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This paper proposes a new method for estimating Automatic Identification System (AIS)
coverage empirically from received transmissions. The method is appropriate for stationary
coverage assets, as distinct from aircraft and satellites. The key idea behind the method is to
interpolate probabilistically between AIS reports in order to reconstruct where the missed
transmissions might have occurred. These hypothetical missed transmissions then supplement
the received ones in a coverage estimate based on a Bayesian treatment of a binomial model of
reception. The final estimate of the coverage is implemented over a spatial grid. The method is
demonstrated on simulated AIS data and was found to have lower mean squared error than a
previously published method. Assumptions and potential weaknesses of the new method are
discussed.

KEY WORDS

1. AIS. 2. Automatic Identification System. 3. Reception. 4. Coverage.

First published online: 23 March 2012.

1. INTRODUCTION. The widespread use of the Automatic Identification
System (AIS) (ITU, 2010) on ships has provided authorities in charge of maritime
situational awareness with a wealth of information on vessel movements. These
authorities now routinely handle thousands of AIS messages every second from
sources like Maritime Safety and Security Information System (MSSIS) (USDoT,
2011). AIS data has been particularly valuable because each vessel is identified in
every AIS transmission, making it much easier to keep track of individual ships. This
benefit, however, is balanced by the potential for AIS misuse (Hammond et al., 2006)
and for the sheer volume of the data to overwhelm human operators (Davenport et al.,
2004). Both of these concerns suggest the need for automated anomaly detection
(Lane et al., 2010).
The simplest AIS anomaly of interest to most authorities arises when expected AIS

transmissions are not received. According to the rules set out by the International
Maritime Organization (IMO, 2011), vessels are supposed to keep their (Class A) AIS
transponder in operation at all times (except where international agreements, rules or
standards provide for the protection of navigational information). A time interval
with no AIS transmission from a vessel is of concern for at least two reasons: a non-
transmitting vessel can pose a navigation hazard, and the lack of transmission may
indicate a desire to be covert. Thus, authorities say they would like to be notified of
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these events (Davenport, 2008; van Laere and Nilsson, 2009). Unfortunately, in
meeting this request, it is not sufficient to raise an alert whenever an AIS report from a
vessel is not received because AIS reception varies widely in both space and time.
Designing an automated alert for this type of anomaly requires knowledge of AIS
coverage, in order to keep the rate of false alarms to a manageable level. Thus, this
paper is concerned with estimating AIS coverage. Knowing the coverage is also useful
in planning maritime patrols, or in deciding where to place new stationary sensors. It
also helps in detecting false AIS position reports. First, let us define the concept more
precisely.
The AIS coverage at a point X, namely c(X), for X in a domain D of points on the

surface of the Earth is defined, for a reference vessel, to be the probability of receiving
a position report from the vessel at X. It is a surface of probability values that can
depend on time. This definition matches the definition of ‘AIS coverage quality’
suggested by the Helsinki Commission Expert Working Group for Mutual Exchange
and Deliveries of AIS data (HELCOM, 2011). The coverage clearly depends on
weather, sea state, antenna heights and obstacles, among other factors (HELCOM,
2011). One of these other factors is the traffic density. Theoretically, there could be so
many AIS transponders near X that they interfere with reception. In practice, the Self-
Organizing Time Division Multiple Access (SOTDMA) protocol that controls most
AIS messages was designed to manage the transmissions from hundreds of vessels
(Hammond and Kessel, 2003), so few ground-level receivers should experience
problems with interference. Indeed, the methods discussed in this paper ignore
interference.
There are two types of approaches to modelling coverage: considering the physics of

VHF radio propagation and the characteristics of the relevant antennas (Green, et al.,
2011), or using the AIS receptions themselves to estimate the coverage empirically
(Lane et al., 2010; Lapinski and Isenor, 2011). Little consideration will be made here
of the former because, in many practical situations, the necessary information is not
available. For example, in data from MSSIS (which typically includes only the AIS
messages themselves, with appended timestamps), users may not be privy to
information on the source of the AIS data. In such situations, using empirical
methods is the only available choice.
Empirical methods have some general limitations. All of them treat the coverage as

