left(\left\langle Z_{K}\right\rangle\right)\right) \in C H^{n+m(p-1)}\left(X_{k}\right) / p .
$$

Proof. The $\bmod p$ cycle class of $\overline{Z_{K}} \subset X$ induces a map

$$
f_{D}: \Sigma_{+}^{\infty} X \rightarrow \Sigma^{2 n, n} \widehat{H} \mathbb{F}_{p}^{D}
$$

in $S H(D)$. The map $i^{*} f_{D}$ gives the $\bmod p$ cycle class of Z_{k} (the special fiber of $\overline{Z_{K}} \subset X$), and $j^{*} f_{D}$ gives the $\bmod p$ cycle class of Z_{K}. Applying the natural transformation $i^{*} \eta: i^{*} \rightarrow i^{*} j_{*} j^{*}$ to f_{D} gives a commuting square:

From Theorem 3.2, $P_{k}^{m}=\Phi\left(P_{K}^{m}\right)=\pi \circ i^{*} j_{*} P_{K}^{m} \circ i^{*} \eta$. Hence, from diagram (22),

$$
\pi \circ i^{*} \eta \circ P_{k}^{m} \circ i^{*} f_{D}=\pi \circ i^{*} j_{*} P_{K}^{m} \circ i^{*} j_{*} j^{*} f_{D} \circ i^{*} \eta
$$

in the following commuting diagram:

Write $P_{K}^{m}\left(\left\langle Z_{K}\right\rangle\right)=\sum_{l=1}^{q} a_{l}\left\langle Z_{K}^{l}\right\rangle$ for some $q, a_{l} \in \mathbb{Z}$ and closed subvarieties $Z_{K}^{l} \subset X_{K}$ of codimension $n+m(p-1)$. Taking the associated reduced closed subschemes in X gives an element $\sum_{l=1}^{q} a_{l}\left\langle\bar{Z}_{K}^{l}\right\rangle \in H^{2(n+m(p-1)), n+m(p-1)}\left(X, \mathbb{F}_{p}\right)$ which corresponds to a morphism

$$
g: \Sigma_{+}^{\infty} X \rightarrow \Sigma^{2(n+m(p-1)), n+m(p-1)} \widehat{H} \mathbb{F}_{p}^{D}
$$

For $1 \leq l \leq q$, let Z_{k}^{l} denote the special fiber of \bar{Z}_{K}^{l}. Taking pullbacks, $i^{*} g$ gives

$$
\sum_{l=1}^{q} a_{l}\left\langle Z_{k}^{l}\right\rangle \in H^{2(n+m(p-1)), n+m(p-1)}\left(X_{k}, \mathbb{F}_{p}\right)
$$

and $j^{*} g=\sum_{l=1}^{q} a_{l}\left\langle Z_{K}^{l}\right\rangle=P_{K}^{m}\left(\left\langle Z_{K}\right\rangle\right)$. Applying $i^{*} \eta$ to g yields a commuting diagram:

From diagrams (23) and (24), we get

$$
\begin{gathered}
i^{*} g=\sum_{l=1}^{q} a_{l}\left\langle Z_{k}^{l}\right\rangle=\pi \circ i^{*} j_{*} j^{*} g \circ i^{*} \eta=\pi \circ i^{*} j_{*}\left(P_{K}^{m}\left(\left\langle Z_{K}\right\rangle\right)\right) \circ i^{*} \eta \\
=\pi \circ i^{*} j_{*} P_{K}^{m} \circ i^{*} j_{*} j^{*} f_{D} \circ i^{*} \eta=P_{k}^{m}\left(\left\langle Z_{k}\right\rangle\right)
\end{gathered}
$$

as required.
We recall some facts about flag varieties, using [21] as a reference. Let G_{k} be a split reductive group over k with Borel subgroup B_{k} and Weyl group W. From the Bruhat decomposition,

$$
G_{k} / B_{k}=\coprod_{w \in W} B_{k} w B_{k} / B_{k}
$$

For $w \in W$, the closure X_{k}^{w} of $B_{k} w B_{k} / B_{k}$ in G_{k} / B_{k} is called a Schubert variety and

$$
B_{k} w B_{k} / B_{k} \cong \mathbb{A}_{k}^{l(w)}
$$

where $l(w)$ is the length of w in W. Let $P_{k} \supseteq B_{k}$ be a parabolic subgroup of G_{k}. We have $P_{k}=B W_{P} B$ for some subgroup $W_{P} \leq W$. There is a related $W^{P} \subset W$, such that for each $w \in W^{P}, B_{k} w B_{k} / B_{k}$ is isomorphic to $B_{k} w B_{k} / P_{k}$ under the quotient morphism $G_{k} / B_{k} \rightarrow G_{k} / P_{k}$ [21, Lemma 1.2]. We also have a cell decomposition

