The authors compare pottery assemblages in the Marianas and the Philippines to claim endorsement for a first human expansion into the open Pacific around 1500 BC. The Marianas are separated from the Philippines by 2300 km of open sea, so they are proposing an epic pioneering voyage of men and women, with presumably some cultivated plants but apparently no animals. How did they manage this unprecedented journey?

Keywords: Oceania, Marianas, Neolithic Philippines, Austronesian

Supplementary information can be found online at: http://antiquity.ac.uk/projgall/hung329/.

Introduction

The human settlement of the remote islands of Oceania beyond the Solomon Islands has been a topic of enquiry since the eighteenth century. The modern mainstream view relates...
The first settlement of Remote Oceania

Figure 1. Taiwan, the Philippines and the Marianas: 1) Eluanbi & Kending; 2) Batanes Islands; 3) Nagsabaran (Cagayan Valley); 4) Dimolit (east coast of Luzon).

this settlement to a migration of Austronesian-speaking Neolithic populations from 1350 BC onwards sailing via equatorial latitudes in eastern Indonesia into the western Melanesian islands, and then via the Lapita cultural complex into Polynesia and central/eastern Micronesia (Kirch 2000; Summerhayes 2007). However, another corner of the western Pacific witnessed a remarkable feat of ocean crossing perhaps a century or two before the Lapita spread, and over a much greater open ocean distance than any known Lapita movement.

The Mariana Islands are the northernmost islands of Micronesia, consisting of more than a dozen islands in a north-south arc between 13 and 20° north, situated across open sea about 2300km east of Taiwan and the Philippines (Figure 1). A number of archaeologists have already suggested close cultural relations between the Marianas and the Island Southeast Asian Neolithic (eg. Spoehr 1973; Bellwood 1975: 10, 1978: 282, 1985: 253, 1997: 235–6, 2005: 137; Thiel 1987; Kirch 1995, 2000: 167–73; Shutler 1999) and, since 1975, Bellwood has regarded a Philippine connection as most likely. Sites with comparable pottery, which imply such connections, include the Batungan caves on Masbate, the Cagayan Valley shell middens in northern Luzon, Kalumpang in western Sulawesi and Sanga Sanga rockshelter in the Sulu archipelago.

Recent work in both the Marianas and the Philippines allows us now, for the first time, to report specific parallels between red-slipped and decorated pottery, dating to 1500–1400 BC (Table 1), found in the larger southern islands of Guam, Tinian and Saipan in the Marianas, with comparable pottery assemblages from sites in the northern Philippines.
<table>
<thead>
<tr>
<th>Site and reference</th>
<th>Lab sample</th>
<th>Provenience</th>
<th>Sample material</th>
<th>Measured 14C age (years BP)</th>
<th>δ^{13}C (‰)</th>
<th>Conventional 14C age (years BP)</th>
<th>Marine reservoir correction (ΔR)</th>
<th>Calibrated 2σ probability*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ritidian, Guam</td>
<td>Beta-239577</td>
<td>Fenceline Pit 35, 0.88–1.05m; later cultural layer</td>
<td>Charcoal</td>
<td>2820±40</td>
<td>−25.4</td>
<td>2810±40</td>
<td>n/a</td>
<td>1109–1104 BC (0.4%); 1076–1065 BC (1%); 1056–842 BC (98.6%)</td>
</tr>
<tr>
<td></td>
<td>Beta-253681</td>
<td>Fenceline Pit 35, 2.50–2.60m, earliest cultural layer, intertidal zone</td>
<td>Anadara antiquata shell</td>
<td>3030±40</td>
<td>−0.7</td>
<td>3430±40</td>
<td>−44±41</td>
<td>1547–1257 BC</td>
</tr>
<tr>
<td></td>
<td>Beta-253682</td>
<td>Fenceline Pit 35, 2.55–2.60m, earliest cultural layer, intertidal zone</td>
<td>Halimeda sp. algal bioclast</td>
<td>2980±40</td>
<td>+5.3</td>
<td>3480±40</td>
<td>−44±41</td>
<td>1609–1323 BC</td>
</tr>
<tr>
<td></td>
<td>Beta-253683</td>
<td>2.60–2.65m, pre-dates cultural layer</td>
<td>Heliopora sp. coral limestone</td>
<td>3610±50</td>
<td>+4.4</td>
<td>4100±50</td>
<td>−44±41</td>
<td>2454–2077 BC (99.7%); 2075–2069 BC (0.3%)</td>
</tr>
<tr>
<td>Unai Bapot, Saipan</td>
<td>Beta-214761</td>
<td>Layer III-A, combustion feature, post-dates earliest cultural layer</td>
<td>Charcoal</td>
<td>2850±40</td>
<td>−25.8</td>
<td>2840±40</td>
<td>n/a</td>
<td>1125–903 BC (100%)</td>
</tr>
</tbody>
</table>

