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RATIONAL EQUIVALENCE OF FIBRATIONS
WITH FIBRE G/K

STEPHEN HALPERIN AND JEAN CLAUDE THOMAS

1. Introduction. Let ¢, : F — E, 7% B be two Serre fibrations with
same base and fibre in which all the spaces have the homotopy type of
simple CW complexes of finite type. We say they are rationalfl\y’ homo-
topically equivalent if there is a homotopy equivalence (E;)q — (E2)o
between the localizations at Q which covers the identity map of Bg.

Such an equivalence implies, of course, an isomorphism of cohomology
algebras (over Q) and of rational homotopy groups; on the other hand
isomorphisms of these classical algebraic invariants are usually (by far)
insufficient to establish the existence of a rational homotopy equivalence.

Nonetheless, as we shall show in this note, for certain fibrations rational
homotopy equivalence is in fact implied by the existence of an isomor-
phism of cohomology algebras. While these fibrations are rare inside the
class of all fibrations, they do include principal bundles with structure
groups a connected Lie group G as well as many associated bundles with
fibre G/K. (These, of course, are the fibrations which are basic to differen-
tial geometry.)

More precisely, call & and &, h-equivalent if they are rationally homo-
topically equivalent, and c-equivalent if there is a commutative diagram

*

7

/, H*(E,) —— H*(F)

Ly HXB) ~|f ~|7

7"2*

H*(E,) —J—;—* H*(F)

in which f and f are isomorphisms of graded algebras. (Cohomology of
spaces is singular, with rational coefficients.) If f = id, & and &, are
strictly c-equivalent. Finally, if

¢* « H*(F) — Homg (74 (F); Q)
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is dual to the Hurewicz homomorphism we say §; and &, are ¢c-m-equivalent
if there is a commutative diagram

(1.2) H*(B)
w&
H*(E;) ———— Hom (74 (F); Q)
c*je*

in which f (respectively, ) is an isomorphism of graded algebras (respec-
tively graded spaces).

Evidently h-equivalence implies c-equivalence and c¢-w-equivalence,
and it is easy to see that the converses usually fail. If, however, K is a
closed connected subgroup of a connected Lie group G we have

H*(Ey) =L Hom (r4(F); Q)

=|f =iy

TueoreEM 1. Let ¢, : G/K — E, — B be fibrations as described at the
start of the introduction, and suppose that & 1s associated with a principal
G-bundle via the standard action of G on G/K. Then

(i) &1 and & are h-equivalent if and only if they are c-w-equivalent.

(i1) If j1* is surjective then &, and £, are h-equivalent if and only if they are

strictly c-equivalent.

COROLLARY. Let £ : G/K — E — B be a Serre fibration of simple spaces
which is c-equivalent to the trivial fibration B X G/ K. Then it is h-equivalent
toB X G/K.

Proof. The isomorphism f: H*(E) S H*(B) @ H*(G/K), inducing
the automorphism f of H*(G/K) can be composed with id ® f~! to show
that £ is strictly c-equivalent to the trivial fibration. Now apply Theorem
I (ii) with &, the trivial fibration.

For many homogeneous spaces G/K, an automorphism of H*(G/K)
automatically factors over ¢* to yield an automorphism of Hom
(r« (G/K); Q) ; see Section 4. (Indeed we know of no example where this
fails although these presumably abound!) For such spaces as fibre
c-equivalence implies c¢-w-equivalence and hence (when one fibration is
associated with a principal bundle) k-equivalence.

By contrast, if @, 8 € 73(S? V S?) are the obvious basis and ¢ =
la, [, B]] € m4(S? V S?), set

F=(S?V §*\U,e%) Vv S5
Then
HH(F) = H*(S*) @ H*(S?) @ H*(S*) @ H*(S?)
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and the automorphism which interchanges the two elements of degree 5
does not factor over ¢*.

Theorem I is proved via minimal models. The proof applies verbatim
to the larger class of rational fibrations ([7]) which are ‘“‘two stage’’, and
so we work in that setting. Rational fibrations and some necessary facts
about models are recalled in Section 2 where also we define ‘‘two stage’
and state the relevant generalization of Theorem I (Theorem II).