$$
G_{k} / P_{k}=\coprod_{w \in W^{P}} B_{k} w B_{k} / P_{k}
$$

This cell decomposition is independent of the field k. It follows that the total Chow group $\mathrm{CH}^{*}\left(G_{k} / P_{k}\right)$ is freely generated as an additive group by the cycle classes $\left\langle Y_{k}^{w}\right\rangle$ of the images Y_{k}^{w} of the Schubert varieties X_{k}^{w} for $w \in W^{P}$.

Chevalley [2] and Demazure [5] showed that the Chow rings

$$
C H^{*}\left(G_{F_{1}} / P_{F_{1}}\right) \text { and } C H^{*}\left(G_{F_{2}} / P_{F_{2}}\right)
$$

are isomorphic for any two fields F_{1}, F_{2}. The isomorphism is given by mapping the class of a Schubert subscheme $Y_{F_{1}}^{w}$ to $Y_{F_{2}}^{w}$ for $w \in W^{P}$. We now prove that the Steenrod operations P_{k}^{n} and P_{K}^{n} give the same action on $H^{2 *, *}\left(G_{k} / P_{k}, \mathbb{F}_{p}\right) \cong C H^{*}\left(G_{k} / P_{k}\right) / p \cong C H^{*}\left(G_{K} / P_{K}\right) / p \cong H^{2 *, *}\left(G_{K} / P_{K}, \mathbb{F}_{p}\right)$.
Corollary 10.2. Let $n \geq 0$ and let $w_{0} \in W^{P}$. Then

$$
P_{K}^{n}\left(\left\langle Y_{w_{0}}^{K}\right\rangle\right)=\sum_{w \in W^{P}} a_{w}\left\langle Y_{w}^{K}\right\rangle
$$

in $C H^{*}\left(G_{K} / P_{K}\right) / p$ for some $a_{w} \in \mathbb{Z}$, and

$$
P_{k}^{n}\left(\left\langle Y_{w_{0}}^{k}\right\rangle\right)=\sum_{w \in W^{P}} a_{w}\left\langle Y_{w}^{k}\right\rangle .
$$

Proof. We refer to [4] for facts about integral models of split reductive groups. Let $w \in W$ and let X_{D}^{w} be the reduced closed subscheme of G_{D} / B_{D} associated to $B_{D} w B_{D} / B_{D}$. Note that X_{D}^{w} is flat over $\operatorname{Spec}(D)$. For any field F and morphism $\operatorname{Spec}(F) \rightarrow \operatorname{Spec}(D)$, the fiber $X_{D}^{w} \times_{\operatorname{Spec}(D)} \operatorname{Spec}(F)$ in G_{F} / B_{F} is isomorphic to X_{F}^{w} [29, Theorem 2]. The main point to check is that the fibers of X_{D}^{w} over $\operatorname{Spec}(D)$ are reduced.

Now assume that $w \in W^{P}$. Let Y_{D}^{w} denote the image of X_{D}^{w} in G_{D} / P_{D}. Then $Y_{D}^{w} \times_{\operatorname{Spec}(D)} \operatorname{Spec}(F) \cong$ Y_{F}^{w} for any field F and morphism $\operatorname{Spec}(F) \rightarrow \operatorname{Spec}(D)$. Proposition 10.1 then applies to finish the proof.

11. Applications to quadratic forms

In this section, we use the Steenrod squares $\mathrm{Sq}_{k}^{2 n}$ to prove new results about nonsingular quadratic forms over a field k of characteristic 2 . The results we prove have analogues in characteristic $\neq 2$ conveniently found in [6, Sections 79-82] where the only missing ingredient for extending to characteristic 2 was the existence of Steenrod squares satisfying expected properties.

Recall that a quadratic form (q, V) over k is nonsingular if the associated radical V^{\perp} is of dimension at most 1 and q is nonzero on $V^{\perp} \backslash 0$. Equivalently, (q, V) is nonsingular if the associated projective quadric is smooth. Note that nonsingular quadratic forms are called nondegenerate in [6]. In characteristic 2, anisotropic quadratic forms are not necessarily nonsingular. Let (q, V) be a nonsingular anisotropic quadratic form defined over k and let X be the associated projective quadric of dimension D. Over some field extension F of k, the quadric X_{F} becomes split. A computation of $\mathrm{CH}^{*}\left(X_{F}\right)$ can be found in [6, Chapter XIII]. Let $h \in C H^{1}\left(X_{F}\right)$ denote the pullback of the hyperplane class in $\mathbb{P}(V)$ and let $l_{d} \in C H_{d}\left(X_{F}\right)$ denote the class of a d-dimensional subspace in X_{F}, where $d=\lfloor D / 2\rfloor$. Let $l_{d-i}=h^{i} \cdot l_{d}$ for $0 \leq i \leq d$.