*The probability is given for the 95% confidence interval. **The probability is given for the 68% confidence interval.
Table 1. Continued

<table>
<thead>
<tr>
<th>Site and reference</th>
<th>Lab sample</th>
<th>Provenience</th>
<th>Sample material</th>
<th>Measured 14C age (years BP)</th>
<th>δ^{13}C (‰)</th>
<th>Conventional 14C age (years BP)</th>
<th>Marine reservoir correction (ΔR)*</th>
<th>Calibrated 2σ probability**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta-202722</td>
<td>Layer IV-A, localised discard pile, earliest cultural layer</td>
<td>Anadara antiquata shell</td>
<td>3210±40</td>
<td>−.5</td>
<td>3590±40</td>
<td>−44±41</td>
<td>1732–1439 BC</td>
<td></td>
</tr>
<tr>
<td>Beta-216616</td>
<td>Layer IV-A, localised discard pile, earliest cultural layer</td>
<td>Anadara antiquata shell</td>
<td>3320±50</td>
<td>−1.1</td>
<td>3710±50</td>
<td>−44±41</td>
<td>1914–1560 BC</td>
<td></td>
</tr>
</tbody>
</table>

* Marine reservoir correction of $−44±41$ was calculated for *Anadara antiquata* shells at the Ritidian site in northern Guam (Carson 2010).

** Calibrations are by CALIB software version 6 (Stuiver & Reimer 1993), using INTCAL09 dataset for charcoal specimens and MARINE09 dataset for marine specimens (Reimer et al. 2004).
The earliest Marianas sites (Figure 2)

The earliest sites on the Mariana Islands occur in shoreline-oriented settings during a period of slightly higher sea level (about 1.8m) than the present, and are associated with thin-walled, red-slipped pottery termed Marianas Red by Spoehr (1957). After 1000 BC, significantly different pottery types are evident (Moore 1983, 2002), along with a lowering of sea level (Dickinson 2000) and a substantial re-configuration of coastal ecosystems.

The Achugao site on Saipan is by far the most informative for the earliest Marianas pottery, yielding the largest volume of recovered material (Butler 1994, 1995). This large collection of 143 decorated pieces is especially important because of its size, since decorative elements are present on only one per cent or less of the sherds. Other sites are valuable for their precise and confident dating of the earliest settlement period, but have limited pottery collections (e.g. Carson 2010; Clark et al. 2010).

As reported by Butler (1994, 1995), the early Achugao ceramics exhibit only two major vessel forms. The dominant form, representing 85 per cent of all rims, is a small to medium-sized vessel, sometimes carinated, with a sharply everted rim and a rounded base. The other 15 per cent are simple hemispherical bowls. Other vessel forms have been reported from other sites but in very low frequencies and with extreme fragmentation (Carson 2008).

The earliest component of Marianas Red is a thin-walled, often red-slipped, calcareous sand-tempered ware. The decorated sherds show complex, predominantly rectilinear, incised patterns, although some are curvilinear, with the zones between the major elements packed with rows of tiny, delicate punctations (tiny punch-marks). Stamped circles border the decorative bands and sometimes occur within them (Figure 3, sherd group 2). Lime-filling is evident in most of the decoration. Similar decorated and red-slipped pottery is shown in Figure 4, recovered by Pellett and Spoehr (1961) from the House of Taga site on Tinian Island and now stored in the Bishop Museum in Honolulu, yet without associated radiocarbon dating.

