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Abstract
If a sequence indexed by nonnegative integers satisfies a linear recurrence without constant terms, one can extend
the indices of the sequence to negative integers using the recurrence. Recently, Cigler and Krattenthaler showed that
the negative version of the number of bounded Dyck paths is the number of bounded alternating sequences. In this
paper, we provide two methods to compute the negative versions of sequences related to moments of orthogonal
polynomials. We give a combinatorial model for the negative version of the number of bounded Motzkin paths. We
also prove two conjectures of Cigler and Krattenthaler on reciprocity between determinants.
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1. Introduction

Suppose that there is a sequence ( 𝑓𝑛)𝑛∈Z indexed by all integers. If both | 𝑓𝑛 | and | 𝑓−𝑛 | count some
combinatorial objects of size 𝑛 ≥ 1, such a result is called a combinatorial reciprocity theorem, a term
first used by Stanley [15]. There are many combinatorial reciprocity theorems; three notable examples
are when 𝑓𝑛 is the binomial coefficient

(𝑛
𝑘

)
, the chromatic polynomial 𝜒𝐺 (𝑛) of a graph G and the Ehrhart

polynomial Ehr𝑃 (𝑛) of a lattice polytope P. For more details on combinatorial reciprocity theorems,
see the book by Beck and Sanyal [1].

Suppose now that we have a sequence ( 𝑓𝑛)𝑛≥0 indexed by nonnegative integers. If the sequence
satisfies a homogeneous linear recurrence relation, then one can extend the indices of this sequence
to negative integers ( 𝑓−𝑛)𝑛≥1 using the recurrence. Recently, Cigler and Krattenthaler [3] showed that,
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for a fixed integer k, the negative counterpart of the number of Dyck paths from (0, 0) to (2𝑛, 0) with
bounded height 2𝑘 − 1 is the number of alternating sequences 𝑎1 ≤ 𝑎2 ≥ 𝑎3 ≤ · · · ≥ 𝑎2𝑛−1 of positive
integers at most k. They also showed many other interesting results, including a reciprocity between
determinants of these numbers and their connection with orthogonal polynomials.

In this paper, motivated by the work of Cigler and Krattenthaler [3], we find combinatorial reciprocity
theorems for more general sequences related to moments of orthogonal polynomials. In particular, we
give two methods to study such negative sequences. The first method uses continued fractions and the
second one uses matrix inverses. Our first method is new, and the key idea of the second method is due
to Hopkins and Zaimi [8]. We also prove two conjectures on reciprocity between determinants proposed
by Cigler and Krattenthaler [3, Conjectures 50, 53]. Before stating our results, we first review basic
results in orthogonal polynomials and define some notation.

A sequence (𝑃𝑛 (𝑥))𝑛≥0 of polynomials is called an orthogonal polynomial sequence1 with respect
to a linear functional L if for all 𝑚, 𝑛 ≥ 0, we have deg(𝑃𝑛 (𝑥)) = 𝑛 and

L(𝑃𝑚 (𝑥)𝑃𝑛 (𝑥)) = 𝛿𝑚,𝑛𝐾𝑛, 𝐾𝑛 ≠ 0. (1)

In this case, we will simply say that 𝑃𝑛 (𝑥) are orthogonal polynomials (with respect to L).
It is well known [2, Theorem 4.1, p.18] that monic orthogonal polynomials 𝑃𝑛 (𝑥) satisfy a three-term

recurrence relation:

𝑃𝑛+1 (𝑥) = (𝑥 − 𝑏𝑛)𝑃𝑛 (𝑥) − 𝜆𝑛𝑃𝑛−1 (𝑥), 𝑛 ≥ 0, 𝑃−1 (𝑥) = 0, 𝑃0(𝑥) = 1, (2)

for some sequences 𝒃 = (𝑏𝑛)𝑛≥0 and 𝝀 = (𝜆𝑛)𝑛≥1 with 𝜆𝑛 ≠ 0. Conversely, Favard’s theorem [2,
Theorem 4.4, p.21] states that if monic polynomials 𝑃𝑛 (𝑥) satisfy (2) for some sequences 𝒃 = (𝑏𝑛)𝑛≥0
and 𝝀 = (𝜆𝑛)𝑛≥1 with 𝜆𝑛 ≠ 0, then 𝑃𝑛 (𝑥) are orthogonal polynomials with respect to a unique linear
function L satisfying (1) and L(1) = 1.

Let 𝑃𝑛 (𝑥; 𝒃, 𝝀) denote the polynomials satisfying (2). Then by Favard’s theorem, these are orthogonal
polynomials with respect to a unique linear functional L. The moment 𝜇𝑛 (𝒃, 𝝀) of the orthogonal
polynomials 𝑃𝑛 (𝑥; 𝒃, 𝝀) is defined by 𝜇𝑛 (𝒃, 𝝀) = L(𝑥𝑛).

Viennot [18] found the following combinatorial interpretation for the moment:

L(𝑥𝑛) = 𝜇𝑛 (𝒃, 𝝀) =
∑

𝑝∈Mot𝑛

wt(𝑝; 𝒃, 𝝀),

where Mot𝑛 is the set of Motzkin paths from (0, 0) to (𝑛, 0) and wt(𝑝; 𝒃, 𝝀) is a weight of a Motzkin
path 𝑝 depending on the sequences 𝒃 and 𝝀. See Section 2 for the precise definitions.

We define the bounded moments 𝜇≤𝑘
𝑛 (𝒃, 𝝀) by

𝜇≤𝑘
𝑛 (𝒃, 𝝀) :=

∑
𝑝∈Mot≤𝑘𝑛

wt(𝑝; 𝒃, 𝝀),

where Mot≤𝑘𝑛 (𝒃, 𝝀) is the set of Motzkin paths from (0, 0) to (𝑛, 0) that stay weakly below the line
𝑦 = 𝑘 . Then the moments are the limits of the bounded moments:

L(𝑥𝑛) = 𝜇𝑛 (𝒃, 𝝀) = lim
𝑘→∞

𝜇≤𝑘
𝑛 (𝒃, 𝝀).

For certain choices of 𝒃, 𝝀, and 𝑘 , the sequence (𝜇≤𝑘
𝑛 (𝒃, 𝝀))𝑛≥0 satisfies a homogeneous linear

recurrence relation so that its negative version (𝜇≤𝑘
−𝑛 (𝒃, 𝝀))𝑛≥1 is defined. In this case, we call 𝜇≤𝑘

−𝑛 (𝒃, 𝝀)
the negative (bounded) moments of the orthogonal polynomials 𝑃𝑛 (𝑥; 𝒃, 𝝀).

1In this paper, we only consider the ‘formal’ orthogonality in the sense that we do not require the positive-definiteness of the
linear functional L, which is often assumed in the literature on orthogonal polynomials.
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Cigler and Krattenthaler [3] showed the following combinatorial reciprocity theorem for the number
𝜇≤2𝑘−1

2𝑛 (0, 1) of bounded Dyck paths, where 0 = (0, 0, . . . ) and 1 = (1, 1, . . . ).

Theorem 1.1 [3, Corollary 13]. For positive integers 𝑛 and 𝑘 ,

𝜇≤2𝑘−1
−2𝑛 (0, 1) = | Alt≤𝑘2𝑛−1 |,

where Alt≤𝑘𝑛 is the set of alternating sequences (𝑎1, . . . , 𝑎𝑛) of integers such that 𝑎1 ≤ 𝑎2 ≥ 𝑎3 ≤ · · ·

and 1 ≤ 𝑎𝑖 ≤ 𝑘 for all 𝑖.

