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PRIME ESSENTIAL RINGS

by B. J. GARDNER and P. N. STEWART

(Received 1st June 1989)

A ring R is prime essential if R is semiprime and for each prime ideal P of R, P n / # 0 whenever / is a
nonzero two-sided ideal of R. Examples of prime essential rings include rings of continuous functions and
infinite products modulo infinite sums. We show that the class of prime essential rings is closed under many
familiar operations; in particular, we consider polynomial rings, matix rings, fixed rings and skew group rings.
Also, we explore the relationship between prime essential rings and special radical classes, and we demonstrate
how prime essential rings can be used to construct radical classes which are not special.

1980 Mathematics subject classification (1985 Revision): 16A12, 16A21, 16A56.

Introduction

Throughout this paper the letters R and S will denote associative rings with identity
and A will denote an associative ring which may not have an identity. The ring A is
prime essential if A is semiprime and each prime ideal of A is essential as a two-sided
ideal of A (equivalently, A is semiprime and every prime ideal of A has nonzero
intersection with each nonzero one-sided ideal of A). Prime essential rings were
introduced by Rowen [23] and their importance stems from his Theorem 2 which states
that every semiprime ring is a subdirect product of a prime essential ring and a ring
which is an irredundant subdirect product of prime rings. Prime essential rings have
been used to study commutative reduced rings (see [17], especially 3.12-3.15) and, as we
shall see in the last section of this paper, they play a role in the study of special radical
classes.

In the next section we show that the class of prime essential rings is closed under
many familiar operations; for example, polynomial rings and matrix rings over prime
essential rings are prime essential. Also, if G is a finite group of automorphisms of a
semiprime ring R and R has no \G\ torsion, then if one of RG, R, RG is prime essential,
so too are the others. In the last section we explore the relationship between prime
essential rings and special radical classes, and we demonstrate how prime essential rings
can be used to construct radical classes which are not special.

The notation Io A means that / is a two-sided ideal of A,Io' A means that / is a
prime ideal of A. If A is semiprime and / < A , then {aeA\aI = 0} = {aeA\la=0} is an
ideal of A which we shall denote by /*. Let A be a ring, K an infinite cardinal, / an
index set of cardinality K, P = T\{Ai\Ai = A,iel) and J = {peP\the cardinality of
{iel\p{0^0} is less than K}. The ring P/J will be denoted by A(K).
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242 B. J. GARDNER AND P. N. STEWART

We shall make frequent use of the following proposition without making special
reference to it.

Proposition 1. A ring A is prime essential if and only if it is semiprime and no nonzero
ideal of A is a prime ring.

Proof. First assume that A is prime essential and 0#/<3 A. Then / is not a prime
ring because otherwise / * o 'A which is not essential. Conversely, suppose that Po' A
and P is not essential. Then 0 ̂  P* is isomorphic to an ideal of the prime ring A/P and
so P* is a prime ring. •

We conclude this section with some examples of prime essential rings.

Example 1. Let Ahiel, be an infinite family of semiprime rings, P = TI{Ai\ieI} and
J = {peP|the cardinality of {ie/|p(i)#0} is less than the cardinality of /} . The ring P/J
is prime essential because its nonzero ideals are not prime rings. Note that when At = A
for all iel we obtain A(K) where K is the cardinality of /. •

Example 2. Let X be a completely regular Hausdorff space with no isolated points.
We will show that the ring C(X) of real valued continuous functions on X is prime
essential. Let 0 # A <a C(X). There is an / e A and an x e X such that f(x) ^ 0. Since / is
continuous there is an open neighbourhood ^ of x such that z e f implies /(z)#0.
Because x is not isolated there is a w e t , w # x . Since X is Hausdorff w and x have
disjoint neighborhoods N1 and N2 respectively, and since X is completely regular there
are h,keC(X) such that h(w) = l and h(z) = 0 for all zeX\Nu k(x) = l and fc(z) = 0 for
all zeX\N2- It follows that fh and fk are nonzero elements of A such that
(fh)(fk) = 0. Thus A is not a prime ring and so C(X) is prime essential. The special case
of C[0,1] is given by Rowen [23]. •