The most instructive sites for dating the earliest Marianas settlement and its associated pottery are Ritidian on Guam (Carson 2010) and Unai Bapot on Saipan (Carson 2008), as summarised in Table 1. At Ritidian, the earliest occupation, dated to 1547–1323 BC, was associated with very fine red ware pottery, followed later by thicker and coarser pottery dated to 1056–842 BC. At Unai Bapot, the earliest red ware is dated to approximately 1732–1560 BC, followed by a later occupation associated with different pottery types dated to 1125–903 BC. Based on these findings, the earliest Marianas settlement, associated with the earliest Marianas Red pottery, can be confined to a time interval of approximately 1500–1000 BC.

Comparable pottery from the Philippines

The red-slipped, circle- and punctate-stamped pottery from several sites in the Cagayan Valley on Luzon is the most similar reported, so far, to that from the Marianas, although this similarity need not mean that the first settlers migrated specifically from the Cagayan Valley itself, which obviously has an inland location. The radiocarbon sequence from Nagsabaran suggests that red-slipped and stamped pottery dates here between 2000 and 1300 BC,
The first settlement of Remote Oceania

Figure 2. The locations of early settlements in the Marianas, c. 1500–1000 BC.
thus commencing before but overlapping with the earliest Marianas dates (Table 2 and see supplementary information online).

Of the Cagayan Valley sites, Nagsabaran has been the most productive for defining the pottery and other material culture of this period (Hung 2005, 2008; Tsang 2007; Piper et al. 2009a). It lies on the south bank of Zabaran Creek, which joins the Cagayan River from the west, about 22 km above its mouth on the north coast of Luzon. Excavations at this 4.2 ha site between 2000 and 2009 have revealed a lower alluvial silt deposit that contains red-slipped pottery, trapezoidal-sectioned stone adzes (some stepped), baked clay penannular earrings and two Taiwan jade bracelet fragments. The late Neolithic and Iron Age layers above the silts are contained within a large riverine shell midden. The radiocarbon dates for the lower alluvial layer at Nagsabaran are rather mixed, since much of the alluvium was clearly re-deposited from elsewhere in the site or its vicinity, and the layer was disturbed by the digging of some very large postholes from the base of the covering shell midden. However, in Table 2 it can be seen that the dates in trenches P1 and P7 maintain a reasonable degree of stratigraphic order. The dating results support an overall range for the Cagayan red-slipped, stamped and incised pottery between 2000 and 1000 BC.

Basically, the early period Marianas pottery resembles a sub-set of the more diverse Nagsabaran pottery. Decoration is also quite rare in Nagsabaran, on about one per cent of sherds or less, and consists of punctate, circle-stamped and incised motifs, often with
lime-infill. The Nagsabaran motifs, in which one or more rows of stamped circles lie parallel
to incised bands filled with comb-like punctate or dentate stamping (Figure 3, group 1), are
all extremely similar to those of the earliest Marianas Red, as well as to the zonal decoration
on some Lapita pottery from the Santa Cruz Islands (Figure 5, and see Spriggs 1990: 86)
and New Caledonia (Figure 3, group 3). The Nagsabaran pottery includes a greater variety
of vessel forms than occur in the Marianas: for instance, a vertical-walled bowl with a ring
foot, and the large sherds found at this site indicate that decoration sometimes covered most
of the exterior of the vessel.

Similar decorated red-slipped pottery occurs in other Cagayan Valley sites of the second
millennium BC, such as Magapit (Hung 2005, 2008). Circle-stamped pottery was also very
common between about 1300 BC and AD 1 in the Batanes Islands, between Luzon and
Taiwan, although punctate-stamping and the use of incision to define decorative zones do
Table 2. 14C dates from Nagsabaran, Cagayan Valley, northern Philippines. The upper shell midden is represented by dates from Pit 1 (P1) excavated in 2000, and Pit 14 (P 14), excavated in 2009. All dates from all pits that relate to the alluvial silt layers below the shell midden are listed in this table. See supplementary information online for discussion. The Gakashuin and National Taiwan University dates listed in this table are from Tsang 2007: 94 and we do not have measured δ^{13}C values.