Cigler and Krattenthaler [3] proved Theorem 1.1 using generating functions. We give a new proof of
this theorem using continued fractions. To do this, we introduce a notion of ℓ-peak-valley sequences in
Definition 3.1 and give a simple bijection between alternating sequences and 2-peak-valley sequences.

Using continued fractions, we show in Theorem 3.5 that 𝜇≤2𝑘−1
−2𝑛 (0, 𝝀) is a weight-generating function

for 2-peak-valley sequences with some conditions, which is equivalent to [3, Corollary 32]. Our method
also applies to Motzkin paths. In Theorems 4.2 and 4.5, we show that if 𝒃 and 𝝀 satisfy 𝜆𝑖 = 𝑏𝑖−1𝑏𝑖 for
all 𝑖 ≥ 1, then 𝜇≤3𝑘−1

−𝑛 (𝒃, 𝝀) and 𝜇≤3𝑘
−𝑛 (𝒃, 𝝀) are weight-generating functions for 3-peak-valley sequences

with some conditions.
Viennot (see [18, Proposition 17, p. I.15] or [19, (5)]) also showed that the generalized moment

𝜇𝑛,𝑟 ,𝑠 (𝒃, 𝝀) := L(𝑥𝑛𝑃𝑟 (𝑥; 𝒃, 𝝀)𝑃𝑠 (𝑥; 𝒃, 𝝀)) has a similar combinatorial expression

𝜇𝑛,𝑟 ,𝑠 (𝒃, 𝝀) =
∑

𝑝∈Mot𝑛,𝑟,𝑠

wt(𝑝; 𝒃, 𝝀),

where Mot𝑛,𝑟 ,𝑠 (𝒃, 𝝀) is the set of Motzkin paths from (0, 𝑟) to (𝑛, 𝑠). We define the generalized bounded
moments 𝜇≤𝑘

𝑛,𝑟 ,𝑠 (𝒃, 𝝀) by

𝜇≤𝑘
𝑛,𝑟 ,𝑠 (𝒃, 𝝀) :=

∑
𝑝∈Mot≤𝑘𝑛,𝑟,𝑠

wt(𝑝; 𝒃, 𝝀),

where Mot≤𝑘𝑛,𝑟 ,𝑠 (𝒃, 𝝀) is the set of Motzkin paths from (0, 𝑟) to (𝑛, 𝑠) that stay weakly below the line
𝑦 = 𝑘 .

Cigler and Krattenthaler [3] showed that Theorem 1.1 extends nicely to generalized bounded moments
as follows.

Theorem 1.2 [3, Corollary 12]. For positive integers 𝑛, 𝑘, 𝑟, 𝑠 with 1 ≤ 𝑟, 𝑠 ≤ 𝑘 , we have

(−1)𝑟+𝑠𝜇≤2𝑘−1
−2𝑛,2𝑟−2,2𝑠−2(0, 1) = | Alt≤𝑘2𝑛+1,𝑟 ,𝑠 |,

(−1)𝑟+𝑠𝜇≤2𝑘−1
−2𝑛+1,2𝑟−2,2𝑠−1(0, 1) = | Alt≤𝑘2𝑛,𝑟 ,𝑠 |,

where Alt≤𝑘𝑛,𝑟 ,𝑠 is the set of sequences (𝑎1, . . . , 𝑎𝑛) of integers such that 𝑎1 ≤ 𝑎2 ≥ 𝑎3 ≤ · · · and
1 ≤ 𝑎𝑖 ≤ 𝑘 for all 𝑖 and such that 𝑎1 = 𝑟 and 𝑎𝑛 = 𝑠.

In Theorems 5.5 and 5.8, we show that if 𝒃 and 𝝀 satisfy 𝜆𝑖 = 𝑏𝑖−1𝑏𝑖 for all 𝑖 ≥ 1, then 𝜇≤3𝑘−1
−𝑛,𝑟 ,𝑠 (𝒃, 𝝀)

and 𝜇≤3𝑘
−𝑛,𝑟 ,𝑠 (𝒃, 𝝀) are weight-generating functions for 3-peak-valley sequences with some conditions.

Cigler and Krattenthaler [3] showed the following reciprocity theorem relating determinants whose
entries are 𝜇≤2𝑘−1

𝑛 (0, 1) and their negative versions.

Theorem 1.3 [3, Theorem 15]. For all nonnegative integers 𝑛, 𝑘, 𝑚, we have

det
(
𝜇≤2𝑘+2𝑚−1

2𝑛+2𝑖+2 𝑗+4𝑚−2(0, 1)
) 𝑘−1

𝑖, 𝑗=0
= det

(
𝜇≤2𝑘+2𝑚−1
−2𝑛−2𝑖−2 𝑗 (0, 1)

)𝑚−1

𝑖, 𝑗=0
.

Cigler and Krattenthaler [3] proposed the following two conjectures.
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Theorem 1.4 [3, Conjecture 50]. For all nonnegative integers 𝑛, 𝑘, 𝑚, we have

det

(2𝑘+2𝑚−1∑
𝑠=0

𝜇≤2𝑘+2𝑚−1
𝑛+𝑖+ 𝑗+2𝑚−1,0,𝑠 (0, 1)

) 𝑘−1

𝑖, 𝑗=0

= (−1)
(
(𝑘2)+(

𝑚
2 )

)
(𝑛+1) det

(			Alt≤𝑘+𝑚𝑛+𝑖+ 𝑗

			)𝑚−1

𝑖, 𝑗=0
.

Theorem 1.5 [3, Conjecture 53]. For all positive integers 𝑛, 𝑘, 𝑚 with 𝑘 + 𝑚 � 2 (mod 3), we have

det
(
𝜇≤𝑘+𝑚−1
𝑛+𝑖+ 𝑗+2𝑚−2(1, 1)

) 𝑘−1

𝑖, 𝑗=0

= (−1)𝑛 � (𝑘+𝑚)/3� det
(
𝜇≤𝑘+𝑚−1
−𝑛−𝑖− 𝑗 (1, 1)

)𝑚−1

𝑖, 𝑗=0
.

In Section 6, we prove a general reciprocity theorem (Theorem 6.1). In Section 7, we prove the above
two conjectures using Theorem 6.1. In Section 8, we show that Theorem 6.1 also implies the weighted
version of Theorem 1.3 due to Cigler and Krattenthaler [3, Theorem 34]. We then show in Theorem 8.5
that this weighted version gives a bounded and multivariate generalization of the Morales–Pak–Panova
ex-conjecture [14] on reverse plane partitions, which has been proved by Hwang et al. [9] and Guo et al.
[7], independently.

In the final section, Section 9, we consider the negative version of the number of bounded Schröder
paths and the negative moments of Laurent biorthogonal polynomials.

2. Preliminaries

In this section, we give some definitions related to negative moments of orthogonal polynomials and
prove their basic properties.

We say that a sequence ( 𝑓𝑛)𝑛≥0 satisfies a homogeneous linear recurrence relation if there exist a
positive integer 𝑘 and constants 𝑟1, . . . , 𝑟𝑘 with 𝑟𝑘 ≠ 0 such that for all 𝑛 ≥ 𝑘 ,

𝑓𝑛 = 𝑟1 𝑓𝑛−1 + · · · + 𝑟𝑘 𝑓𝑛−𝑘 . (3)

In this case, we can uniquely extend the sequence 𝑓𝑛 to all integers 𝑛 by requiring that (3) holds for all
𝑛 ∈ Z. Therefore, whenever a sequence ( 𝑓𝑛)𝑛≥0 satisfies a homogeneous linear recurrence relation, we
can also consider the negatively indexed sequence ( 𝑓−𝑛)𝑛≥1.