effectively time-invariant while the AIS observations they use are being collected.
When an empirical estimate of coverage is applied to a task (such as anomaly
detection), its utility will depend on the similarity of the conditions at the time of
application to those at the time of the collection of the data from which the estimate
was made. These conditions can include the availability of AIS receivers. Hence, the
interpretation of the results is most straightforward when all the AIS receivers are
stationary. Another limitation of empirical methods is that they treat all ships as
having equivalent transmission characteristics. This is a source of error, insofar as the
data set used for the empirical estimate will generally originate from multiple vessels
having different antenna heights, which, as already noted, leads to different
probabilities of reception.
This paper proposes a new method for empirical estimation of AIS coverage

provided by a network of AIS receivers. The new method is unique in that it
makes probabilistic inferences about the time and location of missed AIS
transmissions.
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2. AIS TRANSMISSION AND DECIMATION. In addition to the
variability in coverage, there are at least two other reasons why the time interval
between consecutive AIS reports received from a given vessel will vary. First, the
interval between transmissions from an AIS transponder is determined automatically
from the ship’s speed and manoeuvre. Table 1 shows the time intervals for position
reports from an AIS transponder that is working as intended (assuming that no one
has shut it down nor tampered with it). Thus, if you knew the track and speed of a
vessel (from radar, for example) and were given the time of an initial transmission, you
could make a good prediction of the time of subsequent ones.
Second, AIS data collectors (typically ports or government bodies) may decimate

the data they receive, to cut down on bandwidth requirements. When we speak of
applying a decimation period r, we mean that reports that are separated from the
previous retained report from the same ship by a time interval less than r are
discarded. Finally, distributors of AIS data, like MSSIS, may apply their own
decimation rates in giving the data to end users.
For an illustration of the decimation procedure, see the timeline of AIS

transmissions in Figure 1. The variability in temporal spacing between AIS
transmissions is based on Table 1. (In this illustration, the vessel in question is
changing course for several seconds in the middle of the interval. Near the end of
the interval it accelerates to a speed greater than 14 knots.) The transmission at
point A initiates a decimation period (here taken to be one minute) during which all

Table 1. The transmission rate of AIS data varies with the ship’s speed and manoeuvre.
Class B AIS is for smaller vessels (ITU, 2010).

Ship’s Speed and Manoeuvre Reporting Interval

At anchor or moored 3 minutes
0–14 knots 10 seconds
0–14 knots and changing course 3·333 seconds
14–23 knots 6 seconds
More than 23 knots 2 seconds
More than 14 knots and changing course 2 seconds
Class B More than 2 knots 30 seconds
Class B Less than 2 knots 3 minutes

Figure 1. Example of AIS data decimation. The horizontal black line from A to B is a timeline.
Black marks along the timeline indicate ten second intervals starting from A. Blue, red, and green
marks along the timeline represent AIS transmissions. Here, the decimation period is set to one
minute.
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received transmissions, if any, are deleted (red marks). Subsequently, it is possible
for some transmissions to be missed (green marks) before another one is received
(point B).
Except where otherwise indicated, we assume in this paper that the decimation

history of the data is known and that only one decimation is applied, but we discuss
the implications of both assumptions below. In these discussions, we speak of
cascading decimation, by which we mean applying the decimation procedure twice in
succession, using two different decimation periods. Cascading decimation is of most
concern when the second period is greater than the first (otherwise the second
decimation has no effect).

3. THE LAPINSKI- ISENOR COVERAGE (LIC) ESTIMATOR.
Regions of sporadic AIS reception indicate poor AIS coverage, while reception should
be nearly continuous in areas with good coverage. Thus, an examination of the time
interval between successive reports from the same vessel should be useful in coverage
estimation. The Lapinski-Isenor (LIC) estimation algorithm considered in this section
(Lapinski and Isenor, 2011) is based on examining such intervals. See the previous
section for a discussion of the different sources of variability in these intervals.
The LIC algorithm estimates coverage by superimposing a grid of squares on the

region of interest. Let ΔA denote the width of each square in the grid. Let us number
the grid cells from 1 to n to identify them uniquely, and define the function g(X ) to be
the index of the grid cell containing the point X. This function can then be used to
assign AIS transmissions to the grid cells in which they occur. An estimate of the
coverage is made for each cell. Let Ĉ(i) denote that estimate for the i-th grid cell, for
each i from 1 to n. Then for every point X in the region of interest, the final estimate of
the coverage c(X ) is given by Ĉ(g(X )).
The LIC algorithm identifies three key subsets of the received and retained AIS

transmissions: births, deaths, and active transmissions. Births and deaths are both
defined with respect to a reference time interval (Δt) as follows: Whenever two
successive AIS reports from a given ship are separated in time by more than Δt, the
earlier report is defined as a death and the later one as a birth. Also, the first report
from any ship is a birth. Note that, under these rules, it is possible for a single
transmission to be both a birth and a death. A transmission that is neither a birth nor a
death is considered active, if it is the next transmission from a ship after a birth or it is
in a different grid cell than the previous transmission from the same ship.
To complete the specification of the LIC algorithm, we define the computation of