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Dated material</th>
<th>Pit number and depth below ground surface</th>
<th>δ^{13}C</th>
<th>Conventional age (years BP)</th>
<th>Calibration (IntCal 09)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GX-26797</td>
<td>Charcoal</td>
<td>P1, 0.8m, shell midden</td>
<td>-12.5</td>
<td>2620±30</td>
<td>831–771 BC</td>
</tr>
<tr>
<td>GX-26798</td>
<td>Charcoal</td>
<td>P1, 1.1m, shell midden</td>
<td>-8.9</td>
<td>2560±30</td>
<td>805–553 BC</td>
</tr>
<tr>
<td>GX-26698</td>
<td>Charcoal</td>
<td>P1, 1.4m, shell midden</td>
<td>-26.4</td>
<td>7380±40</td>
<td>6380–6099 BC</td>
</tr>
<tr>
<td>GX-26699</td>
<td>Charcoal</td>
<td>P1, 1.8m, shell midden</td>
<td>-10.4</td>
<td>3420±30</td>
<td>1873–1632 BC</td>
</tr>
<tr>
<td>GX-26800</td>
<td>Charcoal</td>
<td>P1, 1.8m, shell midden</td>
<td>-12.6</td>
<td>2680±30</td>
<td>897–801 BC</td>
</tr>
<tr>
<td>GX-26801</td>
<td>Charcoal</td>
<td>P1, 2.3m, shell midden</td>
<td>-13.9</td>
<td>2260±270</td>
<td>933 BC–AD 336</td>
</tr>
<tr>
<td>GX-26802</td>
<td>Charcoal</td>
<td>P1, 2.4m, shell midden</td>
<td>-12.6</td>
<td>2240±270</td>
<td>918 BC–AD 346</td>
</tr>
<tr>
<td>GX-26799</td>
<td>Charcoal</td>
<td>P1, 1.5m, shell midden</td>
<td>-12.6</td>
<td>1920±80</td>
<td>111 BC–AD 320</td>
</tr>
<tr>
<td>GX-26700</td>
<td>Charcoal</td>
<td>P1, 2.3m, shell midden</td>
<td>-12.6</td>
<td>1760±110</td>
<td>AD 50–538</td>
</tr>
<tr>
<td>GX-28381</td>
<td>Charcoal</td>
<td>P7, 1.9m, lower silts</td>
<td>-11.5</td>
<td>3390±130</td>
<td>2023–1417 BC</td>
</tr>
<tr>
<td>NTU-3798</td>
<td>Charcoal</td>
<td>P7, 1.6m, lower silts</td>
<td>-12.6</td>
<td>2670±40</td>
<td>902–794 BC</td>
</tr>
<tr>
<td>GX-26711-AMS</td>
<td>Charcoal</td>
<td>P4, 2.1m, lower silts</td>
<td>-12.6</td>
<td>3050±70</td>
<td>1454–1112 BC</td>
</tr>
<tr>
<td>ANU-13018</td>
<td>Batissa children</td>
<td>P14, 1.4m, shell midden</td>
<td>-26.4</td>
<td>7380±40</td>
<td>6380–6099 BC</td>
</tr>
<tr>
<td>ANU-13017</td>
<td>Batissa children</td>
<td>P14, 1.8m, shell midden</td>
<td>-10.4</td>
<td>3420±30</td>
<td>1873–1632 BC</td>
</tr>
<tr>
<td>NTU-3799</td>
<td>Batissa children</td>
<td>P14, 2.1m, shell midden</td>
<td>-12.6</td>
<td>2680±30</td>
<td>897–801 BC</td>
</tr>
<tr>
<td>ANU-13019</td>
<td>Batissa children</td>
<td>P14, 1.2m, shell midden</td>
<td>-8.9</td>
<td>2560±30</td>
<td>805–553 BC</td>
</tr>
<tr>
<td>ANU-13020</td>
<td>Batissa children</td>
<td>P14, 0.8m, shell midden</td>
<td>-12.5</td>
<td>2620±30</td>
<td>831–771 BC</td>
</tr>
<tr>
<td>ANU-13024</td>
<td>Batissa children</td>
<td>P1, 3.1m, lower silts</td>
<td>-12.6</td>
<td>3450±40</td>
<td>1886–1666 BC</td>
</tr>
<tr>
<td>WX-23397</td>
<td>Pig premolar</td>
<td>P9, 1.4m, lower silts</td>
<td>-12.6</td>
<td>3940±40</td>
<td>2567–2299 BC</td>
</tr>
</tbody>
</table>