It is not hard to check that the ‘negative of negative’ of a sequence is itself in the sense that if we
write 𝑓 = ( 𝑓𝑛)𝑛≥0 and 𝑓 = ( 𝑓−𝑛)𝑛≥0, then 𝑓 = 𝑓 .

The following well-known lemma is useful when we study negatively indexed sequences.
Lemma 2.1 [16, Theorem 4.1.1]. A sequence ( 𝑓𝑛)𝑛≥0 satisfies a homogeneous linear recurrence relation
if and only if ∑

𝑛≥0
𝑓𝑛𝑥

𝑛 =
𝑃(𝑥)

𝑄(𝑥)

for some polynomials 𝑃(𝑥) and 𝑄(𝑥) with deg(𝑃(𝑥)) < deg(𝑄(𝑥)) and 𝑄(0) ≠ 0. Moreover, in this
case, we have ∑

𝑛≥1
𝑓−𝑛𝑥

𝑛 = −
𝑃(1/𝑥)
𝑄(1/𝑥)

,

as rational functions.
In this paper, a lattice path is a finite sequence 𝑝 = (𝑝0, 𝑝1, . . . , 𝑝𝑛) of points in Z × Z≥0. Each

𝑆𝑖 = (𝑥𝑖 − 𝑥𝑖−1, 𝑦𝑖 − 𝑦𝑖−1), 1 ≤ 𝑖 ≤ 𝑛, is called a step of 𝑝. If the starting point 𝑝0 is fixed, we will often
identify the lattice path 𝑝 with the sequence (𝑆1, 𝑆2, . . . , 𝑆𝑛) of its steps.
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A Motzkin path is a lattice path in which every step is an up step 𝑈 = (1, 1), a horizontal step
𝐻 = (1, 0) or a down step 𝐷 = (1,−1). We denote by Mot𝑛,𝑟 ,𝑠 the set of Motzkin paths from (0, 𝑟) to
(𝑛, 𝑠). Let Mot≤𝑘𝑛,𝑟 ,𝑠 be the set of Motzkin paths in Mot𝑛,𝑟 ,𝑠 that lie weakly below the line 𝑦 = 𝑘 . We also
define Mot𝑛 = Mot𝑛,0,0 and Mot≤𝑘𝑛 = Mot≤𝑘𝑛,0,0.

Throughout this paper, we use the following notation:

𝒃 = (𝑏𝑛)𝑛≥0 = (𝑏0, 𝑏1, . . . ),

𝝀 = (𝜆𝑛)𝑛≥1 = (𝜆1, 𝜆2, . . . ),

𝒃2 = (𝑏𝑛−1𝑏𝑛)𝑛≥1 = (𝑏0𝑏1, 𝑏1𝑏2, . . . ),

0 = (0, 0, . . . ),
1 = (1, 1, . . . ).

Definition 2.2. The weight wt(𝜋; 𝒃, 𝝀) of a Motzkin path 𝜋 (with respect to 𝒃 and 𝝀) is defined to be
the product of 𝑏𝑖 for each horizontal step starting at a point with 𝑦-coordinate 𝑖 and 𝜆𝑖 for each down
step starting at a point with 𝑦-coordinate 𝑖. We define

𝜇𝑛,𝑟 ,𝑠 (𝒃, 𝝀) =
∑

𝜋∈Mot𝑛,𝑟,𝑠

wt(𝜋; 𝒃, 𝝀),

𝜇≤𝑘
𝑛,𝑟 ,𝑠 (𝒃, 𝝀) =

∑
𝜋∈Mot≤𝑘𝑛,𝑟,𝑠

wt(𝜋; 𝒃, 𝝀),

𝜇𝑛 (𝒃, 𝝀) = 𝜇𝑛,0,0 (𝒃, 𝝀),

𝜇≤𝑘
𝑛 (𝒃, 𝝀) = 𝜇≤𝑘

𝑛,0,0 (𝒃, 𝝀).

Recall that 𝑃𝑛 (𝑥; 𝒃, 𝝀), 𝑛 ≥ 0, are the orthogonal polynomials defined by the three-term recurrence
in (2).

Definition 2.3. The inverted polynomial of 𝑃𝑛 (𝑥; 𝒃, 𝝀) is defined by 𝑃∗
𝑛 (𝑥; 𝒃, 𝝀) = 𝑥𝑛𝑃𝑛 (1/𝑥; 𝒃, 𝝀). We

also define

𝛿𝑃𝑛 (𝑥; 𝒃, 𝝀) = 𝑃𝑛 (𝑥; 𝛿𝒃, 𝛿𝝀),
𝛿𝑃∗

𝑛 (𝑥; 𝒃, 𝝀) = 𝑃∗
𝑛 (𝑥; 𝛿𝒃, 𝛿𝝀),

where, for a sequence 𝒔 = (𝑠𝑛)𝑛≥0, we denote 𝛿𝒔 = (𝑠𝑛+1)𝑛≥0.

The main focus of this paper is to study the negative versions of 𝜇≤𝑘
𝑛,𝑟 ,𝑠 (𝒃, 𝝀).

Definition 2.4. Let 𝑘, 𝑟, 𝑠 be fixed integers. If the sequence 𝜇≤𝑘
𝑛,𝑟 ,𝑠 (𝒃, 𝝀) for 𝑛 = 0, 1, . . . satisfies a

homogeneous linear recurrence relation, then we define 𝜇≤𝑘
−𝑛,𝑟 ,𝑠 (𝒃, 𝝀) for 𝑛 = 1, 2, . . . in the unique way

so that the sequence 𝜇≤𝑘
𝑛,𝑟 ,𝑠 (𝒃, 𝝀) for all 𝑛 ∈ Z satisfies the recurrence. We call 𝜇≤𝑘

−𝑛 (𝒃, 𝝀) := 𝜇≤𝑘
−𝑛,0,0 (𝒃, 𝝀)

the negative moments of the orthogonal polynomials 𝑃𝑛 (𝑥; 𝒃, 𝝀).

Now we prove some basic properties of the (generalized) negative moments 𝜇≤𝑘
−𝑛,𝑟 ,𝑠 (𝒃, 𝝀).

Viennot [18, Ch. V, (27)] found the following generating function for 𝜇≤𝑘
𝑛,𝑟 ,𝑠 (𝒃, 𝝀).

Lemma 2.5. Let 𝑟, 𝑠 and 𝑘 be integers with 0 ≤ 𝑟, 𝑠 ≤ 𝑘 . If 𝑟 ≤ 𝑠, then

∑
𝑛≥0

𝜇≤𝑘
𝑛,𝑟 ,𝑠 (𝒃, 𝝀)𝑥

𝑛 =
𝑥𝑠−𝑟𝑃∗

𝑟 (𝑥; 𝒃, 𝝀)𝛿𝑠+1𝑃∗
𝑘−𝑠 (𝑥; 𝒃, 𝝀)

𝑃∗
𝑘+1(𝑥; 𝒃, 𝝀)

. (4)
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If 𝑟 > 𝑠, then ∑
𝑛≥0

𝜇≤𝑘
𝑛,𝑟 ,𝑠 (𝒃, 𝝀)𝑥

𝑛 =
𝑃∗
𝑠 (𝑥; 𝒃, 𝝀)𝛿𝑟+1𝑃∗

𝑘−𝑟 (𝑥; 𝒃, 𝝀)
𝑃∗
𝑘+1 (𝑥; 𝒃, 𝝀)

𝑟∏
𝑖=𝑠+1

𝜆𝑖 . (5)

By Lemmas 2.1 and 2.5, we can also find the generating function for 𝜇≤𝑘
−𝑛,𝑟 ,𝑠 (𝒃, 𝝀).