In Section 3 we derive the explicit form of the model of a fibration
associated with a principal bundle via the action of G on G/K. (This is
established in [3, Theorem IX, Section 12.30] for smooth bundles and
real coefficients.) This, in particular, gives the rational model for G/K.
(The real version is due to Cartan [2].) It also shows that such fibrations
are two stage, so that Theorem I does follow from Theorem II. In Section
4 we show that for many homogeneous spaces c-equivalent fibrations
with fibre G/K are automatically c-r-equivalent (so that Theorem I may
be applied). Finally, Section 5 contains the proof of Theorem II.

2. Rational fibrations. Henceforth we adopt the terminology of {7;
Sections 1-4] with Q as ground field. For more details see [5]. Thus for
a topological space .S, H*(S) denotes its rational singular cohomology
algebra and (4(S), d) the c.g.d.a. of rational polynomial differential
forms on the singular simplices of S. If .S is path connected and equippgg
with a basepoint m*(S) denotes its y-homotopy space: if ms: (AX, d) =
(A (S), d) isa model (in the sense of Sullivan) we put

Q(AX) = A*X/ATX - AYX

and denote by ¢ : AtX — Q(AX) the projection. A differential Q(d) is
induced in Q(AX) and

m*(S) = H(Q(AX), Q(d)).

(The decomposition ATX = X @ (ATX - A*X) allows us to identify
X =~ Q(AX) but not d|x = Q(d)). Identifying H(AX) with H*(S) via
ms* we obtain {* : HT(S) — m,*(S). When S is simple and H*(S) is a
graded space of finite type then

m*(S) = Homg(m«(S); Q)
and ¢* is the dual of the Hurewicz homomorphism.

A rational fibration £ . F —]—+ E I»B is (cf. [7, Definition 4.5]) a sequence
of base-point preserving continuous maps between pointed, path con-
nected topological spaces, such that a certain condition on the minimal
models is satisfied. Rational fibrations include ([5, Theorem 20.3]) Serre
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fibrations of path connected spaces in which one of H*(B), H*(F) is a
graded space of finite type, and =;(B) acts nilpotently in each H?(F). In
particular fiber bundles associated with a G-principal bundle when G is a
path connected group, and one of H*(B), H*(F) has finite type are

rational fibrations. ] .
With each rational fibration ¢ : F = E — B is associated ([7, Defini-

tion 4.8]) its A-minimal A model: a commutative diagram of c.g.d.a.
morphisms

) P
(AY, dy) ——> (AY ® AX, dy) ——> (AX, dy)
(2.1) mp |~ ~|mg ~|mpg

A(B), d A(E), d —> (A(F), d
(())—m-» (A(E), d) A—(])-M())

in which the vertical arrows are models and mp and m are minimal.
Note in the upper row only the differential d in AY ® AX depends on §¢;
the algebras and the other maps depend only on the fixed B and F.

2.2 Definition. A rational fibration is two stage if its A-minimal A-model
(2.1) can be written

AV 5 AY ® AXo® AX: D AX, ® AX,

with dg(X,) = 0 and dg(X1) C AY ® AX,. A space F is two stage
if its minimal model has the form (AX, ® AXi, dr) with dx(X,) = 0
and dz(X,) C AX,.

The fibre of a two stage fibration is a two stage space, as are H spaces,
homogeneous spaces (Section 4) and pure spaces [4]. On the other hand
the rational fibration

So® X Sp" X Sg° — E — So? X Sg°
with A-model
(A(bs, b3"), 0) = (A(bs, by, x5, %7, %9), dg) — (A(xs, %7, %9), 0)
and
dpxs = bsbs’, dgx; = bsx;, dgxy = bsxy

is not two stage, even though its fibre is a two stage space.
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Now fix path connected pointed spaces F and B and consider the class
of all rational fibrations ¢ with fibre F and base B. We say that two such
rational fibrations ¢, : F — E, — B, v = 1, 2, are rationally homotopically
equivalent (h-equivalent) if their A-minimal A-models are connected by
c.g.d.a. isomorphisms

6 (AY ® AX,d)) S (AY ® AX,ds) and &: (AX,d)> (AX,d)

such that 07 = 2and ¢ 0p = po ¢. If we can choose ¢ so that ¢ =
id then we say &; and &, are strictly h-equivalent.

When &, £, are genuine fibrations in which F, E, and B have the homo-
topy type of simple CW complexes of finite type, then £ and &, are
h-equivalent if and only if their localizations at Q have the same fibre
homotopy type. Thus the definition above of k-equivalent extends the
definition in the introduction for Serre fibrations of simple spaces.