Proposition 11.1. As an additive group, $C H^{*}\left(X_{F}\right)$ is freely generated by h^{i}, l_{i} for $0 \leq i \leq d$. For the ring structure, $h^{d+1}=2 l_{D-d-1}, l_{d}^{2}=0$ if 4 does not divide D, and $l_{d}^{2}=l_{0}$ if 4 divides D.

From Corollary 10.2 , the action of the Steenrod squares $\mathrm{Sq}_{F}^{2 n}$ on $C H^{*}\left(X_{F}\right) / 2$ agrees with the action of Steenrod squares on the mod 2 Chow ring of a split quadric in characteristic 0 . We refer to [6, Corollary 78.5] for the calculation of the action of Steenrod squares on the mod 2 Chow ring of a split quadric in characteristic 0 .
Proposition 11.2. For any $0 \leq i \leq d$ and $j \geq 0$,

$$
\operatorname{Sq}_{F}^{2 j}\left(h^{i}\right)=\binom{i}{j} h^{i+j} \text { and } \operatorname{Sq}_{F}^{2 j}\left(l_{i}\right)=\binom{D+1-i}{j} l_{i-j}
$$

To state our results, we recall the definition of relative higher Witt indices. Let φ be a nonsingular quadratic form over a field F and let $F(\varphi)$ denote the function field of the associated quadric. Let $\varphi_{a n}$ denote the anisotropic part of φ and let $\mathfrak{i}_{0}(\varphi)$, the Witt index of φ, denote the dimension of a maximal isotropic subspace for φ. Start with $\varphi_{0}:=\varphi_{a n}$ and $F_{0}:=F$. Inductively define $F_{i}:=F_{i-1}\left(\varphi_{i-1}\right)$ and $\varphi_{i}:=\left(\varphi_{F_{i}}\right)_{a n}$ for $i>0$. There exists an integer $\mathfrak{h}(\varphi)$, called the height of φ, such that $\operatorname{dim} \varphi_{\mathfrak{h}(\varphi)} \leq 1$. For $1 \leq j \leq \mathfrak{h}(\varphi)$, we then define the j th relative higher Witt index $\mathfrak{i}_{j}(\varphi)$ to be $\mathfrak{i}_{0}\left(\varphi_{F_{j}}\right)-\mathfrak{i}_{0}\left(\varphi_{F_{j-1}}\right)$.

Proposition 11.3. Let φ be a nonsingular anisotropic quadratic form over k such that $\operatorname{dim} \varphi \geq 2$. Then $\mathfrak{i}_{1}(\varphi) \leq 2^{v_{2}\left(\operatorname{dim} \varphi-\mathfrak{i}_{1}(\varphi)\right)}$.

Proof. The proof of [6, Proposition 79.4] works in this case and uses the computation of the Steenrod squares on the mod 2 Chow ring of a split quadratic given by Proposition 11.2 along with Corollary 3.4 on base change of the Steenrod squares. From the Cartan formula (Section 6) and results on shell triangles in [6, Sections 72,73] that were proved in arbitrary characteristic, we see that the conclusion of [6, Lemma 79.3] holds for nonsingular anisotropic quadratic forms in characteristic 2.

To finish, we extend 3 more results of Karpenko on quadratic forms in characteristic $\neq 2$ to the case of nonsingular anisotropic quadratic forms in characteristic 2 . Let φ be a nonsingular anisotropic quadratic form defined over a field k of characteristic 2 with relative higher Witt indices $\mathfrak{i}_{j}:=\mathfrak{i}_{j}(\varphi)$ as defined previously for $j=1, \ldots, \mathfrak{h}:=\mathfrak{h}(\varphi)$.
Proposition 11.4. Assume that $\mathfrak{h}>1$. Then

$$
v_{2}\left(\mathfrak{i}_{1}\right) \geq \min \left(v_{2}\left(\mathfrak{i}_{2}\right), \ldots, v_{2}\left(\mathfrak{i}_{\mathfrak{h}}\right)\right)-1 .
$$

Proof. The analogue of this proposition in characteristic $\neq 2$ can be found in [6, Corollary 81.19]. The proof there works over a base field of characteristic 2 using the properties we have established for the Steenrod squares $\mathrm{Sq}_{k}^{2 n}$. The conclusions of [6, Lemma 80.1] and [6, Theorem 80.2] hold in our situation, since $\mathrm{Sq}_{k}^{2 n}$ acts by squaring on $C H^{n}(-) / 2$ by Proposition 7.2 and the total homological Steenrod square commutes with proper push-forward by Proposition 8.1.