Ĉ(i) in each cell. Let Ai, Bi and Di refer, respectively, to the number of active
transmissions, births and deaths in the i-th cell, and let let Fi=Ai+Bi+Di. The LIC
estimate is:

Ĉ(i) =
0, Fi = 0

1− Bi +Di

2Fi
, Fi . 0

{
(1)

Thus, an abundance of active transmissions is taken to indicate good coverage,
while an abundance of births and deaths is taken to indicate poor coverage. Note that,
when Fi >0, the coverage estimate has a range from 0·5 to 1·0.

412 T. R. HAMMOND AND D. J . PETERS VOL. 65

https://doi.org/10.1017/S0373463312000057 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463312000057


4. A NEW COVERAGE ESTIMATION METHOD. In comparison
with a simple glance at a map of AIS transmission locations, the LIC method adds
value by considering the time gap between successive transmissions from the same
vessel. Our new method (‘HPC’) goes a step further by making inferences about the
times and locations of the missed transmissions. In doing so, it uses knowledge about
how AIS transponders work (Table 1). This development requires that we take into
account geographical constraints and make assumptions about vessel behaviour. It
also greatly increases the computational requirements.
Like the LIC algorithm, HPC employs a grid to estimate coverage. The HPC

method estimates the coverage for any given grid cell by considering the number of
‘hits’ and the number of ‘misses’ in that cell. Here, a ‘hit’ is a received AIS signal, and a
‘miss’ is an AIS signal that is not received but is inferred to have been transmitted and
not removed by the decimation process.
We use a binomial model for the ‘hits’ and ‘misses’. In accordance with typical

Bayesian practice, we employ a Beta prior for the reception probability (Gelman et al.,
1995). Let h(i) and m(i) denote respectively the number of ‘hits’ and the number of
‘misses’ in the i-th cell. The posterior distribution (derived from Bayes’ theorem) then
also follows a Beta law, with density proportional to xα(i)−1(1−x)β(i)−1 for 0 <x <1
and zero elsewhere, where α(i)=α0+h(i) and β(i)=β0+m(i).
The constants α0 and β0 are the parameters of our Beta prior distribution. We use a

‘non-informative’ prior distribution so that it will have as little influence on the result
as possible. Thus, we take α0 = β0 = 1

2, corresponding to the Jeffreys prior (Gelman
et al., 1995). Our estimate of the coverage probability in the i-th cell is the mean of this
beta distribution:

Ĉ(i) = α(i)
α(i) + β(i) (2)

The variance (Equation 3) provides a measure of uncertainty in our estimate: A
lower variance corresponds to greater confidence.

V (i) = α(i)β(i)
(α(i) + β(i))2(α(i) + β(i) + 1) (3)

The key issue of the method is how the missed transmissions can be inferred. Let A
and B denote two consecutive received transmissions from a given vessel. If we knew
the exact path of the vessel between A and B, we would be able to infer the missed
transmissions from the AIS transmission rules, as discussed in the previous section (see
Figure 1).
Since we do not know the exact path, we create a set of random interpolated paths

from A to B. The procedure for making a random path (Peters and Hammond, 2011)
goes roughly as follows. If the time interval is shorter than a constant parameter τmin,
we assume that the vessel follows the shortest route at a constant speed. Otherwise, the
time interval is subdivided, by picking a random position X at a random time
coordinate within the interval (subject to various constraints), and the path creation
procedure calls itself recursively from A to X and from X to B. The case of a time
interval shorter than τmin terminates the recursion. The choice of τmin represents a
compromise: Decreasing τmin would have the benefit of giving the interpolated paths
more flexibility, but would also require more computation.