The definitions of (strict) c-equivalence and of ¢-w-equivalence given
in the introduction apply verbatim to rational fibrations, except that
Homgz (7 (F); Q) has to be replaced by my*(F).

2.3 Remark. Suppose that £; and £ are c-equivalent and that the dia-
gram (1.1) can be chosen so that f = a* for some automorphism « of the
model (AX, dz) for F. Then ¢ and §; are ¢c-r-equivalent. In particular
strict c-equivalence implies c-r-equivalence.

If Fis formal (cf. [8] or [6]) every automorphism of H*(F) is of the
form f = o* and so in this case c-equivalence always implies c-m-
equivalence.

In Section 3 we shall show that a fibration G/K — E — B associated
with a principal G-bundle (G/K as in Theorem 1) is two stage. As well
we recover the classical fact that dim 7,*(G/K) < co. With these results
Theorem I is a special case of

TueorEM 1L Let £, : F 25 E, = B be rational fibrations with £, two-stage.
Assume that m,* (F) 1s a graded space of finite type. Then
(i) & and &, are h-equivalent if and only if they are c-w-equivalent.
(ii) If j1* is surjective, then & and &, are strictly h-equivalent if and only if
they are strictly c-equivalent.

The exact same proof of the corollary in the introduction yields

COROLLARY. Let ¢ : F— E — B be a rational fibration in which F is a
two stage space and wy* (F) is a graded space of finite type. If £ 1s c-equivalent
to the trivial fibration B X F then it is strictly h-equivalent to B X F.

2.4 Remark. Evidently (strict) h-equivalence implies (strict)-c-equiva-
lence in any rational fibration. The reverse implication can easily fail. For
instance the rational fibration Sg? V Sg? — E — Sg® of [9-VI.1, (6)] is
strictly c-equivalent (and hence ¢-r-equivalent) to the trivial fibration.
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The minimal model of E, however, is not isomorphic with that of
(So? V Sp?) X Sgd.

3. Associated fibrations. Let A : K — G be the inclusion of a closed
connected subgroup of a connected Lie group G. Because they are con-
nected the classifying spaces Bg, B are 1-connected, and it is a classical
result of Borel [1, Theorem 19.1] that H*(Bg) and H*(B¢) are finitely
generated polynomial algebras AQx and AQg. (Use lawasawa’s theorem
to reduce to the compact case.) In particular, the minimal models are
given by

(AQk, 0) = (4(Bk),d) and (AQg, 0) — (4(Bo), d).

Now the inclusion A : K — G induces B(\) : Bx — B¢ and in the cor-

responding homotopy commutative diagram

A(Be) M' A(Bx)

o T

AQq "——‘T——’ AQK

we must have p = B(\)*. Define c.g.d.a. (AQe¢ ® AQx ® APy, D) as
follows:

& =06 D¢ ® Qx) = 0and
DAI®R1I®x) =211 —-10BMN*®1,x¢€ P,

Define a commutative diagram of c.g.d.a. homomorphisms

AQx

(3.2) AQ¢ o

AQe ® AQx ® AP,

with a(x) = 0, x € Pg; 0(¥) =9, ¥ € Qk; a(z) = B(\)*2, 2 € Q. A
simple calculation shows that

o*: H(AQs ® AQx ®@ AP¢) — AQx

is an isomorphism.
On the other hand if G — E; — B is the universal bundle for G we may
take Bx = Es/K and B(\) the projection of the bundle

(33) G/K — E, K BX), g
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Combining (3.1) and (3.2) we can construct a commutative diagram

(ABg), &) —BN) |4 (By), d) ————> (AG/K), d)

(AQq, 0) '-T" AQe ® AQx ® APg, D) _p_" (AQx ® AP, D)

in which v*, 8* are isomorphisms and p is defined by p(Qs) = 0, p =
identity in Qg, P¢. Note that this determines D.

Because B¢ is 1-connected and H*(B¢) has finite type, [5, Theorem
20.3] shows that o* is an isomorphism.

Now let G — P — B be a principal G bundle. It pulls back from the
universal bundle via a classifying map ¢ : B — By, and the associated
bundle ¢ : G/K — E — B is then the pull-back of (3.3) via ¢. Let

(AY, dB) “m—B’ (A (B), d)

be a minimal model and choose a homomorphism

(AQGv 0) _: (AY, dB)

so that mg*r* = ¢*. Then
A
aBy) 285 am)

mp

(4Qc, 0) ——> (AY, ds)

is a homotopy commutative diagram.