Example 3. Any Boolean ring which does not have an ideal isomorphic to Z2 is
prime essential. These rings were used by Ryabukhin [21] to construct the first example
of a hereditary supernilpotent radical class which is not special. Note that Z2(K), where
K is any infinite cardinal, is an example of such a ring. •

Example 4. Let AlzA2^... be a countably infinite ascending chain of semiprime
rings. Let S be the subring of IT/1, consisting of all sequences d=(a1,a2,...) for which
there is an integer n, depending on a, such that a, = ai if i s j mod(n). The ring S is prime
essential and is isomorphic to a subring of the ring in Example 1 (when the index set /
in Example 1 is countable). This example is based on an idea of Snider [24, pp. 210,
211] where the At form a strictly ascending chain of fields. The ring attributed to
Leavitt in [14] is of this type where Ai = Z2 for all i. •

Example 5. In this example we show that certain semigroup rings are prime
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essential. We require the following lemma which is adapted from [22, Lemma 8 and
Lemma 9].

Lemma 1 (Ryabukhin ). Let S be a linearly ordered set with no greatest element, with
least element e and which is such that every interval [x,y],x<y, has cardinality K. Then S
is a semi-group with multiplication defined by xy = ma\{x,y}. Let A be a nonzero
semiprime ring.

(a) The semigroup ring A(S) is a subdirect product of copies of A.

(b) A(S) is semiprime.

(c) IfQo'A(S), then P = {aeA\aeeQ}^'A and A{S)/Q^A/P.

(d) / / / is a nonzero accessible subring of A(S), then the cardinality of I is at least K.

Proof, (a) Since A{S) is a strong semilattice sum of copies of A this follows
immediately from [6, Theorem 1.4]. Alternatively, if we define, for each ueS, Iu to be
the ideal of A(S) generated by elements of the form av — au, aeA, v<u and by elements
of the form bw, be A, w>u, then it can be shown that (~) {/u.ueS} = 0 and A(S)/Iu = A
for each u e S.

(b) This follows immediately from (a).
(c) Let Q<i'A(S) and define <j>:A-+A{S)IQ by <p(a) = ae + Q. If ueS, aeA and u>e,

then auA(S)(ae — au) = 0 and so aueQ or ae — aueQ. Thus (j> is onto and since <j> is
clearly a ring homomorphism, A{S)/Q = A/P where P = ker<j) = {aeA\aeeQ}.

(d) Let / be a nonzero accessible subring of A(S). This means that there are subrings
Iu...,Ik of A(S) such that 0 ^ / = /j<] 7 2 < a — o /k = ><4(S). Since A{S) is semiprime it
follows from Andrunakievic's Lemma (see [8, Lemma 61]) that / contains a nonzero
ideal J of A(S). We now show that the cardinality of J is at least K.

Let x = ct1u1 + --- + akukeJ, 0 # a , e / l and M,eS where ux<- -<uk. If a = £ f = 1 a , ^ 0
then, since A is semiprime, a b / 0 for some be A. Hence abuk + abv = x{buk + bv) e J for all
v>uk. If a = 0, then C = YJ=I a ,#0 and the semiprimeness of A guarantees that c d / 0 for
some deA. Hence cduk-1+akduk = x(duk_l)eJ where akd= —cd^O. In any case there
are s,teS, s<t and nonzero g,heA such that gs + hteJ. Let keA be such that gfc#0.
Then for each u in the interval [s, t], (gs + ht)ku=gku + hkteJ and so the cardinality of
J is at least the cardinality of the interval [s, t]. •

Let A be any semiprime ring, let K be a cardinal number greater than the cardinality
of A and let S be a linearly ordered set satisfying the hypotheses of the preceding
lemma. We now verify that the semigroup ring A(S) is prime essential. Let Qo'A(S)
and suppose that I<\ A{S) such that g n / = 0. Since I = (1 + Q)/Q we see from Lemma
l(c) that the cardinality of / does not exceed the cardinality of A. Thus 7 = 0 because of
Lemma l(d).

It easy to construct, for any cardinal K>\, a linearly ordered set satisfying the
hypotheses of Lemma 1. For example, the set W(k) of all finite words made from a
(well-ordered) alphabet of cardinality K, lexicographically ordered, is such a linearly
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ordered set. The corresponding prime essential semigroup rings A(W{K)) will be used in
the final section of the paper.