*ANU-13020

https://doi.org/10.1017/S0003598X00068393
Published online by Cambridge University Press
Table 2. Continued

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Dated material</th>
<th>Pit number and depth below ground surface</th>
<th>δ^{13}C</th>
<th>Conventional age (years BP)</th>
<th>Calibration (IntCal 09)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WK-19713</td>
<td>Charcoal</td>
<td>P9, 1.5m, lower silts</td>
<td>-23.7</td>
<td>4450±39</td>
<td>3337–2933 BC</td>
</tr>
<tr>
<td>WK-19712</td>
<td>Animal bone</td>
<td>P9, 1.5m, lower silts</td>
<td>-22.7</td>
<td>2504±35</td>
<td>791–510 BC</td>
</tr>
<tr>
<td>WK-18059</td>
<td>Charcoal</td>
<td>P9, 1.6m, lower silts</td>
<td>-27.8</td>
<td>1946±30</td>
<td>21 BC–AD 127</td>
</tr>
<tr>
<td>WK-17756</td>
<td>Charcoal</td>
<td>P9, 1.8m, lower silts</td>
<td>-25.6</td>
<td>2528±31</td>
<td>795–541 BC</td>
</tr>
<tr>
<td>ANU-13016</td>
<td>Charcoal</td>
<td>P11, 1.7m, lower silts</td>
<td>-26.5</td>
<td>3510±30</td>
<td>1915–1749 BC</td>
</tr>
<tr>
<td>ANU-13014</td>
<td>Charcoal</td>
<td>P14, 2.4m lower silts</td>
<td>-27.4</td>
<td>2660±30</td>
<td>895–793 BC</td>
</tr>
<tr>
<td>ANU-13013</td>
<td>Charcoal</td>
<td>P14, 2.4m lower silts</td>
<td>-31.6</td>
<td>2540±30</td>
<td>797–546 BC</td>
</tr>
<tr>
<td>ANU-13021</td>
<td>Batissa children</td>
<td>Modern shell, Cagayan River</td>
<td>-12.7</td>
<td>98.47% modern</td>
<td>98.47% modern</td>
</tr>
<tr>
<td>ANU-13023</td>
<td>Batissa children</td>
<td>Modern shell, Zabaran Creek</td>
<td>-15.1</td>
<td>103.14% modern</td>
<td>103.14% modern</td>
</tr>
<tr>
<td>ANU-15410</td>
<td>Batissa children</td>
<td>Modern shell, Zabaran Creek</td>
<td>-13</td>
<td>104.83% modern</td>
<td>104.83% modern</td>
</tr>
<tr>
<td>ANU-15411</td>
<td>Batissa children</td>
<td>Modern shell, Zabaran Creek</td>
<td>-17</td>
<td>105.03% modern</td>
<td>105.03% modern</td>
</tr>
<tr>
<td>ANU-15412</td>
<td>Batissa children</td>
<td>Modern shell, Zabaran Creek</td>
<td>-14</td>
<td>103.02% modern</td>
<td>103.02% modern</td>
</tr>
</tbody>
</table>

* Sample originally published as charcoal.
** Piper et al. 2009a.
not occur here (Bellwood & Dizon 2005). In Taiwan, fairly rare impressed pottery occurs by about 1500 BC, including circle-stamping in the late Neolithic site of Yingpu in central Taiwan (Tsang 2000: 70) and punctate-stamping in the Yuanshan assemblage at Dabenkeng near Taipei (Chang 1969: pls. 82D & 84D). Taiwan, however, has no Neolithic pottery with both circle- and punctate-stamping, even though it does have the oldest red-slipped pottery in Island Southeast Asia, this being present in small quantities with incised and cord-marked pottery in the oldest Neolithic sites (c. 3000 BC), becoming dominant after 2200 BC in eastern and southern Taiwan (Hung 2005, 2008). Elsewhere in the Philippines, the geographic range of the circle- and punctate-stamping represented in the Cagayan Valley extended at least as far south as Masbate Island in the central Philippines, where similar punctate-stamped pottery was reported by Solheim (1968).