Since By is 1-connected and H*(G/K) has finite type it follows that
£ is a rational fibration. Hence by [5, Section 20.5] a A-model (not neces-
sarily A-minimal) for £ is given by

(A(B), d) -+ (A(E), d) +> (4(G/K), d)

mp| >~ ~ ~

(AY,ds) ——> (AY ® AQx ® APg, Dy) —— (AQx ® APg, D),
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where
Di(y®1Q®1)=dpy®1®1,D:(1®2® 1) =0,
D(1®1®x)=mx®1®1 -1 BM)* ® 1,
yE Y,ZGQK,xEPGu

It follows (cf. {3, Proposition VII, Section 3.22]) that the A-minimal
A-model has the form

(34) (AY,ds)-5> (AY ® AQ ® AP,d) D (AQ ® AP, d),

whered1 ® 0 ® 1) =0andd(1 ® 1 ® P) C AV ® AQ ® 1. In
particular, { is two stage.

4. The model for G/K. Let K, G be as in Section 3. Specializing equa-
tion (3.4) to the case B = point (¥ = 0) we obtain that the minimal
model for G/K has the form (AQ ® AP, d), where Q (respectively P) is
evenly (respectively oddly) graded, d(Q) = 0 and d(P) C AQ. On the
other hand, the preceding diagram gives us a (non-minimal) model of
the form (AQx ® AP, D) with D(Qx) = 0and Dx = —B(\)*x,x € Pg.

With these identifications many of the results in [3] go over from real
to rational coefficients. We shall recall certain of these here. They will be
applied to show that for certain classes of homogeneous spaces as fibre,
cohomological equivalence of fibrations implies ¢-r-equivalence.

First, recall from [3] that

x-(G/K) = dim m***(G/K) — dim m°¥(G/K) = dim Q — dim P.

Since AQx ® P is a model and since dim Qx = 7kK, dim P, = dim
Q¢ = rkG we have

x(G/K) = tkK — rkG.

On the other hand, if we interpret ¢* as a linear map H*(G/K) —
P ® Q we may write it as the sum of two linear maps
¥t HYY(G/K) > P and ¢.*: (H¥")*(G/K) — Q.

Denote their respective kernels and images by N, P and N,, Q. Using (3,
Theorem I, Chapter 10 and diagram 11.1] we may identify H*(G)
APgand P = Py M Im p*, where p : G — G/K.

Furthermore {3, Theorem V, Chapter 2] we may write

(AQ ® AP, d) = (AP,0) ® (AQ ® AP, d);

here P = P ® P. Because H(AQ ® AP) has finite dimension, dim P
dim Q. If we set def (G/K) = dim P — dim Q we have then
(4.1) def (G/K) = dim Im {¢* — x-(G/K)
rkG — rk K — dim (P M Im p*).

Il

v

Il

https://doi.org/10.4153/CJM-1982-005-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1982-005-7

RATIONAL EQUIVALENCE OF FIBRATIONS 39

The first equation describes def (G/K) as a homotopy invariant; the

second in terms of Lie group invariants. It follows from [3, Theorem XI,
Chapter 3] that G/K is formal if and only if def (G/K) = 0.

4.2 PrROPOSITION. Let K be any closed connected subgroup of a connected
Lie group G. Then any automorphism, f, of the graded algebra H*(G/K)
embeds in a commutative diagram

*

H°44 (G/K) L p

11
IR

H°% (G/K) —?—f P
0

(g 1s a linear isomorphism of graded spaces.)

Proof. We need only show that f preserves Ny. Let w € H*¥(G/K), and
define a linear map ¢ : H*(G/K) —» H*(G/K) by 6(8) = w - 8. Because w
has odd degree, 2 = 0. We shall show that
(4.3) w ¢ Ny HH*(G/K),s) = 0.

Clearly this implies that f(N,) = N,. ) )
If w ¢ No write ¢*o = x,0 # x € P. Write P = (x) @ P;; then
H*(G/K) = H(AQ @ AP) @ AP, ® A(x) = 4 ® A(x).

Thusw = a ® 1 + 1 ® x, for some a € A, and a simple calculation
shows H(H*(G/K), s) = 0.