Proposition 2.6. Let 𝑟, 𝑠 and 𝑘 be integers with 0 ≤ 𝑟, 𝑠 ≤ 𝑘 . Suppose that 𝜇≤𝑘
−𝑛,𝑟 ,𝑠 (𝒃, 𝝀) is well-defined

for 𝑛 ≥ 1. If 𝑟 ≤ 𝑠, then ∑
𝑛≥1

𝜇≤𝑘
−𝑛,𝑟 ,𝑠 (𝒃, 𝝀)𝑥

𝑛 = −
𝑥𝑃𝑟 (𝑥; 𝒃, 𝝀)𝛿𝑠+1𝑃𝑘−𝑠 (𝑥; 𝒃, 𝝀)

𝑃𝑘+1(𝑥; 𝒃, 𝝀)
. (6)

If 𝑟 > 𝑠, then ∑
𝑛≥1

𝜇≤𝑘
−𝑛,𝑟 ,𝑠 (𝒃, 𝝀)𝑥

𝑛 = −
𝑥𝑟−𝑠+1𝑃𝑠 (𝑥; 𝒃, 𝝀)𝛿𝑟+1𝑃𝑘−𝑟 (𝑥; 𝒃, 𝝀)

𝑃𝑘+1 (𝑥; 𝒃, 𝝀)

𝑟∏
𝑖=𝑠+1

𝜆𝑖 . (7)

Using Flajolet’s combinatorial theory of continued fractions [5], Viennot [18] showed that∑
𝑛≥0

𝜇≤𝑘
𝑛 (𝒃, 𝝀)𝑥𝑛 =

1

1 − 𝑏0𝑥 −
𝜆1𝑥

2

1 − 𝑏1𝑥 −
𝜆2𝑥

2

1 − 𝑏2𝑥 − . . . −
𝜆𝑘𝑥

2

1 − 𝑏𝑘𝑥

. (8)

There is a similar continued fraction expression for the generating function for 𝜇≤𝑘
−𝑛 (𝒃, 𝝀).

Proposition 2.7. If (𝜇≤𝑘
−𝑛 (𝒃, 𝝀))𝑛≥1 is defined, we have∑

𝑛≥1
𝜇≤𝑘
−𝑛 (𝒃, 𝝀)𝑥

𝑛 =
− 𝑥

𝑥 − 𝑏0 −
𝜆1

𝑥 − 𝑏1 −
𝜆2

𝑥 − 𝑏2 − . . . −
𝜆𝑘

𝑥 − 𝑏𝑘

.

Proof. By Lemma 2.1 and (8),∑
𝑛≥1

𝜇≤𝑘
−𝑛 (𝒃, 𝝀)𝑥

𝑛 =
− 1

1 − 𝑏0𝑥−1 −
𝜆1𝑥

−2

1 − 𝑏1𝑥−1 −
𝜆2𝑥

−2

1 − 𝑏2𝑥−1 − . . . −
𝜆𝑘𝑥

−2

1 − 𝑏𝑘𝑥−1

.

Multiplying 𝑥 to the numerator and the denominator for each fraction, we obtain the desired formula. �

For the rest of this paper, we mainly consider the bounded moments 𝜇≤𝑘
𝑛,𝑟 ,𝑠 (𝒃, 𝝀) and their negatives

𝜇≤𝑘
−𝑛,𝑟 ,𝑠 (𝒃, 𝝀) when 𝒃 = 0 or 𝝀 = 𝒃2. The choice of 𝝀 satisfying 𝝀 = 𝒃2 becomes more natural if we define
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the weight of a Motzkin path using ‘points’ instead of ‘steps’ as follows: the point-weight pwt(𝜋; 𝒃) of
a Motzkin path 𝜋 ∈ Mot𝑛,𝑟 ,𝑠 is defined by

pwt(𝜋; 𝒃) =
∏

(𝑖, 𝑗) ∈𝜋

𝑏 𝑗 .

If 𝝀 = 𝒃2, there is a simple relation between the usual weight wt(𝜋; 𝒃, 𝒃2) and the point-weight
pwt(𝜋; 𝒃).

Lemma 2.8. For 𝜋 ∈ Mot𝑛,𝑟 ,𝑠 , we have

wt(𝜋; 𝒃, 𝒃2) =
𝑏0 · · · 𝑏𝑟−1
𝑏0 · · · 𝑏𝑠

pwt(𝜋; 𝒃).

Proof. We first show this for 𝑟 = 𝑠 = 0. Suppose 𝜏 ∈ Mot𝑛,0,0. Since each down step of 𝜏 corresponds
to a unique up step, we can redistribute the weight 𝑏𝑖−1𝑏𝑖 attached to a down step ending at height 𝑖 − 1
in such a way that the weight of the down step is 𝑏𝑖−1 and the weight of its corresponding up step ending
at height 𝑖 is 𝑏𝑖 . Therefore wt(𝜏; 𝒃, 𝒃2) is equal to the product of the new weights of the steps, where the
weight of each step ending at height 𝑖 is given by 𝑏𝑖 . This is equivalent to assigning the weight 𝑏 𝑗 for
each lattice point (𝑖, 𝑗) in 𝜏 except the starting point (0, 0). Thus, wt(𝜏; 𝒃, 𝒃2) = 𝑏−1

0 pwt(𝜏; 𝒃), which
shows the lemma for 𝑟 = 𝑠 = 0.

Now consider the general case 𝜋 ∈ Mot𝑛,𝑟 ,𝑠 . Let 𝜏 be the Motzkin path obtained from 𝜋 by adding 𝑟
up steps at the beginning and 𝑠 down steps at the end. Then

wt(𝜋; 𝒃, 𝒃2) =
wt(𝜏; 𝒃)

𝑏0𝑏
2
1 · · · 𝑏

2
𝑠−1𝑏𝑠

, pwt(𝜋; 𝒃) =
pwt(𝜏; 𝒃)

𝑏0 · · · 𝑏𝑟−1𝑏0 · · · 𝑏𝑠−1
.

Since 𝜏 ∈ Mot𝑛+𝑟+𝑠,0,0, we have wt(𝜏; 𝒃, 𝒃2) = 𝑏−1
0 pwt(𝜏; 𝒃), which together with the equations above

implies the desired identity. �

Lemma 2.8 immediately implies the following proposition, which shows that 𝜇≤𝑘
𝑛,𝑟 ,𝑠 (𝒃, 𝒃

2) is a natural
point-weight generating function for Motzkin paths.

Proposition 2.9. We have

𝜇≤𝑘
𝑛,𝑟 ,𝑠 (𝒃, 𝒃

2) =
𝑏0 · · · 𝑏𝑟−1
𝑏0 · · · 𝑏𝑠

∑
𝜋∈Mot≤𝑘𝑛,𝑟,𝑠

pwt(𝜋; 𝒃).