Prime essential related rings

Theorem 1. Let I<\ A. (a) if A is prime essential, so is I, (b) if I is prime essential and
an essential ideal of A, then A is prime essential, (c) if I and A/I are prime essential, so is
A, (d) if 0 # e = c 2 e / 4 and A is prime essential, then eAe is prime essential.

Proof, (a) Since A is semiprime it follows that / is semiprime. Let O ^ J o / and let J
be the ideal of A generated by J. Then 0#(J)3<3 J and since A is prime essential, (J)3 is
not a prime ring. Because (J)3 o J, J is not a prime ring and so / is prime essential.

(b) Since / is semiprime, so is A. Let 0 # J < A Then 0 # / n J < / and is conse-
quently not a prime ring. Since I nJo J, J is not a prime ring. Hence A is prime
essential.

(c) Since / and A/1 are semiprime, so is A. Let 0#J< i A. If J n / = 0, then J s ( J + /)//
and so, since A/I is prime essential, J is not a prime ring. On the other hand, if
J n / # 0, then J n / is not a prime ring because it is an ideal of the prime essential ring
/. Since J n I <J J, J is not a prime ring. Thus A is prime essential.

(d) Since A is semiprime, so is eAe. Let P<3'eAe. Then P = eQe for some Qo' A. If
I<3 eAe and PI = 0, then (QI)2 = 0. Since A is semiprime and Q is essential, 7 = 0. Thus P
is essential in eAe and so C/4e is prime essential. •

The ring S is a /ree centralizing extension of J? if /? £ S, R and S have the same
identity, there is a subset X c S such that S is a free i?-module with basis .Y and rx = xr
for all x e X and reR.

Theorem 2. / / S is a semiprime free centralizing extension of a prime essential ring R,
then S is prime essential.

Proof. Let g<i 'S. First we check that QnRo'R. If a,beR, aRb^Q and
s = £?= 1r,xfeS, xteX, rteR, then asfe = YJ=i a^x ,eQS£Q. Since Q o ' S it follows that
Qr\R<}'R. Since R is prime essential, (QnR)*=0 and hence (2* = 0 because if
Yj=irixi> XisX, rteR is in Q*, then (Qni?)r, = 0 for all i=\,...,n. Thus Q is essential
in S and the proof is complete. •

Corollary 1. If R is prime essential then so are matrix rings Mn(R), polynomial rings
where X is any set of indeterminates, and semiprime group rings RG.

Remark 1. The converse of Theorem 2 is true when S is a finite free centralizing
extension of R. To see this suppose that S is a prime essential free centralizing extension
of R with a finite centralizing basis. Since S is semiprime, R is semiprime. Let P~=i'R.
Then PSo S and S/PS is a finite free centralizing extension of R/P. Thus it follows from
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[15, Corollary 4.14] that S has prime ideals Qi,..,Qm such that PS^N = f)?=1 Q, and
Af'sPS for some positive integer t. Since Qf = 0 for all i=\,...,m it follows that P*=0,
and so R is prime essential.

However, the converse of Theorem 2 is not true in general: if k is a field then k
embeds as the diagonal elements of fe(N0) and fe(X0) is a prime essential free centralizing
extension of k.

Theorem 3. Let G be a finite group of automorphisms of R such that R has no \G\
torsion. The skew group ring RG is prime essential if and only if R is prime essential.

Proof. It follows from the Fisher-Montgomery Theorem [8] that R is semiprime if
and only if RG is semiprime.

Assume that R is prime essential and let Qo' RG. From [16, Lemma 4.2] we see that
there are prime ideals Pu...,Pm of R such that 6 n R = Q"=1P,. Since each P, is
essential, QnR is essential and so {QnR)* = 0. If s = l.{rgg\geG}eRG and Qs = 0, then
(QnR)rg = 0 for all geG. Thus Q* = 0 and so RG is prime essential.