Elsewhere in Island Southeast Asia, very small amounts of punctuate-stamped pottery occur in parts of East Malaysia (Sabah) and eastern Indonesia, again in association with red-slipped surfaces (Chia 2003; Chazine & Ferrie 2008; Peter Lape, Daud Tanudirjo, Truman Simanjuntak and Anggraeni, pers. comms). But the available illustrated motifs are very small and difficult to relate precisely to any on Luzon or the Marianas. Because of the importance
of this pottery style in the Cagayan Valley, it is possible that substantial innovation in pottery decoration might have taken place on Luzon itself.

From a purely geographical perspective, the north-east coast of Luzon rather than the inland Cagayan Valley might have been the most likely source for Marianas settlement, but so far the single known Neolithic site here is Dimolit (Peterson 1974a & b), on Palanan Bay. This site contains plain red-slipped pottery similar to that reported from the Cagayan Valley sites, but without any impressed decoration. The closest parallels for the earliest decorated Marianas Red pottery so far are thus in the Cagayan Valley.

Coastal and maritime economies

All of the known early Marianas sites, dated to 1500–1000 BC, may be described as shoreline-oriented, founded on sand spits, narrow beach fringes, in seaside rockshelters or in other marginal settings at or very near sea level. This distinction sets these sites apart from a generic coastal setting expected of almost any island society. Most definitively, the Ritidian site in northern Guam provided evidence of earliest occupation dated to 1547–1323 BC within a shallow inter-tidal lagoon setting directly overlaying coral reef dated to 2454–2077 BC (Table 1). Taking into account a sea level high-stand, between 3400 and 1050 BC, of about 1.8m higher than present (Dickinson 2000), early period Marianas site settings must have been substantially different from the modern broad sandy beaches (Carson 2011).

A close relationship with the sea is unquestionable from this perspective, and early period Marianas sites often contain abundant marine shell midden, mostly of *Anadara antiquata* shells. Vertebrate faunal materials are extremely few in number, perhaps due to discard patterns, depositional contexts or preservation qualities. The limited vertebrate fauna includes fish and bird bones, and possibly native fruit bat, at the earliest sites. The earliest rat bones appear around AD 900–1000 (Wickler 2004; Pregill & Steadman 2009). Pig, dog, deer and cattle were introduced to the Marianas only after Spanish contact.

The limited scope of faunal remains in the Marianas is rather curious, given the existence of pig, dog, chicken and rat in variable abundance at most other sites in the larger Asia-Pacific region. For example, at Nagsabaran, imported domesticated pig appears as early as 2000 BC (Piper et al. 2009a & b), and dog bones date at least to 500 BC. Both pig and dog were present by 2800 BC in Taiwan (Tsang et al. 2006). Rat bones usually coincide with the earliest human settlements in oceanic islands, so their apparently late arrival in the Marianas is deserving of explanation, perhaps related to the remote location and the difficulties of transporting live animals over such a vast distance, given the likelihood of crew hunger — even starvation — while afloat.

A marine-oriented subsistence pattern may therefore be expected for the early seafaring Malayo-Polynesians who crossed 2300km of ocean in order to settle the Marianas. Terms for sails and outriggers were among the shared vocabulary of Proto-Malayo-Polynesian communities (Pawley & Pawley 1994), suggesting skilled open sea navigation and possibly the ability to capture large and powerful marine prey. Judith Amesbury (2008a) reviews all the recorded data on bones of large pelagic fish species, such as marlin (*Istiophoridae*) and dolphinfish (*Coryphaena hippurus* — *Coryphaenidae*), from Marianas archaeological sites, evident as early as 500 BC. Unfortunately, only a miniscule fish bone sample has been

920
recovered from the initial settlement period (Leach & Davidson 2006; Amesbury 2008b), and most of the occurrences of marlin and dolphinfish lack precise commencement dates. So it is still unclear to what extent prehistoric Marianas fishermen caught these species between 1500 and 1000 BC.