We finish this section by giving sufficient conditions for 𝜇≤𝑘
−𝑛,𝑟 ,𝑠 (𝒃, 𝝀) to be well-defined.

Proposition 2.10. If 𝑃𝑘+1(0; 𝒃, 𝝀) ≠ 0, then 𝜇≤𝑘
−𝑛,𝑟 ,𝑠 (𝒃, 𝝀) is well-defined for 𝑛 ≥ 1.

Proof. Since 𝑃𝑘+1(𝑥; 𝒃, 𝝀) has the nonzero constant term 𝑃𝑘+1(0; 𝒃, 𝝀), its inverted polynomial
𝑃∗
𝑘+1 (𝑥; 𝒃, 𝝀) has degree 𝑘 + 1. Moreover, 𝑃∗

𝑘+1(0; 𝒃, 𝝀) = 1 because it is the leading coefficient of
the monic polynomial 𝑃𝑘+1 (𝑥; 𝒃, 𝝀).

Now we consider the generating function for 𝜇≤𝑘
𝑛,𝑟 ,𝑠 (𝒃, 𝝀) in Lemma 2.5. If 𝑟 ≤ 𝑠,

deg(𝑥𝑠−𝑟𝑃∗
𝑟 (𝑥; 𝒃, 𝝀)𝛿𝑠+1𝑃∗

𝑘−𝑠 (𝑥; 𝒃, 𝝀)) ≤ 𝑘 < deg(𝑃∗
𝑘+1(𝑥; 𝒃, 𝝀)).

If 𝑟 > 𝑠,

deg(𝑃∗
𝑠 (𝑥; 𝒃, 𝝀)𝛿𝑟+1𝑃∗

𝑘−𝑟 (𝑥; 𝒃, 𝝀)) ≤ 𝑠 + 𝑘 − 𝑟 < 𝑘 < deg(𝑃∗
𝑘+1 (𝑥; 𝒃, 𝝀)).

Therefore, by Lemma 2.1, 𝜇≤𝑘
−𝑛,𝑟 ,𝑠 (𝒃, 𝝀) is well-defined in either case. �
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Proposition 2.11. The sequence (𝜇≤𝑘
−𝑛,𝑟 ,𝑠 (0, 𝝀))𝑛≥1 is well-defined if and only if 𝑘 is odd. The sequence

(𝜇≤𝑘
−𝑛,𝑟 ,𝑠 (𝒃, 𝒃

2))𝑛≥1 is well-defined if and only if 𝑘 � 1 (mod 3).

Proof. Substituting 𝑥 = 0 in (2) gives a recurrence for 𝑃𝑛 (0; 𝒃, 𝝀). Therefore, by induction, one can
easily show that

𝑃2𝑘 (0; 0, 𝝀) = (−1)𝑘
𝑘∏
𝑖=1

𝜆2𝑖−1,

𝑃2𝑘+1 (0; 0, 𝝀) = 0,
𝑃3𝑘 (0; 𝒃, 𝒃2) = 𝑏0 · · · 𝑏3𝑘−1,

𝑃3𝑘+1(0; 𝒃, 𝒃2) = −𝑏0 · · · 𝑏3𝑘 ,

𝑃3𝑘+2(0; 𝒃, 𝒃2) = 0.

Then the proof follows from Proposition 2.10. �

3. Reciprocity for bounded Dyck paths

In this section, we introduce a method to compute negative moments using continued fractions. Using this
method, we give a combinatorial model for 𝜇≤𝑘

−𝑛 (0, 𝝀), which is equivalent to Cigler and Krattenthaler’s
result stated in Theorem 1.1.

We begin with the following definitions.

Definition 3.1. An ℓ-peak-valley sequence (ℓ-PV sequence for short) is a sequence (𝑎1, . . . , 𝑎𝑛) of
nonnegative integers such that for 𝑖 = 1, . . . , 𝑛,

◦ if 𝑎𝑖 ≡ 0 (mod ℓ), then 𝑎𝑖 is a valley; that is, 𝑎𝑖−1 > 𝑎𝑖 < 𝑎𝑖+1,
◦ if 𝑎𝑖 ≡ −1 (mod ℓ), then 𝑎𝑖 is a peak; that is, 𝑎𝑖−1 < 𝑎𝑖 > 𝑎𝑖+1,

where we set 𝑎0 = 𝑎𝑛+1 = 0. Let PVℓ,𝑘
𝑛 denote the set of all ℓ-PV sequences (𝑎1, . . . , 𝑎𝑛) with bound 𝑘

(i.e., 0 ≤ 𝑎𝑖 ≤ 𝑘 for all 𝑖 = 1, . . . , 𝑛).

Definition 3.2. We define the weight wt(𝜋) of a sequence 𝜋 = (𝑎1, . . . , 𝑎𝑛) of nonnegative integers by
wt(𝜋) = 𝑉𝑎1 · · ·𝑉𝑎𝑛 , where 𝑉𝑖’s are indeterminates.

For convenience, we define PVℓ,𝑘
0 = {∅}, where ∅ is the empty sequence with wt(∅) = 1.

In this paper, we only need to consider ℓ-PV sequences for ℓ = 2, 3. In this section, (resp. Section 4)
we will show that if 𝒃 = 0 (resp. 𝝀 = 𝒃2), the negative moment 𝜇≤𝑘

−𝑛 (𝒃, 𝝀) is a generating function for
certain 2-PV sequences (resp. 3-PV sequences).

Note that a sequence is a 2-PV sequence if and only if every even integer is a valley and every odd
integer is a peak assuming a zero is padded at both ends. For example, (3, 2, 7, 0, 1) is a 2-PV sequence
because the odd integers 3, 7, 1 are peaks and the even integers 2, 0 are valleys. Equivalently, a sequence
(𝑎1, . . . , 𝑎𝑛) is a 2-PV sequence if and only if 𝑛 is odd, 𝑎1 > 𝑎2 < 𝑎3 > · · · , each 𝑎2𝑖−1 is odd and 𝑎2𝑖
is even.

Recall that Alt≤𝑘𝑛 is the set of all sequences (𝑏1, . . . , 𝑏𝑛) such that 𝑏1 ≤ 𝑏2 ≥ 𝑏3 ≤ · · · and
1 ≤ 𝑏𝑖 ≤ 𝑘 . There is a close connection between alternating sequences and 2-PV sequences as follows.

Proposition 3.3. The map from PV2,2𝑘−1
2𝑛+1 to Alt≤𝑘2𝑛+1 defined by

(𝑎1, . . . , 𝑎2𝑛+1) ↦→ (𝑘 − �𝑎1/2�, . . . , 𝑘 − �𝑎2𝑛+1/2�)

is a bijection.

Proof. One can easily see that the map from Alt≤𝑘2𝑛+1 to PV2,2𝑘−1
2𝑛+1 defined by (𝑏1, . . . , 𝑏2𝑛+1) ↦→

(𝑐1, . . . , 𝑐2𝑛+1), where 𝑐2𝑖+1 = 2(𝑘 − 𝑏2𝑖+1) +1 and 𝑐2𝑖 = 2(𝑘 − 𝑏2𝑖), is the inverse of the given map. �
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There is a simple continued fraction expression for the generating function for 2-PV sequences.