413ESTIMATING AIS COVERAGE FROM RECEIVED TRANSMISSIONSNO. 3

https://doi.org/10.1017/S0373463312000057 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463312000057


As well as τmin, other parameters of our interpolation method include the
maximum and preferred speeds of the ship; the minimum, peak and mean duration
of port stays; an index of the ships’ tendency to visit ports rather than sailing on
(the ‘landlust’); and a Boolean flag that permits or forbids immediate revisits to the
same port.
In general, the number of paths to generate is a matter of compromise between

better statistics and lower computational requirements. The longer the interval
between successive AIS reports, the more variability there is in the intervening voyage.
We deal with the greater variability by making the number of interpolated paths an
increasing function of the time interval; up to some pre-set maximum interval, beyond
which we deem it impractical even to attempt an interpolation. Thus, we introduce
two further parameters, τmax and Nmax. For a time interval longer than τmax, we make
no interpolations at all. For a time interval whose length T is longer than τmin but
shorter than τmax, the number of random paths we generate is the greatest integer that

is no greater than 1+ T − τmin

τmax − τmin
(Nmax − 1). For a time interval shorter than τmin, we

generate only one path, which as already noted simply follows the shortest route at a
constant speed.
Missed transmissions are inferred for each random path, but are given fractional

value: If there are N random paths in a given interval, then each inferred transmission
is given a weight of 1/N for purposes of counting the number of “misses”. Hence m(i),
the number of ‘misses’ in the i-th grid cell, is often not integer-valued. Nevertheless, we
base the coverage estimate on the beta distribution described above, using Equations
(2) and (3) without modification.
The method we use for inferring the missed transmissions for a given random

path is based on the discussion in Section 2 (see Figure 1) with one small change; in
order to avoid any possible conflict with the transmission schedule at the end of
the interval in question, we infer the missed transmissions by tracing the interpolated
path backwards in time. Figure 2 provides an example of such inference in the case
of a random interpolated path between two points (A and B) from which AIS
transmissions have been received. The positions of the inferred missed transmissions
are determined by applying the transmission rules (Table 1) to the path as
traced backwards from B to the end of the decimation period initiated by the
transmission at A.

Figure 2. Inferring missed transmissions from a randomly interpolated path. AIS transmissions are
received from points A and B. Between those points, an interpolated path consisting of five straight
segments is generated. The green marks represent the positions of the inferred missed
transmissions. The spacing is based on Table 1, except that here we follow the timeline
backwards from B to the end of the decimation period (red). The vessel is taken to be going faster
than 14 knots in the fourth segment (between X3 and X4) but not in the third or fifth.
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Though developed independently, our coverage estimation method resembles a
previously-outlined binomial approach (Lane et al., 2010). A major difference
between this previous work and our method is that in the former, only a single
interpolation, corresponding to the most direct route, is made in each gap, whereas we
account for the uncertainty inherent in interpolation by making multiple random
paths. The other known difference is in the prior distribution. Unfortunately the paper
by (Lane et al., 2010) does not specify their method sufficiently to make a direct
comparison in performance.

5. SIMULATION BASED TEST DATA. This paper uses simulated AIS
data to compare and evaluate coverage estimation methods in a situation where the
true coverage is known exactly. This section is devoted to a description of how the AIS
data sets were created. Figure 3 consists of a simple map of the situation, showing
three landmasses, two ports, and three AIS receivers. The area depicted in that figure
is 240 nautical miles (Nm) by 130 Nm. Figure 4 depicts the true coverage using a heat
map. For purposes of creating the true coverage in this simulation, there was no need
for a realistic model of coverage. In order to allow a wide range of coverage
probabilities to be represented within the geographical bounds of the area of interest,
we assumed that each of the three receivers had the same reception characteristics, and
we used the following (arbitrary) logistic model:

ln
p

1− p
= 3+ 0·03R− 0·004R2 − Λ (4)

In Equation (4), p is the reception probability at the receiver and R is the range to
the target in Nm. The indicator variable Λ was set to 1 if the vector from receiver to
target crossed any land, and to 0 otherwise. Equation (4) makes the range dependence