The Eluanbi site in southern Taiwan, c. 2000 BC, has provided good evidence of a contemporary specialised offshore fishing technology (Li 2002a), and a recent analysis (Campos & Piper 2009) throws surprising light on Neolithic seagoing capabilities in this region. In total, Pit 4 in Eluanbi II produced 3581 fragments of bone, of which 2573 were marine fish (71.85 per cent), 516 mammal (14.41 per cent), 303 marine turtle (8.46 per cent), and the rest unidentified. As in the Marianas sites, the fish bones suggest the dominance of specialised offshore fishing for very large groupers (Serranidae), dolphinfish, and other large pelagic carnivores such as marlin or sailfish. Dolphinfish bones, but so far not marlin, also occur in two separate occupation layers at Savidug in the Batanes Islands, dated to 1200 BC–AD 1, and then after AD 1000 (Campos 2009).

Fishing gear is rare in Marianas archaeological sites in the earliest period, 1500–1000 BC, but the few known pieces include fragments of simple one-piece rotating hooks made of Isognomon or rarely Turbo shell. Later contexts, mostly post-dating AD 1000, include the same simple rotating hooks plus a range of V-shaped or L-shaped gorges, and compound two-piece hooks and trolling lures (Thompson 1932; Spoehr 1957; Reinman 1970; Ray 1981). At one site in Guam, several bone and shell points of trolling hooks were found in layers post-dating AD 900–1000, but one possible nacreous shell lure shank was in a layer pre-dating 500 BC (Dilli et al. 1998: 215). Simple shell one-piece rotating hooks and possible trolling lures with rod-shaped and end-grooved stone shanks and bone points also occur at Kending (Li 2002b: 69) and Eluanbi II in southern Taiwan, c. 2000 BC (Li 1983), together with gorges and net-sinkers (Li 1997, 2002a, 2002b: 58, 63; Tsang et al. 2006). The trolling hook points found in both the Marianas and southern Taiwan are similar in shape, even though the dates for the Marianas specimens are currently younger.

Archaeological fishing gear from the Cagayan Valley sites is limited in quantity, but two fish gorges, straight rather than L-shaped, have been found in the upper shell midden (c. 500 BC) at Nagsabaran, made respectively of a pig lower canine and a dog upper canine (Piper et al. 2009b). Both were split longitudinally and provided with a notch to secure the line. A similar specimen dating to c. 500 BC made from a pig canine was recovered from Anaro in the Batanes Islands.

In summary, it is clear that offshore trolling for large pelagic fish was carried out by at least 2000 BC in southern Taiwan, by 1200 BC in the Batanes Islands and perhaps by 500 BC in the Marianas. We are not yet entitled to assume that this technology was carried by the first settlers of the Marianas but, given the restricted occurrence in the western Pacific of this type of fishing for large pelagic prey, and the associated equipment, even a secondary introduction from the Taiwan-Luzon region to the Marianas would still be highly significant.

Linguistic and genetic associations

The indigenous Chamorro language of the Marianas belongs to the widespread Western Malayo-Polynesian (WMP) grouping, which currently lacks any overall subgrouping

921
The first settlement of Remote Oceania

Figure 6. The major Austronesian linguistic subgroups and the early distributions of red-slipped and stamped pottery in the Taiwan/Philippine region and the Marianas. Also shown is the spread of Lapita pottery in Island Melanesia and western Polynesia, so far without any definite antecedent in Island Southeast Asia, south of the Philippines.

structure, within the larger Austronesian language family (Blust 2009) (Figure 6). WMP languages are spoken in the Mariana and Palau Islands in western Micronesia, the Philippines, Malaysia, much of Indonesia, coastal southern Vietnam, and as far west as Madagascar. Their origins, together with those of all other extra-Formosan Austronesian languages, can be sourced to a linguistic reconstruction, termed Proto-Malayo-Polynesian, that underwent its initial period of differentiation somewhere in northern Island Southeast Asia. The Formosan languages of Taiwan are not Malayo-Polynesian, and trace back to deeper separations in the overall Austronesian family tree. The major Malayo-Polynesian language subgroup known as Oceanic, associated at its proto-language stage with Lapita settlement in
the Bismarck Archipelago, was also a fairly early separation from Proto-Malayo-Polynesian (Ross et al. 1998; Pawley 2002).