Proposition 3.4. For an integer 𝑘 ≥ 1, we have∑
𝑛≥0

∑
𝜋∈PV2,2𝑘−1

2𝑛+1

wt(𝜋)𝑥2𝑛+1 =
1

−𝑉0𝑥 −
1

−𝑉1𝑥 − . . . −
1

−𝑉2𝑘−1𝑥

.

Proof. The proof is by induction on 𝑘 . If 𝑘 = 1, since there is only one 2-PV sequence (1, 0, 1, . . . , 0, 1)
of length 2𝑛 + 1 with bound 1, we have∑

𝑛≥0

∑
𝜋∈PV2,1

2𝑛+1

wt(𝜋)𝑥2𝑛+1 =
∑
𝑛≥0

𝑉1𝑥(𝑉1𝑉0𝑥
2)𝑛 =

𝑉1𝑥

1 −𝑉1𝑉0𝑥2 .

Hence, it is true for 𝑘 = 1.
Suppose 𝑘 > 1, and let PV2,2𝑘−1

2𝑛+1 be the set of sequences (𝑎1, . . . , 𝑎2𝑛+1) in PV2,2𝑘−1
2𝑛+1 such that 𝑎𝑖 ≥ 2

for all 𝑖 = 1, . . . , 2𝑛 + 1. For convenience, let

A =
⋃
𝑛≥0

PV2,2𝑘−1
2𝑛+1 and A =

⋃
𝑛≥0

PV2,2𝑘−1
2𝑛+1 .

Then, by induction with indices shifted properly, it is enough to show that∑
𝜋∈A

wt(𝜋)𝑥 |𝜋 | =
1

−𝑉0𝑥 −
1

−𝑉1𝑥 −
∑

𝜋∈A wt(𝜋)𝑥 |𝜋 |

, (9)

where if 𝜋 = (𝑎1, . . . , 𝑎𝑛), we denote |𝜋 | = 𝑛.
Let 𝐴 = (𝑎1, . . . , 𝑎2𝑛+1) ∈ A. We divide 𝐴 into subsequences using the locations of 0’s as follows.

Let 𝑖1, . . . , 𝑖𝑚 be the indices 𝑗 such that 𝑎 𝑗 = 0, where 𝑖1 < · · · < 𝑖𝑚. Let 𝐴0 = (𝑎1, . . . , 𝑎𝑖1−1) and
𝐴 𝑗 = (𝑎𝑖 𝑗 , . . . , 𝑎𝑖 𝑗+1−1) for 𝑗 = 1, . . . , 𝑚, where 𝑖𝑚+1 − 1 = 2𝑛 + 1, so that 𝐴 is the concatenation of
𝐴0, 𝐴1, . . . , 𝐴𝑚. For example, if 𝐴 = (3, 2, 7, 0, 1, 0, 5, 2, 3, 0, 7, 6, 7), then 𝐴0 = (3, 2, 7), 𝐴1 = (0, 1),
𝐴2 = (0, 5, 2, 3) and 𝐴3 = (0, 7, 6, 7).

Since every even integer is a valley and every odd integer is a peak in 𝐴, one can easily check the
following:

◦ 𝐴0 is either (1) or an element in A,
◦ for each 1 ≤ 𝑗 ≤ 𝑚, 𝐴 𝑗 is either (0, 1) or (0, 𝑦) for some 𝑦 ∈ A.

Conversely, any choice of 𝐴0, 𝐴1, . . . , 𝐴𝑚 satisfying the above conditions gives an element in A.
Therefore, if we set 𝑆 =

∑
𝜋∈A wt(𝜋)𝑥 |𝜋 | , then∑

𝜋∈A
wt(𝜋)𝑥 |𝜋 | =

∑
𝑚≥0

(𝑉1𝑥 + 𝑆) (𝑉0𝑉1𝑥
2 +𝑉0𝑥𝑆)

𝑚 =
𝑉1𝑥 + 𝑆

1 −𝑉0𝑉1𝑥2 −𝑉0𝑥𝑆
.

Dividing the numerator and the denominator by 𝑉1𝑥 + 𝑆, we obtain (9), and the proof follows by
induction. �

We now give a combinatorial interpretation for 𝜇≤2𝑘−1
−2𝑛 (0, 𝝀) using 2-PV sequences.
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Theorem 3.5. Suppose that the sequence 𝝀 = (𝜆𝑖)𝑖≥1 is given by 𝜆𝑖 = 𝑉−1
𝑖−1𝑉

−1
𝑖 for 𝑖 ≥ 1. Then we have

𝜇≤2𝑘−1
−2𝑛 (0, 𝝀) = 𝑉0

∑
𝜋∈PV2,2𝑘−1

2𝑛−1

wt(𝜋).

Proof. Let 𝜆0 = 𝑉−1
0 . Observe that for each integer 𝑚 ≥ 0, 𝜆−1

𝑚 𝜆𝑚−1 · · · 𝜆
(−1)𝑚+1

0 = 𝑉𝑚. By Proposition
2.7, ∑

𝑛≥1
𝜇≤2𝑘−1
−𝑛 (0, 𝝀)𝑥𝑛 =

− 𝑥

𝑥 −
𝜆1

𝑥 −
𝜆2

𝑥 − . . . −
𝜆2𝑘−1

𝑥

=
𝜆−1

0 𝑥

−𝜆−1
0 𝑥 −

1

−𝜆−1
1 𝜆0𝑥 −

1

−𝜆−1
2 𝜆1𝜆

−1
0 𝑥 − . . . −

1

−𝜆−1
2𝑘−1𝜆2𝑘−2 · · · 𝜆

(−1)2𝑘

0 𝑥

=
𝑉0𝑥

−𝑉0𝑥 −
1

−𝑉1𝑥 − . . . −
1

−𝑉2𝑘−1𝑥

.

Then the proof follows from Proposition 3.4. �

By the above theorem with 𝝀 = 1, we get the following corollary.

Corollary 3.6. We have

𝜇≤2𝑘−1
−2𝑛 (0, 1) =

			PV2,2𝑘−1
2𝑛−1

			.
By Proposition 3.3, Corollary 3.6 is equivalent to Theorem 1.1 due to Cigler and Krattenthaler.

Moreover, using Proposition 3.3, one can easily check that Theorem 3.5 is equivalent to the following
proposition, which is a weighted version of Theorem 1.1.

Proposition 3.7 [3, Corollary 32]. Suppose that 𝜆2𝑖−1 = 𝑉−1
𝑖 𝐴−1

𝑖 and 𝜆2𝑖 = 𝐴−1
𝑖 𝑉

−1
𝑖+1 for all 𝑖 ≥ 1, and

let 𝜆0 = 𝑉−1
1 . Then we have

𝜇≤2𝑘−1
−2𝑛 (0, 𝝀) = 𝑉1𝑅

(𝑘)
𝐴𝑉


���
∑

𝜋∈Alt≤𝑘2𝑛−1

wt𝐴𝑉 (𝜋)
����,

where the operator 𝑅 (𝑘)
𝐴𝑉 replaces 𝐴𝑖 by 𝑉𝑘+1−𝑖 and 𝑉𝑖 by 𝐴𝑘+1−𝑖 , and

wt𝐴𝑉 (𝜋) = 𝑉𝑎1𝑉𝑎3 · · ·𝑉𝑎2𝑛−1𝐴𝑎2𝐴𝑎4 · · · 𝐴𝑎2𝑛−2 . (10)
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4. Reciprocity for bounded Motzkin paths

In this section, we find a combinatorial interpretation for 𝜇≤𝑘
−𝑛 (𝒃, 𝒃

2). We only need to consider the
case 𝑘 � 1 (mod 3) because, otherwise, 𝜇≤𝑘

−𝑛 (𝒃, 𝒃
2) is not defined by Proposition 2.11. We show

that 𝜇≤3𝑘−1
−𝑛 (𝒃, 𝒃2) is a generating function for 3-PV sequences (Theorem 4.2) and 𝜇≤3𝑘

−𝑛 (𝒃, 𝒃2) is a
generating function for modified 3-PV sequences (Theorem 4.5).