Figure 3. Scenario Map. Three landmasses are shown in grey. The locations of two ports and three
AIS receivers are also shown. The large rectangle shows the region in which the vessels started and
ended the simulation.
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of the reception probability roughly resemble the results of a study of reception quality
by the Australian Maritime Safety Authority (Cooper and Surendonk, 2008).
The surface depicted in Figure 4 is the probability that at least one of the three

receivers detects the transmission (assuming independent reception). To be more
precise, it represents the average reception probability over each of the 2 Nm grid cells.
That average was computed using a weighted average of the reception probabilities at
cell corners and at the cell midpoint. In that weighted average, the cell centre got four
times the weight of each corner, and any cell corners or midpoints that were on land
were excluded.
Our method for generating random paths between AIS reports (Peters and

Hammond, 2011) was used to simulate ship movements within the area shown in
Figure 3 and Figure 4. The former figure shows a rectangular region that represents a
zone of high vessel traffic. To create a random ship track and the resulting AIS data,
we did the following steps:

Step 1. Select start and end points at random in the water portions of the rectangle
in Figure 3.
Step 2. Attach a time stamp of March 25, 2011 04:24:12 to the start point and
make the end point 24 hours later.
Step 3. Connect the two points with a random track (using our interpolation
method and the parameters specified below).

Figure 4. True (simulated) AIS Coverage. Three landmasses are shown in grey. The water area is
partitioned into a grid of cells that are 2 Nm wide. Different colours are used to represent different
levels of AIS reception probability (p) over the cells, as shown in the legend below the map. Thus,
red areas indicate good coverage, blue areas indicate poor coverage and green areas are
intermediate.
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Step 4. Simulate the AIS transmissions along that random track according to the
(Class A) rules of Table 1.
Step 5. Determine which of the three receivers detected each transmission at
random using reception probabilities from Equation (4).
Step 6. Retain only those transmissions detected by at least one receiver.
Step 7. Decimate the retained transmissions with period r set to equal 5 minutes.

We repeated these seven steps 60 times to produce a data set containing the
received and decimated transmissions from 60 distinct ships. To introduce
additional replication, we produced ten such data sets (60 ships each), denoted S1

through S10.
The simulation region was designed to ensure that all combinations of high and low

traffic and high and low coverage were represented. The area near the top left receiver
(see Figure 3) has high coverage but low traffic. Areas near the other two receivers
have both high traffic and high coverage. The top right area has low coverage and low
traffic, and the strait in the middle has high traffic but low coverage. We suspected that
the different coverage estimation algorithms would have different relative perform-
ance in some of the four area types.
Our interpolation method (Peters and Hammond, 2011) is parameterized by the

maximum and preferred speeds of the ship (here 15 and 10 knots, respectively); by the
minimum, peak and mean duration of port stays (here 1 hour, 4 hours and 5 hours,
respectively); by an index of the ships’ tendency to visit ports rather than sailing on
(here the ‘landlust’ L=10, as a result of which 83·3% of ships visit port at least once, a
proportion that increases with increasing L); by a flag that permits or forbids
immediate revisits to the same port (here forbidden); and by the minimum time
interval τmin over which paths are considered random (here 15 minutes).

6. RESULTS. Our approach to understanding the differences between the
coverage estimation methods is twofold: we examined results in detail on one of the
data sets (S1) and we also looked at several average performance indices (averaged
over S1 through S10). In pursuing the latter, we were interested in the change in the
performance indices as a function of the number of ships used. Thus, we computed
coverage estimates using only the first 20 ships in each data set, then using the first 40
ships and lastly using all 60 ships.
Figure 5 gives a visual presentation of the AIS data in S1. Comparison of that figure

with Figure 4 shows that the areas with the best coverage do indeed have most of the
data.
In subsequent figures we present estimation results for the HPC and LIC methods.

Both coverage estimation methods have various configuration options and the
purpose of this section is to define what was used in each case. The values given in this
paragraph define the ‘base case’ configuration for each method. For the LIC method,
the configuration options are Δt=600 s and ΔA=2Nm (recall that ΔA is the grid cell
size). For the HPC, ΔA=2Nm as well, but there is no analogue for Δt. The
interpolation parameters were set to the same values used in simulation (see the last
paragraph of the previous section), and in addition, set τmax=24 hours and
Nmax=100. The true value of the decimation period (here r=300 s) is assumed to be
known. We examined the sensitivity of the results to several of these choices below.
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Figure 6 shows the LIC estimate on the first simulated data set. In this figure, we
have shown coverage results only in cells for which there are AIS data. When there are
no AIS data, the LIC estimator gives a coverage estimate of 0 (Lapinski and Isenor,
2011). The lack of AIS data, however, cannot be reliably attributed to a lack of
coverage, since it could also be that there was simply a lack of traffic. Thus, we only
evaluate the estimator where it has data and results are therefore constrained to the
range 0·5 4 Ĉ 4 1 (Equation 1).
Figure 7 shows the new (HPC) coverage estimate on a scale to facilitate comparison