Now assume that RG is prime essential and let Po'R. Choose Q maximal in
{Io RG\lnR^P}. Then Q<i'RG and so Q is essential as a right KG-submodule of
RG. It follows from the essential Maschke's theorem [20, Lemma 1.2] that Q is essential
as a right J?-submodule of RG and so QnR is essential as a right ideal of R. Since
Q n R £ p, p is essential and so R is prime essential. •

Remark 2. The argument in the above proof can be carried out in the more general
setting of excellent extensions. See [19] for the required results about these extensions.

Remark 3. If R is a ring graded by a finite group G, then the smash product, R#G,
is the free right and left .R-module with basis {pg\geG} and multiplication determined
by (rpg){sph) = rsgh-lpk where sgh-i is the gh~x component of s. From [7, Theorem 3.5]
we have (/?# G)G^Mn(R) where n = \G\, so it follows from Corollary 1, Remark 1 and
Theorem 3 that if R has no \G\ torsion then R is prime essential if and only if R # G is
prime essential.

Theorem 4. Let G be a finite group of automorphisms of R such that R has no \G\
torsion. If R is semiprime and the fixed ring RG is prime essential, then R is prime
essential. If R is prime essential, so too is RG.

Proof. Let R be the ring obtained by inverting \G
is the subring of the rationals which is generated by

in R; that is, R = R ® z T where T
G\~l and Z is the ring of rational

integers. Clearly R (respectively RG) is prime essential (semiprime) if and only if R
(respectively £G) is prime essential (semiprime). Thus we may assume that |G |~ l e# .

Suppose that R is semiprime and RG is prime essential. Let Q<i'R and set
Q = f){g(Q)\geG}. Then Q is G-invariant and QnRG = QnRG. From [18, Proposition
4.2] we obtain a finite set {P 1 , . . . ,PJ of prime ideals of RG such that Q n R G = f)f = t Pf.
Since each Pf is essential, QnRG is an essential ideal of RG. If / is a nonzero
G-invariant left ideal of R, then it follows from the Bergman-Isaacs Theorem [4] that
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/ n RG^0. Thus Q meets every nonzero G-invariant left ideal of R nontrivially. The ring
R is naturally a left RG-module where the action of the skew group ring on R is
induced by left multiplication by elements of R and the automorphism action by
elements of G. The RG-submodules of R are precisely the G-invariant left ideals of R
and so we have just shown that Q is essential as a left RG-submodule of R. By the
essential Maschke's Theorem [20, Lemma 1.2] Q is essential as a left R-submodule of R
and so Q, and hence Q, is an essential ideal of R.

Now assume that R is prime essential. Then RG is prime essential by Theorem 3 and
so from Theorem l(d) e(RG)e is prime essential where e = |G|~12;{g|geG}. Since
RG^e(RG)e, RG is prime essential. •

Special radical classes

For undefined radical theoretic terms see [8], [10], [25] or [26]. If W is a class of
rings, [/(<<?) denotes the largest radical class 0t such that all rings in # are ^ semisimple.
For hereditary classes %>, U{%>) is the class of all rings which have no nonzero
homomorphic images in (€.

Theorem 5. The class $ of prime essential rings is closed under finite, but not infinite,
subdirect products. The subdirect product closure of S is the class of U(<o) semisimple
rings.

Proof. It follows from Theorem l(a) and (c) that the class of prime essential rings is
closed under finite subdirect products.

Let Z be the ring of integers and B = Z(K0). Let 'V be the variety of associative rings
generated by B. Since the subring of B generated by the identity is Z ,Ze f . The
polynomial ring Z[x] is subdirect product of copies of Z, so Z[x]eV, and by induction
Z[x! , . . . ,x^ef for any finite set of commuting indeterminates {xi,...,xn}. Thus all
finitely generated commutative rings are in "V and so 'f is the variety of all
commutative rings.

It follows from Burris [5] that there is an infinite cardinal K such that the free ring in
f o n K generators is a subdirect product of copies of B. Since B is prime essential and
this free ring, which is just the free commutative ring on K generators, is not, the class S
is not closed under arbitrary subdirect products.

The rest of the theorem follows from [2, Theorem 1]. •

A hereditary radical class 01 which contains all nilpotent rings is special if every 3&
semisimple ring is a subdirect product of prime 01 semisimple rings.