Recall that a sequence (𝑎1, . . . , 𝑎𝑛) is a 3-PV sequence if each 𝑎𝑖 is a valley when 𝑎𝑖 ≡ 0 (mod 3),
and 𝑎𝑖 is a peak when 𝑎𝑖 ≡ 2 (mod 3).

Using arguments similar to those in the previous section, we find a continued fraction expression for
the generating function for 3-PV sequences.

Proposition 4.1. For an integer 𝑘 ≥ 1, we have∑
𝑛≥1

∑
𝜋∈PV3,3𝑘−1

𝑛

wt(𝜋)𝑥𝑛 =
1

−𝑉0𝑥 − 1 −
1

−𝑉1𝑥 − 1 − . . . −
1

−𝑉3𝑘−1𝑥 − 1

.

Proof. The proof is similar to (but slightly more complicated than) that of Proposition 3.4. Let PV3,3𝑘−1
𝑛

be the set of sequences (𝑎1, . . . , 𝑎𝑛) in PV3,3𝑘−1
𝑛 such that 𝑎𝑖 ≥ 3 for all 𝑖 = 1, . . . , 𝑛, and let

A =
⋃
𝑛≥0

PV3,3𝑘−1
𝑛 and A =

⋃
𝑛≥0

PV3,3𝑘−1
𝑛 .

We first claim that∑
𝜋∈A

wt(𝜋)𝑥 |𝜋 | =
1

−𝑉0𝑥 − 1 −
1

−𝑉1𝑥 − 1 −
1

−𝑉2𝑥 − 1 −
∑

𝜋∈A wt(𝜋)𝑥 |𝜋 |

. (11)

It is easy to see that the proposition follows from the claim by induction on 𝑘 . Therefore, it suffices to
prove the claim (11).

For a sequence 𝜋 = (𝑎1, . . . , 𝑎𝑛) ∈ A, let 𝑖1, . . . , 𝑖𝑚 be the indices 𝑗 such that 𝑎 𝑗 = 0 or 𝑎 𝑗−1 ≥ 𝑎 𝑗 = 1,
where 𝑖1 < · · · < 𝑖𝑚. Let 𝐴0 = (𝑎1, . . . , 𝑎𝑖1−1) and 𝐴 𝑗 = (𝑎𝑖 𝑗 , . . . , 𝑎𝑖 𝑗+1−1) for 𝑗 = 1, . . . , 𝑚, where
𝑖𝑚+1 − 1 = 𝑛, so that 𝜋 is the concatenation of 𝐴0, 𝐴1, . . . , 𝐴𝑚.

Observe that the possible sequences for 𝐴0 are (1), (1, 2), (2), (1, 𝑦) and (𝑦) where 𝑦 ∈ A. For
1 ≤ 𝑗 ≤ 𝑚, the first entry of 𝐴 𝑗 is 0 or 1. If the first entry is 0, the possible sequences for 𝐴 𝑗 are
(0, 1), (0, 1, 2), (0, 2), (0, 1, 𝑦), (0, 𝑦), where 𝑦 ∈ A, and if the first entry is 1, the possible sequences
for 𝐴 𝑗 are (1), (1, 2), (1, 𝑦) where 𝑦 ∈ A. Hence, if we set 𝑆 =

∑
𝜋∈A wt(𝜋)𝑥 |𝜋 | , then we have∑

𝜋∈A
wt(𝜋)𝑥 |𝜋 | =

∑
𝑚≥0

(𝑉1𝑥 +𝑉1𝑉2𝑥
2 +𝑉2𝑥 +𝑉1𝑥𝑆 + 𝑆)

× (𝑉0𝑥(𝑉1𝑥 +𝑉1𝑉2𝑥
2 +𝑉2𝑥 +𝑉1𝑥𝑆 + 𝑆) +𝑉1𝑥(1 +𝑉2𝑥 + 𝑆))

𝑚

=
𝑉1𝑥 +𝑉1𝑉2𝑥

2 +𝑉2𝑥 +𝑉1𝑥𝑆 + 𝑆

1 −𝑉0𝑥(𝑉1𝑥 +𝑉1𝑉2𝑥2 +𝑉2𝑥 +𝑉1𝑥𝑆 + 𝑆) −𝑉1𝑥(1 +𝑉2𝑥 + 𝑆)
,

which is easily seen to be equal to the right-hand side of (11). This completes the proof. �

Using Proposition 4.1, we can find a combinatorial interpretation for 𝜇≤3𝑘−1
−𝑛 (𝒃, 𝒃2).
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Theorem 4.2. Let 𝒃 = (𝑏𝑖)𝑖≥0 and 𝝀 = (𝜆𝑖)𝑖≥1 be the sequences given by 𝑏𝑖 = −𝑉−1
𝑖 and 𝜆𝑖 = 𝑉−1

𝑖 𝑉−1
𝑖−1

for all 𝑖. Then we have

𝜇≤3𝑘−1
−𝑛 (𝒃, 𝝀) = 𝑉0

∑
𝜋∈PV3,3𝑘−1

𝑛−1

wt(𝜋).

Proof. By Proposition 2.7, we have∑
𝑛≥1

𝜇≤𝑘
−𝑛 (𝒃, 𝝀)𝑥

𝑛 =
− 𝑥

𝑥 − 𝑏0 −
𝜆1

𝑥 − 𝑏1 −
𝜆2

𝑥 − 𝑏2 − . . . −
𝜆𝑘

𝑥 − 𝑏𝑘

=
𝑏−1

0 𝑥

1 − 𝑏−1
0 𝑥 −

𝑏−1
0 𝑏−1

1 𝜆1

1 − 𝑏−1
1 𝑥 −

𝑏−1
1 𝑏−1

2 𝜆2

1 − 𝑏−1
2 𝑥 − . . . −

𝑏−1
𝑘−1𝑏

−1
𝑘 𝜆𝑘

1 − 𝑏−1
𝑘 𝑥

=
𝑉0𝑥

−𝑉0𝑥 − 1 −
1

−𝑉1𝑥 − 1 −
1

−𝑉2𝑥 − 1 − . . . −
1

−𝑉𝑘𝑥 − 1

.

The proof follows from Proposition 4.1. �

Now we find a combinatorial interpretation for 𝜇≤3𝑘
−𝑛 (𝒃, 𝒃2). To this end, we need the following

definition.

Definition 4.3. A modified 3-PV sequence is a sequence (𝑎1, . . . , 𝑎𝑛) of nonnegative integers such that
for 𝑖 = 1, . . . , 𝑛,

◦ if 𝑎𝑖 ≡ 1 (mod 3), then 𝑎𝑖 is a valley; that is, 𝑎𝑖−1 > 𝑎𝑖 < 𝑎𝑖+1,
◦ if 𝑎𝑖 ≡ 2 (mod 3), then 𝑎𝑖 is a peak; that is, 𝑎𝑖−1 < 𝑎𝑖 > 𝑎𝑖+1,

where we set 𝑎0 = 𝑎𝑛+1 = 0. Let P̃V3,𝑘
𝑛 denote the set of all modified 3-PV sequences of length 𝑛 with

bound 𝑘 (i.e., 0 ≤ 𝑎𝑖 ≤ 𝑘 for all 𝑖).