We next discuss the characteristic 2 analogue of the "holes in $I^{n "}$ result [6, Corollary 82.2]. For a field F, the quadratic Witt group $I_{q}(F)$ is defined as the quotient of the Grothendieck group of the monoid of isometry classes of even-dimensional nonsingular quadratic forms by the subgroup generated by the hyperbolic plane [6, Section 8]. There is an action of the Witt ring $W(F)$ of nondegenerate symmetric bilinear forms on $I_{q}(F)$. Let $I(F) \subset W(F)$ denote the fundamental ideal of $W(F)$ and set $I_{q}^{n}(F):=I^{n-1}(F) \cdot I_{q}(F)$ for $n \geq 1$. Let k be a field of characteristic 2 . Mimicking the proof of [6, Corollary 82.2], with $I_{q}^{n}(k)$ used in place of $I^{n}(k)$, gives the following result (let $n \geq 1$):

Proposition 11.5. Let $\varphi \in I_{q}^{n}(k)$ be a nonsingular anisotropic quadratic form such that $\operatorname{dim} \varphi<2^{n+1}$. Then there exists $0 \leq i \leq n$ such that $\operatorname{dim} \varphi=2^{n+1}-2^{i+1}$.

Our last result concerns u-invariants of fields. The u-invariant $u(F)$ of a field F is defined to be the smallest non-negative integer (or ∞ if there is no such integer) $u(F)$ such that every nonsingular quadratic form φ over F with $\operatorname{dim} \varphi>u(F)$ is isotropic.

In [32], Vishik constructed characteristic 0 fields of u-invariant $2^{r}+1$ for all $r \geq 3$. Karpenko used Steenrod squares on mod 2 Chow groups to show that for any $r \geq 3$ and any field F of characteristic $\neq 2, F$ is contained in a field of u-invariant $2^{r}+1$ [19]. Karpenko's constructions now extend to fields of characteristic 2 through the use of the Steenrod squares $\mathrm{Sq}_{k}^{2 n}$ defined in this article for k of characteristic 2.

Proposition 11.6. Let k be a field of characteristic 2 and let $r \geq 3$. Then k is a subfield of a field of u-invariant $2^{r}+1$.

Acknowledgments. I thank Burt Totaro for suggesting this project to me and for providing advice. I am very grateful to Marc Hoyois for answering my questions and telling me the strategy used in the proof of Proposition 7.1, along with most of the details of the proof. I thank Markus Spitzweck for answering my questions. I thank Chuck Weibel for his comments. I thank Nikita Karpenko for telling me about some of the applications of the new Steenrod operations to quadratic forms in characteristic 2 given in Section 11. I thank the anonymous referee for suggestions which helped to improve the exposition of this article. The work in this article is also in my 2019 UCLA PhD thesis.

Conflict of Interest: None.