both to the true coverage (Figure 4) and to the LIC estimate. Again, we have used
white for cells with no data, but in this case the data in question include inferred
missed reports as well as received reports. Note that the default value in the case of no
data is 0·5.
Figure 8 depicts the variance in the HPC estimate as a function of position.

Here, the blue areas correspond to the maximum value (0·125) of the variance,
which occurs only where there are no data (received or inferred). The variance can be
used as a tool to indicate where the HPC estimate should or should not be trusted. Our
use of white in Figure 7 represents a decision to distrust the estimate where the
variance is greater than or equal to 0·125. If desired, the threshold of trust can be set
more strictly.
In Figure 9, we plot the estimates in every grid cell for which there is at least one

received AIS report, based on all 60 ships from the first data set (S1). The estimated
value is on the vertical axis and the true value is on the horizontal axis. The plotted
points from an ideal estimator would fall along the diagonal line from (0,0) to (1,1).
Most of the plotted points from the HPC estimator can be seen to be distributed
roughly along this diagonal. The LIC estimator gives a value of unity for grid cells
covering the full range of true coverage values from 0 to 1.

rec 1

rec 2

rec 3

port A

port B

Figure 5. Plot of AIS report positions from the first simulated data set (S1). The scale (width
240Nm, height 130Nm), and the landmasses (grey) are the same as in Figure 4. Many of the
simulated ship tracks visit one of the two ports.
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Figure 6. LIC coverage estimate from the first simulated data set (S1). The scale (width 240Nm,
height 130Nm), and the landmasses (grey) are the same as in Figure 4. The colour scheme of the
estimate is also the same as in Figure 4, except that white areas indicate grid cells with no AIS
reports in them.

 

1.0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 7. HPC coverage estimate from the first simulated data set (S1). The scale (width 240Nm,
height 130Nm), and the landmasses (grey) are the same as in Figure 4. The colour scheme of the
estimate is also the same as in that figure, except that white areas indicate grid cells with no AIS
reports (whether received or inferred) in them.
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0.125 0.1125 0.1 0.0875 0.075 0.0625 0.05 0.0375 0.025 0.0125 0.

Figure 8. Variance in the results of the HPC coverage estimator, from the first simulated data set
(S1). The scale (width 240Nm, height 130Nm), and the landmasses (grey) are the same as in
Figure 4. The colour scheme is as shown in the legend below the map. Variance is highest in blue
areas, lowest in red areas and intermediate in green ones.

Figure 9. Comparison of estimated coverage to true coverage values. Each point represents the
results in one grid cell. Only the grid cells in which at least one AIS report was received are
included. This plot is based on the first data set (S1).
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The Mean Squared Error (MSE) from the set of points shown in Figure 9 is 0·017
for the HPC and 0·184 for the LIC estimator. A similar difference in performance held
for each of the ten data sets.
Figure 10 presents the MSE for the two methods, computed from the grid cells with

received AIS transmissions, averaged over all ten data sets. The difference in
performance between methods is statistically significant (the Wilcoxon signed rank
test gives a P-value of 0·001). In addition to the base case, we ran the results with some
parameters changed. Both methods were tested with ΔA=5Nm; the LIC method was
tested with Δt=480 s; and the HPC method was tested with the ship speed parameters
changed (the maximum and preferred speeds set to 20 knots and 15 knots,
respectively) and again with the port stay parameters changed (the mean and peak
port stay lengths changed to 9 hours and 7 hours, respectively). The results of the latter
two parameter changes in the HPC method are indistinguishable from those of the
base case in the figure.
Figure 10 reveals a counter-intuitive result for the LIC method. As the number of

ships increases (as you get more AIS data) the MSE for this method gets worse. This
result, however, should be seen in light of the fact that the estimation area, over which
the MSE is being computed, is also increasing as a function of the number of ships.
Over a fixed set of grid cells, the LIC MSE values do improve with more data (result
not shown), though only slowly. In contrast to the LIC, when given more data, the