Conversely, suppose H(H*(G/K), §) = 0. If deg w = 1 it is obvious
by inspection that w ¢ No. Supposedeg w > 1. Letu € AQ ® AP bea
cocycle representing w. Definea c.g.d.a. (AQ ® AP ® Av, V) as follows:
V restrictstod in AQ @ AP,degv = (degw) — 1, Vv = u. Set

)4
F,=2, A0 ® AP ® Ay;
=0
this filtration defines a spectral sequence with E; term (H*(G/K) ® Av,

V1), where VY, is zero in H*(G/K) and Vv = w. Thus the E; term is
given by

By = H*(G/K) Jw - H*(G/K) E_:,H(H*(G/K), 5) ® Ay

= H*(G/K)/w - H*(G/K).
In particular, dim E, < o and so

dim H(AQ ® AP ® Av, V) < .
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Now consider [4, Proposition 1], applied to the c.g.d.a. (AQ @ AP ®
Av, V). Conclusion (2) of that proposition is false for v but conclusion
(1) holds. The only hypothesis which is possibly unsatisfied is minimality.
Thus (AQ ® AP ® Av, V) cannot be minimal. Since (AQ ® AP, d) is
minimal we conclude that 0 # ¢ Vv = {u = {*w;i.e., 0 ¢ Ny.

Consider now the following three classes of homogeneous spaces G/K:

(1) def (G/K) = 0 (i.e., G/K is formal)

(2) def (G/K) =1

(3) K is a torus.
Note that class (1) contains the symmetric spaces [3, Section 11.5] as
well as all the examples in [3, Chapter 11, Section 4]. In [3, Section 11.14]
itis shown that Q(n)/SU(n) isin class (2) for n = 5.

4.4 PROPOSITION. Suppose G/K belongs to one of the above classes. Then
every automorphism f of the graded algebra H*(G/K) embeds in a commuta-
tive diagram

*

HYC/K) —— =*G/K)

S= =g

H+(G/K) — *(G/K)

in which g is an tsomorphism of graded spaces.
In particular, for such spaces Theorem I remains valid when c-mw-equi-
valence is replaced by c-equivalence in the statement of (i).

Proof. The proposition is obvious in case (1) (G/K formal) because
in that case f = o* for some automorphism, «, of the model. We now
consider cases (2) and (3). It is sufficient to show that f(N,) = N, and
f(N.) = N, the first is already established in Proposition 4.2.

In case (2) write H*(G/K) = H(AQ ® AP) @ AP with dim P —
dim Q = 1. By (3, Theorem VII, Chapter 2] every cohomology class in
H(AQ ® AP) can be represented by a cocycle of the form & ® 1 +
> b, @ x; with &, &; € AQ and x; € P. Note that [® ® 1] € H*
and [Y @, ® x,] € H°4, It follows easily that

N, = H*(G/K) - H*(G/K) "\ H¥*(G/K)

and hence is preserved by f.

In case (3) observe that Qx is concentrated in degree 2, and in fact
that Qx = H?(G/K). It follows that N, = Y ;51 H?(G/K) and hence is
preserved by f.
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5. Proof of theorem II. Let

(AY,ds) 3 (AY ® AX,d,) ™5 (AX,dyr)

be the A-minimal A-modelsof &, v = 1, 2.
(i) We need only prove that c-r-equivalence implies k-equivalence. Let

FH(AY @ AX,d) SH(AY ® AX,ds) and 7:X SX

be isomorphisms such that fi;* = 2,* and 9{*p,* = {*p.*. (We have
written X = m*(F); cf. Section 2.)

Now set Zy = Im ({*p1*). It follows from the hypothesis that ¢ is
two stage that X = X, @ X, as in Definition 2.2; clearly X, C Z,.
Thus we may assume that X = Z, @ Z; with d;,(1 ® Z;) = 0 and
(1 ® Z) C AY Q@ AZ,.

Choose a linear map ¢:1 ® Z;— (AY ® AX) M ker d, such that
[¢6(1 ® 2)] = fl1 ® 2], 2 € Zy. Then extend ¢ to AY ® AZ, by setting
d(y® 1) =y® 1,y € V. Clearly

¢ : (AY® AZo, dl)‘—) (AY@ AX,dQ)

is a c.g.d.a. homomorphism, and the diagram

H(AY ® AZy) ——— H(AY ® AX, dy)

(5.1) & ~|f

H(AY ® AX,ds)

commutes.