Theorem 6. A hereditary radical class 8$ which contains all nilpotent rings is special if
and only if every prime essential 0L semi-simple ring is a subdirect product of prime &
semisimple rings.

Proof. One direction is obvious. For the other, suppose that A is 2̂ semisimple. Let
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A = f){P^'A\P**O} (we take A = A if P* = 0 for all P-a'A). If P*#0, then A/P is «
semisimple because it has an essential ideal (P* + P)/P which is isomorphic to the 82
semisimple ring P*. We are trying to show that A is a subdirect product of prime 91
semisimple rings, and this is clearly the case if A = 0. We now assume that A#0. Rowen
[23] has shown that A/'A* is prime essential and A/A* is 91 semisimple because it has an
essential ideal which is isomorphic to the 2̂ semisimple ring A. Since A is semiprime,
A n A* = 0 and the result follows. •

If # is a class of rings the smallest radical class containing <€ will be denoted by
and if 0LX and ^ 2 are radical classes with ^ ,£^2 2 , the interval of radical classes 91 such
that « ! g « c « 2 will be denoted by \_St

Lemma 2. Let <% be a radical class, %> a class of 01 semisimple rings and B a ring. If B
is a subdirect product of rings in c€, B is L^€) semisimple and every prime homomorphic
image of B is in U$) then L ( 3 ? u # ) £ [/({B}) and no radical class in \l\0l\j<g), £/({B})]
is special.

Proof. Since B is a subdirect product of rings in # which are 01 semisimple, B is 0t
semisimple. Since B is also U^) semisimple it must be L ( ^ u # ) semisimple and so
Umu<k)sU({B}). Now if 0?t is a radical class in \_U9to<€), U{B}], then B is 91 x

semisimple but all prime homomorphic images of B are in 9tt. Hence 9tx is not
special. •

Theorem 7. Let 01 be a radical class and let A be a nonzero semiprime @ semisimple
ring. Then for any infinite cardinal K larger than the cardinality of
A,L(®V{A})ZU({A(W(K))}) and no radical class in [L(<%u {,!}), U({A(W{ic))}y] is
special.

Proof. It follows from Lemma l(d) that A(W(K)) is L({A}) semisimple and so
Lemma l(a), (b) and (c) show that Lemma 2 applies. •

Remark 4. We note that for every radical class Si, other than the class of all rings,
there do exist nonzero semiprime 0t semisimple rings, and hence prime essential ^
semisimple rings. To see this, suppose that A is a nonzero 91 semisimple ring. If A is not
semiprime, then, since semisimple classes are hereditary, either Z° (the zero ring on the
integers) or Z° (the zero ring on the integers modulo p,p prime) is 01 semisimple. Let
B = Z or Zp, so that the zero ring on B is $2 semisimple. Since semisimple classes are
closed under extensions it follows by induction that (xB[x])/(x*) is 0t semisimple for all
integers k^.2, where (xfc) denotes the ideal of B[x] generated by x*. Now because
semisimple classes are closed under subdirect products, the semiprime ring xB[x] is 9t
semisimple.

Remark 5. If 91 is supernilpotent (that is, contains all nilpotent rings), then certainly
all the radical classes in the interval [L(^u {/!}), U({A(W(K))})] are also supernilpotent.
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Also, if ^ is hereditary, the interval above contains hereditary radical classes; for
example, L{MKJ^C) where 2tf is the class of accessible subrings of A

Theorem 8. Let 01 be a radical class and *& a class of & semisimple rings such that (a)
every semiprime homomorphic image of a ring in %> is prime and (b) there is a prime
essential ring E such that every prime homomorphic image of E is in <€. Then
U&u <<?) ££/({£}) and no radical class in \U0lu<#), U({E})'] is special.

