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Abstract

We study the question whether a Riemann–Stieltjes integral of a positive continuous function with respect
to a nonnegative function of bounded variation is positive.
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1. Introduction

Let f : [a, b]→ R be a continuous function and g : [a, b]→ R a function of bounded
variation. It is a classical result that for such f and g, and for any y ∈ (a, b], the
Riemann–Stieltjes integral ∫ y

a
f (x) dg(x) (1.1)

exists (see, for example, [7, pp. 316–317]). While the basic properties of Riemann–
Stieltjes integrals (and related Lebesgue–Stieltjes integrals) are covered in classical
textbooks on real analysis and integration [4, 5, 7, 8]—Protter and Morrey [7] offering
a particularly comprehensive account—the following simple question is not addressed
in them.

Q 1.1. If f is positive and g is nonnegative, nonvanishing and satisfies g(a) = 0,
can we then select the upper limit of integration y so that the integral (1.1) is positive?

The answer to the question is obviously yes for Riemann integrals (g(x) = x − a),
which could help to explain why it has hitherto been overlooked. In fact, having
conducted an extensive search of the literature, we believe that Question 1.1 has not
been answered before in full generality. (We shall comment later, in Remark 3.3,
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on why the present generality may be relevant in applications.) The only reference
known to us is a note by Satyanarayana [9] where an affirmative answer is proved
under a slightly different set of assumptions—most importantly, assuming that g is
nondecreasing.

Let us stress that positive will here always mean strictly positive. In particular,
since f is continuous, under our assumptions 0 < min f ≤max f <∞. Recall that,
since g is of bounded variation, there exist nondecreasing functions g+ and g− such
that g = g+ − g−. Therefore, finite limx→y+ g(x) and limx→y− g(x) exist for any y ∈ [a, b]
(apart from limx→a− g(x) and limx→b+ g(x), obviously). Moreover, the integral (1.1) is
equal to ∫ y

a
f (x) dg+(x) −

∫ y

a
f (x) dg−(x).

Since g(a) = 0, we may assume that g+ and g− are nonnegative and satisfy g±(a) = 0.
We may now distinguish two special cases, where it is evident that the answer to

Question 1.1 is yes.

(1) If limx→x+
L

g(x) > 0, where xL := inf{x : g(x) > 0}, then there exists ε > 0 such
that (1.1) is positive for y = xL + ε.

(2) If g+(y) > 0 and g−(y) = 0, then (1.1) is at least g+(y) minx∈[a,y] f (x) > 0.

Item (1) follows from the elementary lower bound, valid for 0 < ε ≤ b − xL,∫ xL+ε

a
f (x) dg(x) ≥ g+(xL + ε) min

a,xL−ε≤x≤xL+ε
f (x) − g−(xL + ε) max

a,xL−ε≤x≤xL+ε
f (x),

whereas item (2) is a straightforward consequence of g±(a) = 0.
In general, the integral (1.1) is positive if and only if∫ y

a
f (x) dg+(x) >

∫ y

a
f (x) dg−(x). (1.2)

Obviously, the condition g ≥ 0 is equivalent to g+ ≥ g−, and we have g(x) > 0 if
and only if g+(x) > g−(x). It would be tempting to conjecture that, as a continuous
function, f is ‘nearly constant’ in some neighborhood of xL and, hence, that (1.2)
ought to hold for y = xL + ε with some ‘small’ ε > 0, suggesting an affirmative answer
to Question 1.1 in general.

R 1.2. The proviso g(a) = 0 may seem superfluous as the value of the
integral (1.1) does not depend on g(a). However, together with the condition g ≥ 0
it constrains the behaviour of g near xL, which is a key part of the formulation of
Question 1.1. It should also be stressed that the continuity of f is equally important—
aside from the possible nonexistence of the integral, there is no reason to expect the
answer to Question 1.1 to be yes when f fails to be continuous.

2. Negative answer to Question 1.1

Unfortunately, the heuristic above is too simplistic since mere continuity does not
restrict the fine properties of the integrand f and leaves it with enough room to vary
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‘too much’ for our purposes. Indeed, the general answer to Question 1.1 is no. We
show that for any f that exhibits ‘enough’ variation, there exists a suitable g such that
the integral (1.1) is less than zero for all y ∈ (a, b].

T 2.1. Let f : [a, b]→ (0,∞) be a continuous function. Suppose that there
exist two sequences (xn) and (xn) with

a < · · · < xn < xn < · · · < x2 < x2 < x1 < x1 ≤ b

such that for some α > 0 and γ ∈ (0, 1),

f (xn) − f (xn) ≥ αn−γ for all n ∈ N.

Then, there exists a nonvanishing function g : [a, b]→ [0,∞) of bounded variation
such that g(a) = 0 and ∫ y

a
f (x) dg(x) < 0 for all y ∈ (a, b].

P. Let β > 1 and consider h : [a, b]→ [0,∞) defined by

h(x) :=
∑
n∈N

n−βχ[xn,xn)(x),

where χE denotes the characteristic function of a set E. (Figure 1 illustrates the
definition for Example 2.2 below.) This is, by construction, a function of bounded
variation such that h(a) = 0. We have for any n ∈ N,∫ xn

a
f (x) dh(x) = n−β f (xn) −

∞∑
k=n+1

k−β( f (xk) − f (xk)),

where
∞∑

k=n+1

k−β
(
f (xk) − f (xk)

)
≥ α

∞∑
k=n+1

k−(β+γ)

≥ α

∫ ∞

n+2
x−(β+γ) dx

=
α

β + γ − 1
(n + 2)−(β+γ−1).