Figure 10. Mean Squared Error (MSE), averaged over the ten data sets, for each of the three
coverage estimators under different configuration options. HPC results are shown in tints of red,
and LIC results in tints of blue.
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HPC is able to improve estimates fast enough to keep pace with the expanding
estimation area, so that the MSE improves overall.
We attribute HPC’s performance advantage over the LIC largely to its use of

information on how AIS transponders work (Table 1). If this attribution is correct,
then any changes to the way the data arise that break the expectations resulting from
Table 1 should reduce HPC performance. We investigated two such changes:
transponders being turned off and unknown decimation history. It turns out that one
of these has a dramatic effect.
The HPC method might be vulnerable to vessels turning off their AIS transponders

because it would attribute the resulting gap to missed transmissions. Thus, we
examined the impact of having the first ship in each data set turn off the AIS
transponder for two hours starting from seven hours into the simulation. Table 2’s
second row (after the header) gives the results of this estimation scenario for
comparison with the base case results (row one), showing a small deterioration in
MSE in the third decimal place. Thus the effects of a single two-hour hiatus are
relatively small. Not surprisingly, the effects of turning off a transponder are greatest
when fewer vessels are used in estimation.
The last three rows of Table 2 examine the effects of cascading decimation. To

compute these results, we redid the decimation of the simulated data sets (S1 to S10).
Instead of applying a single five minute decimation period, as in previous results, we
applied first a two minute decimation followed by a five minute decimation. Row four
of the table shows that the effects of such cascading decimation can be very
detrimental to HPC. Performance is worst if, in ignorance of the decimation history,
HPC estimates as if the true decimation period were five minutes (the observed
minimum gap between transmissions). Note that column 2 of the table shows the
decimation period used in estimation.
To see why performance is degraded in row four of Table 2, consider a grid cell

where the true coverage is perfect. In such a cell, the cascading decimation scheme
would give an interval between retained reports of six minutes. Comparing this gap to
the five minute period used in estimation gives a full minute of inferred missed reports
(at least six such reports if the ship is not at dock). With six ‘misses’ for each ‘hit’, the
estimate in such a cell would be about 1/7, which compares poorly to 1. On the other

Table 2. This table examines the effects of various data and estimation scenarios on the MSE for the HPC
method. Results are averaged over the 10 data sets, and shown in three columns according to the number of
ships used in estimation. MSE results were evaluated for grid cells in which there was at least one received
AIS report.

Sensitivity Analyses MSE Results

Data Scenario Estimation Scenario 20 ships 40 ships 60 ships

5 min. decimation 5min. Decimation 0·023 0·019 0·015
5min. decimation but first ship disables
transponder for 2 hours

5 min. decimation 0·028 0·021 0·017

5min. decimation 10min. Decimation 0·114 0·115 0·113
Cascading 2 min., 5 min. decimation 5min. Decimation 0·323 0·305 0·290
Cascading 2 min., 5 min. decimation 7min. Decimation 0·062 0·058 0·054
Cascading 2 min., 5 min. decimation 10min. Decimation 0·109 0·107 0·105
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hand, where the true coverage is poor enough to give 5 minute gaps between received
transmissions, the estimator could produce a result near 1. Cascading decimation can
break our natural expectation that longer intervals between reports are indicative of
poor coverage.
Had the true cascading decimation history been known (i.e., two minutes followed

by five minutes), HPC should have estimated as if the (single) decimation period was
7 minutes to recover nearly all of its performance, as shown in the second last row of
Table 2. This is because we can only infer that there must have been a missed
transmission after seven minutes have passed. In general, if there has been cascading
decimation with periods r1 followed by r2, then HPC should estimate as if the
decimation was r1+ r2.
If the decimation history is uncertain, precautions can be taken to avoid the poor

performance shown in row four of Table 2. In general, if the minimum interval between
reports is r and the decimation history is completely unknown, we recommend
estimating as if the decimation was 2r. We arrived at this by noting that the worst
effects of cascading decimation occur when the first period is just slightly less than the
second. This conservative option will protect against worst case performance, at the
cost of reduced performance in the best case, as shown in rows three and six of Table 2.