Proof. It follows from (b) that £ is a subdirect product of rings in # and that every
prime homomorphic image of E is in U{€). Also, every accessible subring of E is prime
essential and so not a homomorphic image of a ring in # by (a). Hence E is L^€)
semisimple and so the result follows from Lemma 2. •

Example 6. Let <if be the class of prime homomorphic images of the ring C(X)
described in Example 2. Then # satisfies condition (a) of the theorem [13, Theorem 2.4]
and C(X) satisfies the conditions required of E in (b). It follows, in particular, that
U({C(X)}) is not special. •

Example 7. Let B be a prime von Neumann regular ring which satisfies general
comparability (see [12, Chapter 9]). Then any product P of copies of B also satisfies
general comparability [12, page 83] and so the ideals in all prime homomorphic images
of P are linearly ordered [12, Theorem 8.20]. Since all homomorphic images of regular
rings with linearly ordered ideals are prime, the class # of prime homomorphic images
of products of B satisfies condition (a) of the theorem. The ring B(K), where K is any
infinite cardinal, satisfies condition (b). Examples of von Neumann regular rings which
satisfy general comparability include full endomorphism rings of vector spaces over
division rings and, more generally, all prime, regular, self-injective rings [12, Corollary 9.16].

•
Let A be a ring, / an index set and A' •=Yl{Ai\Ai=A,isl}. An ultrapower of A is a

ring of the form A'/B where B = {peA'\{i\p(i)=0}ey~} and ST is an ultrafilter of
subsets of /.

Corollary 2. Let & be a radical class and tf a class of & semisimple rings such that (a)
every semiprime homomorphic of a ring in $ is a prime ring in %> and (b) there is a prime
ring PeW such that all ultrapowers of P are in (€. Then for each infinite cardinal K,

, u <£) £ U{{P(K)}) and no radical class in \U& u <€), U({P(K)})'] is special.

Proof. It suffices to show that for each infinite cardinal K, all prime homomorphic
images of P(K) are in (€. Let Q be a minimal prime ideal of P(K). Then the inverse image
of Q in Il{Ai\Ai=P,ieI}, where the cardinality of / is K, is a minimal prime. Thus
P(K)/Q is an ultrapower of P [11, Proposition 3.3]. It then follows from (b) that P{K)IQS<#
and so (a) implies that all prime homomorphic images of P(K) are in (€. •

Example 8. Let "V be a proper variety of associative rings and let %> be the class of
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simple prime rings in ~V. Clearly # satisfies condition (a) of the corollary and, if # # <j>,
(b) is satisfied by every ring in %> [1, Theorems 2A and 2B]. •

For a P.I. ring A, let d(/4) = inf {k\A satisfies the standard identity of degree 2k}.

Theorem 9. Let £ be the class of prime essential rings.

(a) U(&) is not special.

(b) [Ryabukhin, 21]. U(!2>) is not special where 3) is the class of all rings which are
subdirect products of copies ofZ2 but which have no ideals isomorphic to Z2.

(c) [van Leeuwen and Jenkins, 14]. For n>\, U(3)nv!F) is not special where 2)n is
the class of all rings which are subdirect products of copies of Mn(Z2) but which
have no ideals isomorphic to Mn(Z2) and !F is the class of all fields.

(d) [Ryabukhin, 22]. Let K be an infinite cardinal and £f the class of all rings of
cardinality not exceeding K. Then L{Sf) is not special.

(e) [Beidar and Salavova, 3]. For n^l, [/(<?„) is not special where Sn = {AeS\d(A) = n}.

Proof, (a) and (b). These follow immediately from Theorem 7 with ^ = {0} and
A = Z2 or from Theorem 8 with ^ = {0}, # = { Z 2 } and E = Z2(X0). All prime homomor-
phic images of E are in <4> because Z2 is the only prime Boolean ring.

(c) As above we can use either Theorem 7 or Theorem 8, but with Mn(Z2) in place of
Z2. The only prime homomorphic images of £ = Mn(Z2)(X0)^Mn(Z2(N0)) are of the
form E/Mn(I) where /<i 'Z2(X0) and hence Z 2 (K 0 ) / /^Z 2 . So these prime homomorphic
images are all isomorphic to Mn(Z2).

(d) Let ^ = {0} and A = Z2. In view of Lemma l(d), L(^)^U({A(W(a))}) where a is
any cardinal greater than K. Thus the result follows from Theorem 7. The result also
follows from Theorem 8 with ^ = {0}, # = {Z2} and E = Z2{K). Here L{Sf) £ U({Z2(k)})
because all accessible subrings of Z2(K) have cardinality 2K > K.

(e) This follows from Theorem 8 just as in (c) because d(Mn(Z2)(N0)) = n. •
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