Since γ < 1 and supn∈N f (xn) <∞, there exists n0 ∈ N such that∫ xn

a
f (x) dh(x) < 0 for all n ≥ n0.

We may also note that for all n ≥ n0, with n ≥ 2, and y ∈ (xn, xn−1),∫ y

a
f (x) dh(x) ≤

∫ xn

a
f (x) dh(x) < 0.

Thus, defining g := hχ[0,xn0 ) yields a function with all the properties stated in the
theorem. �
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F 1. Plot of f , as defined in Example 2.2 for γ = 1
2 , and the corresponding functions g and J,

J(x) :=
∫ x

0
f (x′) dg(x′), as defined in the proof of Theorem 2.1 using β = 3

2 and n0 = 7. The values have
been computed numerically by considering only contributions with n ≤ 1000. For clarity, only the region

with x ∈ [0, 0.04] is shown.

E 2.2. The function f : [0, 1]→ (0,∞) given by

f (x) :=

xγ sin(1/x) + 2 if x > 0,

2 if x = 0,

where γ ∈ (0, 1), satisfies the condition of Theorem 2.1 with

xn =
1

4n − 3
2
π
, xn =

1
4n − 1

2
π
, n ∈ N,

using α = 2(2π)−γ. Figure 1 illustrates the behaviour of f and of the corresponding g
and the Riemann–Stieltjes integral, as defined in the proof of Theorem 2.1.

3. Integrands of bounded variation

Any integrand f that satisfies the condition of Theorem 2.1 is clearly of unbounded
variation. This prompts us to ask whether we could actually obtain an affirmative
answer to Question 1.1 if f varied ‘less’. In fact, we are able to show that, if f is of
bounded variation, the answer to Question 1.1 is yes. Bounds for Riemann–Stieltjes
integrals under these assumptions have been derived by Beesack [1], Ganelius [3], and
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Knowles [6], but instead of building our argument on them, we give a direct proof
which relies on some elementary measure theory and the measure-theoretic version of
Grönwall’s inequality.

T 3.1. Let f : [a, b]→ (0,∞) be a continuous function and g : [a, b]→ [0,∞)
a nonvanishing function of bounded variation such that g(a) = 0. If f is of bounded
variation, then ∫ y

a
f (x) dg(x) > 0 for some y ∈ (a, b].

P. Let us denote by Vd
c f the total variation of f on [c, d] ⊂ [a, b]. Recall

that total variation is additive in the sense that Vd
a f = Vc

a f + Vd
c f for a ≤ c ≤ d [7,

Theorem 12.1]. Moreover, since f is continuous, the mapping x 7→ V x
a f from [a, b]

to [0,∞) is continuous [7, Theorem 12.2]. Thus, there exists a finite, positive Borel
measure ν on [a, b] such that ν([c, d)) = Vd

c f for any c and d such that a ≤ c < d ≤ b.
Let us define another finite, positive Borel measure by µ(dx) := f (x)−1ν(dx). By
construction, we then have

| f (d) − f (c)| ≤
∫

[c,d)
f (x)µ(dx).

By an approximation with suitable Riemann–Stieltjes sums, where the values of g
are chosen to be sufficiently close to their respective infima on all subintervals of the
partitions, we can prove that∣∣∣∣∣∫ y

a
g(x) d f (x)

∣∣∣∣∣ ≤ ∫
[a,y)

f (x)g(x)µ(dx). (3.1)

The Riemann–Stieltjes integral on the left-hand side is well defined by the integration
by parts formula [7, Theorem 12.14]∫ y

a
g(x) d f (x) = f (y)g(y) − f (a)g(a) −

∫ y

a
f (x) dg(x), (3.2)

whenever
∫ y

a
f (x) dg(x) exists and this is always true under the present assumptions.

Now suppose that, contrary to our assertion,∫ y

a
f (x) dg(x) ≤ 0 for all y ∈ (a, b]. (3.3)

Rearranging the integration by parts formula (3.2) and using the assumption g(a) = 0
and inequalities (3.1) and (3.3), we obtain, for any y ∈ (a, b],

f (y)g(y) ≤
∫ y

a
g(x) d f (x) ≤

∫
[a,y)

f (x)g(x)µ(dx).

But the measure-theoretic version of Grönwall’s inequality [2, Theorem A.5.1] implies
that then f (x)g(x) ≤ 0 for all x ∈ [a, b], whence g = 0, a contradiction. �
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R 3.2. There are two straightforward refinements to Theorem 3.1. Firstly, it
clearly suffices that f is of bounded variation on [xL, xL + ε] for some ε > 0. Secondly,
if g is right-continuous, then the mapping

y 7→
∫ y

a
f (x) dg(x)

is also right-continuous and, under the assumptions of Theorem 3.1, there exists an
interval [c, d] ⊂ [a, b] such that∫ y

a
f (x) dg(x) > 0 for all y ∈ [c, d].

R 3.3. Theorem 3.1 explains why the answer to Question 1.1 is perhaps
elusive. Experimentation with nicely behaving integrands will not suffice, since
a ‘pathological’ f is required in order to discover the general answer. However,
such integrands need not be mere curiosities. In fact, our study of Question 1.1
was originally motivated by an application in financial mathematics involving as
the integrand a path of a continuous-time stochastic process, which is typically of
unbounded variation.
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