7. DISCUSSION. This paper presented a new Automatic Identification System
(AIS) coverage estimation algorithm (HPC) that draws inference about missed
transmissions based on knowledge of how AIS transponders work. HPC was
compared to the Lapinski-Isenor (LIC) method on simulated data. This comparison
showed that HPC has significantly lower Mean Squared Error (MSE) (Figure 10) and
that it estimates effectively over a wider area (compare Figure 6 to Figure 7). The HPC
method also provides a measure of the uncertainty in its results (see Figure 8 and
related discussion), so that the user can judge where the results should or should not be
trusted. These improvements come at the cost of increased computational load.
Our claim to improved performance is vulnerable to all the usual limitations of

simulation studies. In principle, the difference between the real processes and the
simulated ones could prove to be important enough to change the results, so we
discuss aspects of this objection below.We tried to anticipate real situations that might
reduce HPC performance. We looked at four potential vulnerabilities: HPC might be
more vulnerable to transponders being turned off (or other AIS misuse), HPC does
not consider traffic and manoeuvrability constraints in interpolation, HPC has more
parameters to set and, finally, we looked at cascading decimation.
If vessels shut off their AIS transponders while the AIS reports to be used in

coverage estimation are being collected, HPC can be expected to be affected since it
will attribute the time gap (while the device is off) to missed transmissions (many of
them), introducing a potentially strong downward bias in nearby coverage estimates.
Clearly, HPC has to be very careful not to interpolate over time intervals where vessels
are at dock because vessels are most likely to shut off their AIS at dockside.
Fortunately, recognizing such dockside intervals is straightforward. In the results
above, we showed that one vessel could disable its transponder for two hours without
much reduction in the HPC method’s performance (MSE increased by 0·002).
HPC inherits, from its interpolation method, an assumption that the movements of

ships are limited primarily by their maximum speed and not by such things as traffic
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density or manoeuvrability constraints. Again, we can anticipate the likely bias. If
ships actually move much more slowly than the interpolator thinks (because they are
constrained by traffic) then the interpolator will both create more missed
transmissions than there should be (because ships transmit more when they move
faster – recall Table 1) and spread these over a wider area. We would predict a small
downward bias in the coverage estimate. One of our sensitivity analyses examined
exactly this and found but a tiny change in MSE (in the fourth decimal place) when
there was 5 knots of error in the maximum and preferred speeds. Thus, a realistic error
in the assumed ship speed is unlikely to have much effect.
HPC’s interpolation model also includes parameters that represent assumptions

about the duration of port stays, and these parameters may also induce bias. Changing
these parameters also had a small effect on the MSE (in the third decimal place),
indicating that the results are insensitive within the ranges tested.
There was something that gave HPC trouble, however, and that was cascading

decimation. The problem was especially serious if HPC was implemented as if
cascading decimation was not a possibility. Unfortunately, with AIS distributors like
the Maritime Safety and Security Information System (MSSIS), cascading decimation
is possible. The usual practice of MSSIS is to decimate the data they distribute to end
users with a default period of five minutes. They will, however, refrain from applying
this decimation on request, so avoiding cascading decimation may be a simple matter
of making the appropriate arrangements. Where the problem is unavoidable, but the
decimation history is known, then HPC’s performance advantage can be largely
recovered (Table 2). Where the decimation history is unknown, HPC can be
configured so as to be robust against cascading decimation, at a potentially acceptable
cost to best case performance. The key lesson here is that knowledge about what
processes have been applied to the data is valuable to empirical coverage estimators.
We recommend that distributors of AIS data, like MSSIS, share meta-data about
what decimation has been applied with their users. We also suggest they share meta-
data on whether reports come from mobile or fixed sources. Neither recommendation
would significantly compromise classified sources. Both would facilitate the empirical
estimation of coverage and ensure that HPC could provide coverage estimates of
sufficient quality to support reliable anomaly detection. These recommendations
might be more broadly applied, if they were endorsed by Helsinki Commission Expert
Working Group (HELCOM, 2011).
Current empirical AIS coverage estimation methods have been unable to provide

true statistical estimates of coverage because they lack knowledge of the missed
transmissions. By including inferred missed transmissions, HPC has been able to
provide a proper statistical estimate, with appropriate accounting for uncertainty. This
capability in turn opens up the opportunity for a broad variety of decision aids in
maritime domain awareness, especially anomaly detection.
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