The WMP classification for Chamorro reflects a linguistic origin separate in geographical terms from that of the Lapita-associated Oceanic grouping, and Chamorro and Proto-Oceanic share no unique subgrouping innovations. Chamorro reflects an origin directly within Island Southeast Asia, not western Oceania. As a result, most linguists currently favour the Philippines as the most likely source for Chamorro and the inhabitants of the Marianas. Both Blust (2000) and Reid (2002) suggested the central or northern Philippines, with Chamorro as a primary or at least very early split from Proto-Malayo-Polynesian.

Current research on Chamorro mtDNA indicates a rarity of the widespread Oceanic mtDNA haplogroup B4, which is also differentiated in the Marianas from other Malayo-Polynesian populations by a unique mutation at base 16114. Instead, most Chamorro belong to haplogroup E lineages that occur widely in the Philippines and Indonesia (Vilar et al. 2008; Tabbada et al. 2010).

Conclusion

The earliest Marianas Red pottery records the first human settlement in Remote Oceania, between 1500 and 1400 BC, slightly pre-dating the earliest Lapita pottery in Near Oceania at 1350–1300 BC (Summerhayes 2007, in press; Kirch 2010). Over 20 years ago, Spriggs (1990: 20) emphasised Marianas Red as the smoking gun that required an insular Southeast Asian origin for the first colonists of the remote Pacific Islands (see also Spriggs 2007: 113–14). Given the uncertain internal classification of WMP languages, we propose that the first settlers in the Mariana Islands, around 1500–1400 BC, shared an ease of communication with other WMP communities in Island Southeast Asia, facilitating co-mingling of groups and possible shifting of residence over long distances. According to this view, multiple related groups potentially could have moved quickly in several directions at the same time.

A drift voyage at the mercy of dominant winds and currents would have been extremely unlikely to reach the Marianas from any source area (Scott Fitzpatrick, pers. comm.; see also Callaghan & Fitzpatrick 2008), so an intentional voyage of exploration is more probable. Actual settlement required sufficient numbers of males and females, plus at least some imported subsistence plants, even perhaps animals eaten en route, so it is likely that a degree of planning was involved. While the first explorers to discover the Mariana Islands may have possessed many cultural traits and skills shared commonly throughout a broad region, the subsequent successful colonisation indicates strong similarities of pottery type and language with the northern Philippines. As Rainbird (2003: 85) has also observed, such a settlement of the Marianas from the Philippines ‘would constitute the longest sea-crossing undertaken by that time in human history.’ Therefore, the study of Chamorro origins is not only an issue of Austronesian migration, but also a significant episode in the evolution of human voyaging technology.

Acknowledgements

Thanks to Dr Brian Butler (Center for Archaeological Investigations, Southern Illinois University, Carbondale) for information on Achugao pottery. We deeply appreciate Prof. Martin Carver’s valuable suggestions for
The first settlement of Remote Oceania

improving this article. The October–November 2009 excavations at Nagsabaran were funded by the Chiang Ching-kuo Foundation (Taipei) and the Australian Research Council, and authorised by the National Museum of the Philippines. The research of Dr Philip Piper was partly funded by a grant from the Office of the Vice Chancellor for Research and Development, University of the Philippines.

References

CHIA, S.M.S. 2003. The prehistory of Bukit Tengkorak as a major pottery making site in Southeast Asia (Sabah Museum monograph 8). Kota Kinabalu: Department of Sabah Museum.

Li, K-C. 1983. Report of archaeological investigations in the O-luan-pi Park at the southern tip of Taiwan. Taipei: Kending Scenic Area Administration, Ministry of Communications; Department of Anthropology, National Taiwan University; Council for Cultural Planning and Development, Executive Yuan (in Chinese).

https://doi.org/10.1017/S0003598X00068393 Published online by Cambridge University Press
The first settlement of Remote Oceania