Now forz € Z1,d:(1 @ z) isacocyclein AY ® AZ,. The diagram (5.1)
shows that ¢*{d:(1 ® z)] = 0. Thus if z, is a homogeneous basis of Z;
we can find u; € AY ® AX so that dou; = ¢di(1 ® z;). Extend ¢ to
a c.g.d.a. homomorphism

¢: (AY ® AX,d:) — (AY ®@ AX,d»)

by setting ¢z; = u;.

It remains to show that ¢ is an isomorphism. Because ¢ is the identity
in AY it induces a homomorphism of c.g.d.a.’s @ : AX — AX such that
p2¢ = ap1. Let Q(a) : X — X be the linear map such that {a = Q(a)¢.
Since AY and AX are connected, it is clearly sufficient to prove Q(a)
is an isomorphism. Since X (=2m*(F)) is a graded space of finite type
we need only prove Q(a) injective.

We show first that if Q(a) becomes injective when restricted to some
graded subspace W C X, then ¢ restricted to AY ® AW is also injective.
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Indeed write X = U ® V, where U = Q(a)W and define a homomor-
phism/: AY ® AX - AY ® AX by

y®1) =y®1L,I1Qu) =¢(1® Q) u),

1®v) =1Quv,ye Y,uc Uve .

Then ¢pol = {ps and it follows, as above, that / is an isomorphism. Since /
coincides with ¢ in AY ® AW we conclude that ¢ is indeed injective in
this subalgebra.

Next observe that for z € Z,

Q)z = {po(l @ 2) = Fp*[d(1 ® 2)] = *pr*f[1 ® 2] = 7z

Thus Q(a) is injective in Z,. Assume it is injective in X? for ¢ < p and
suppose for some x € X? that Q(a)x = 0. This implies that

(1 ®x) € ATY @ AX +1 ® ATX - ATX.
Since AY ® AX is connected we obtain
p(1 @ x) € AY @ A(X<).

Now ¢ maps AV @ A(X<?) into AY ® A(X<?). Since by our hypo-
thesis Q(«) is injective in X<? the argument given above (with X<? re-
placing X) shows that it is an automorphism of AY ® A(X<?). Thus for
some ® € AV ® A(X<?),¢(1 ® x + ®) = 0,andso¢d:(1 ® x + ¢) = 0.

But

C AY ® A(Zy + X<?).
Moreover, since Q(a) is injective in Zp and in X<?, it is injective in Z, +

X<?, As we observed above, this implies that ¢ is injective in AY ®
A(Zy + X<?). In particular d;(1 ® x + ®) = 0. Clearly

o[l @ x + @] = x.
We find, then, that
x € Im *p:* M ker Q) = Zo M ker Q(a) = 0.

Thus Q() is injective in X?.

This completes the proof of (i).

(i) Here we assume §; and £, are strictly c-equivalent and prove they
are strictly k-equivalent. Again write X = X, ® X; withd;(1 ® Xy) =0
and d;(1 ® X;) C AY ® AX, By hypothesis we have an isomorphism

FH(AY @ AX,dy) SH(AY ® AX, ds)
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such that f o 2;* = 7,*and p,* o f = p1*. Moreover p;* is surjective; hence
S0 is p2*.

Choose a homogeneous basis z; for X, and choose ds-cocycles w; €
AY ® AX so that f[1 ® z;] = [w;]. Then p.*[w;] = [z.];i.e., 2, — pow;
= dz¥,; Choose Q; € AY ® AX sothat p,Q; = ¥,.

Extend the identity in AY to a c.g.d.a. homomorphism

¢ : (AY@ AXo,dl)—) (AY® AX,dz)

by putting ¢z; = w; + d:Q;. Let x,; be a homogeneous basis of X;. Then
di(1®x;) € AY ® AXo,andexactlyasin (i) wecanfindu; € AY @ AX
so that dou; = ¢d1(1 ® x;).

Because of our construction we have

p2d = pp: AY ® AXO -—’Xo.
Thus applying ps to the last equation we find that
dp(patt; — x;) = 0.

Because p; and p,* are surjective there are ds-cocycles ®; € AV ® AX
such that ps¢; = x; — pou;. Extend ¢ to a c.g.d.a. homomorphism

by putting ¢(1 ® x;) = ®; + u,. Then p:¢p = p; continues to hold. It
follows that ¢ is an isomorphism.
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