References

[1] P. Brosnan, 'Steenrod operations in Chow theory', Trans. Amer. Math. Soc. 355(5) (2003), 1869-1903.
[2] C. Chevalley, 'Sur les décompositions cellulaires des espaces G/B', in Proc. Sympos. Pure Math., 56, Part 1-Algebraic Groups and Their Generalizations: Classical Methods (American Mathematical Society, University Park, PA, 1994), 1-23.
[3] D.-C. Cisinski and F. Déglise, 'Triangulated categories of mixed motives', Preprint, 2012, arxiv.org/abs/0912.2110.
[4] B. Conrad, 'Reductive group schemes', in Autour des schémas en groupes, Vol. I: Panoramas et synthèses 42-43 (Société mathematiques de France, Paris, 2014), 94-444.
[5] M. Demazure, 'Invariants symétriques entiers des groupes de Weyl et torsion', Invent. Math. 21 (1973), 287-302.
[6] R. Elman, N. Karpenko and A. Merkurjev, The Algebraic and Geometric Theory of Quadratic Forms, Vol. 56 (American Mathematical Society, Providence, RI, 2008).
[7] E. Elmanto, M. Hoyois, A. A. Khan, V. Sosnilo and M. Yakerson, 'Motivic infinite loop spaces', Preprint, 2018, arxiv.org/ abs/1711.05248.
[8] M. Frankland and M. Spitzweck, 'Towards the dual motivic Steenrod algebra in positive characteristic', Preprint, 2018, arxiv.org/pdf/1711.05230.pdf.
[9] E. M. Friedlander and A. Suslin, 'The spectral sequence relating algebraic K-theory to motivic cohomology', Ann. Sci. Éc. Norm. Supér. (4) 35 (2002), 773-875.
[10] W. Fulton, Intersection Theory (Springer, New York, 1998).
[11] T. Geisser, 'Motivic cohomology over Dedekind rings', Math. Z. 248 (2004), 773-794.
[12] O. Haution, 'Integrality of the Chern character in small codimension', Adv. Math. 231(2) (2012), 855-878.
[13] O. Haution, 'Duality and the topological filtration', Math. Ann. 357(4) (2013), 1425-1454.
[14] O. Haution, 'On the first Steenrod square for Chow groups', Amer. J. Math. 135(1) (2013), 53-63.
[15] O. Haution, 'Detection by regular schemes in degree two', Algebr. Geom. 2(1) (2015), 44-61.
[16] O. Haution, 'Involutions of varieties and Rost's degree formula', J. Reine Angew. Math. 745 (2018), 231-252.
[17] M. Hoyois, S. Kelly and P. A. Østvær, ‘The motivic Steenrod algebra in positive characteristic’, J. Eur. Math. Soc. (JEMS) 19(12) (2017), 3813-3849.
[18] N. Karpenko, 'On the first Witt index of quadratic forms', Invent. Math. 153(2) (2003), 455-462.
[19] N. Karpenko, 'Variations on a theme of rationality of cycles', Cent. Eur. J. Math. 11(6) (2013), 1056-1067.
[20] N. Karpenko, 'An ultimate proof of Hoffmann-Totaro's conjecture', Preprint, 2019, https://sites.ualberta.ca/~karpenko/ publ/ultimate05.pdf.
[21] B. Köck, 'Chow motif and higher Chow theory of G/P’, Manuscripta Math. 70(4) (1991), 363-372.
[22] S. Kondo and S. Yasuda, 'Product structures in motivic cohomology and higher Chow groups', J. Pure Appl. Algebra 215 (2011), 511-522.
[23] M. Levine, 'Techniques of localization in the theory of algebraic cycles', J. Algebraic Geom. 10 (2001), 299-363.
[24] A. Merkurjev, 'Steenrod operations and degree formulas', J. Reine Angew. Math. 565 (2003), 12-26.
[25] F. Morel and V. Voevodsky, 'A1'-homotopy theory of schemes', Publ. Math. Inst. Hautes Études Sci. 90 (1999), 45-143.
[26] I. Panin, 'Riemann-Roch theorems for oriented cohomology', in NATO Science Series II: Mathematics, Physics and Chemistry, Vol. 131-Axiomatic, Enriched and Motivic Homotopy Theory, edited by J. P. C. Greenlees (Kluwer Academic Publishing, Dordrecht, the Netherlands, 2004), 261-334.
[27] J. Riou, ‘Opérations de Steenrod motiviques', Preprint, 2012, https://www.math.u-psud.fr/~riou/doc/steenrod.pdf.
[28] S. Scully, 'Hoffmann's conjecture for totally singular forms of prime degree', Algebra Number Theory 10(5) (2016), 10911132.
[29] C. S. Seshadri, 'Standard monomial theory and the work of Demazure', in Algebraic Varieties and Analytic Varieties (Mathematical Society of Japan, Tokyo, Japan, 1983), 355-384.
[30] M. Spitzweck, 'A commutative \mathbb{P}^{1}-spectrum representing motivic cohomology over Dedekind domains', Mém. Soc. Math. Fr. (N.S.) 157 (2018), 1-110.
[31] B. Totaro, 'Birational geometry of quadrics in characteristic 2', J. Algebraic Geom. 17 (2008), 577-597.
[32] A. Vishik, 'Fields of u-invariant $2^{r}+1^{\prime}$ ', Progr. Math. 270 (2009), 661-685.
[33] V. Voevodsky, 'A ${ }^{1}$-homotopy theory', in Proc. Int. Congr. Mathematicians, Vol. I (Doc. Math. 1998, Extra Vol. I), 579-604.
[34] V. Voevodsky, 'Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic', Int. Math. Res. Not. IMRN 7 (2002), 351-355.
[35] V. Voevodsky, 'Reduced power operations in motivic cohomology', Publ. Math. Inst. Hautes Études Sci. 98 (2003), 1-57.