Similar to Proposition 4.1, there is a continued fraction expression for the generating function for
P̃V3,3𝑘

𝑛 (see the proposition below). We note, however, that the proof of Proposition 4.4 is different
from that of Proposition 4.1 due to the fact that in Proposition 4.4, the sum is over 𝑛 ≥ 0 whereas in
Proposition 4.1 the sum is over 𝑛 ≥ 1.

Proposition 4.4. For an integer 𝑘 ≥ 1, we have∑
𝑛≥0

(−1)𝑛+1
∑

𝜋∈P̃V3,3𝑘
𝑛

wt(𝜋)𝑥𝑛 =
1

−𝑉0𝑥 − 1 −
1

−𝑉1𝑥 − 1 − . . . −
1

−𝑉3𝑘𝑥 − 1

.
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Proof. Let A = ∪𝑛≥0P̃V3,3𝑘
𝑛 , and let B be the set of sequences 𝛽 = (𝑏1, . . . , 𝑏𝑚) for 𝑚 ≥ 0 such that 𝑏𝑖

is a valley if 𝑏𝑖 ≡ 1 (mod 3), 𝑏𝑖 is a peak if 𝑏𝑖 ≡ 0 (mod 3) and 1 ≤ 𝑏𝑖 ≤ 3𝑘 for all 𝑖, where we set
𝑏0 = 𝑏𝑚+1 = 0. Here (𝑏1, . . . , 𝑏𝑚) means the empty sequence ∅ if 𝑚 = 0. By Proposition 4.1, we have

∑
𝛽∈B

wt(𝛽)𝑥 |𝛽 | = 1 +
1

−𝑉1𝑥 − 1 −
1

−𝑉2𝑥 − 1 − . . . −
1

−𝑉3𝑘𝑥 − 1

.

We claim that

∑
𝛼∈A

wt(𝛼) (−𝑥) |𝛼 |

(
𝑉0𝑥 +

∑
𝛽∈B

wt(𝛽)𝑥 |𝛽 |
)
= 1. (12)

For 𝛼 ∈ A and 𝛽 ∈ B ∪ {(0)}, define the weight wt(𝛼, 𝛽) of the pair (𝛼, 𝛽) to be (−1) |𝛼 | wt(𝛼) wt(𝛽).
To prove the claim, it suffices to find a sign-reversing involution 𝜑 from A × (B ∪ {(0)}) to itself with
unique fixed point (∅, ∅), where ∅ is the empty sequence.

For a nonempty sequence 𝛼 = (𝑎1, . . . , 𝑎𝑚) ∈ A, define 𝐼 (𝛼) to be the largest integer 𝑖 such that
1 ≤ 𝑖 ≤ 𝑚 − 1 and 𝑎𝑖 , 𝑎𝑖+1 � 1 (mod 3). If there is no such 𝑖, we define 𝐼 (𝛼) = 0. Similarly, for a
nonempty sequence 𝛽 = (𝑏1, . . . , 𝑏𝑛) ∈ B ∪ {(0)}, define 𝐽 (𝛽) to be the smallest integer 𝑗 such that
1 ≤ 𝑗 ≤ 𝑛 − 1 and 𝑏 𝑗 , 𝑏 𝑗+1 � 1 (mod 3). If there is no such 𝑗 , we define 𝐽 (𝛽) = 𝑛. One can check that
𝑚 − 𝐼 (𝛼) and 𝐽 (𝛽) are odd. Moreover, 𝑎𝐼 (𝛼)+1 > 𝑎𝐼 (𝛼)+2 < · · · < 𝑎𝑚 and 𝑏1 > 𝑏2 < · · · < 𝑏𝐽 (𝛽) .

We define the map 𝜑 as follows. For 𝛼 = (𝑎1, . . . , 𝑎𝑚) ∈ A and 𝛽 = (𝑏1, . . . , 𝑏𝑛) ∈ B ∪ {(0)},

1. define 𝜑(𝛼, 𝛽) = ((𝑎1, . . . , 𝑎𝑚, 𝑏1, . . . , 𝑏𝐽 (𝛽) ), (𝑏𝐽 (𝛽)+1, . . . , 𝑏𝑛)) if one of the following conditions
is satisfied:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑚 = 0,
𝑎𝑚 ≡ 0 (mod 3) and 𝑏1 ≡ 0 (mod 3),
𝑎𝑚 ≡ 2 (mod 3) and 𝑏1 ≡ 0 (mod 3) with 𝑎𝑚 > 𝑏1,

𝑎𝑚 ≡ 0 (mod 3) and 𝑏1 ≡ 2 (mod 3) with 𝑎𝑚 < 𝑏1,

2. define 𝜑(𝛼, 𝛽) = ((𝑎1, . . . , 𝑎𝐼 (𝛼) ), (𝑎𝐼 (𝛼)+1, . . . , 𝑎𝑚, 𝑏1, . . . , 𝑏𝑛)) if one of the following conditions
is satisfied:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑛 = 0,
𝑎𝑚 ≡ 2 (mod 3) and 𝑏1 ≡ 2 (mod 3),
𝑎𝑚 ≡ 2 (mod 3) and 𝑏1 ≡ 0 (mod 3) with 𝑎𝑚 < 𝑏1,

𝑎𝑚 ≡ 0 (mod 3) and 𝑏1 ≡ 2 (mod 3) with 𝑎𝑚 > 𝑏1.

Then it is not hard to see that the map 𝜑 is a sign-reversing involution with unique fixed point (∅, ∅), which
proves the claim. For example, let 𝛼 = (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5) = (2, 0, 3, 1, 5) ∈ A and 𝛽 = (𝑏1, 𝑏2, 𝑏3, 𝑏4) =
(2, 3, 1, 2) ∈ B. Then 𝐼 (𝛼) = 2 since 𝑎2, 𝑎3 � 1 (mod 3), and 𝐽 (𝛽) = 1 since 𝑏1, 𝑏2 � 1 (mod 3).
Since 𝑎5 ≡ 2 (mod 3) and 𝑏1 ≡ 2 (mod 3), it satisfies the second condition of the case (2), so
𝜑(𝛼, 𝛽) = ((2, 0), (3, 1, 5, 2, 3, 1, 2)). Moreover, one can easily check that 𝜑((2, 0), (3, 1, 5, 2, 3, 1, 2)) =
((2, 0, 3, 1, 5), (2, 3, 1, 2)) = (𝛼, 𝛽).
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By the claim (12), we have

−
∑
𝛼∈A

wt(𝛼) (−𝑥) |𝛼 | =
1

−𝑉0𝑥 −
∑

𝛽∈B wt(𝛽)𝑥 |𝛽 |

=
1

−𝑉0𝑥 − 1 −
1

−𝑉1𝑥 − 1 − . . . −
1

−𝑉3𝑘𝑥 − 1

,

which completes the proof. �

Similar to Theorem 4.2, using Proposition 4.4, we can find a combinatorial interpretation for
𝜇≤3𝑘
−𝑛 (𝒃, 𝒃2). We omit the proof.

Theorem 4.5. Let 𝒃 = (𝑏𝑖)𝑖≥0 and 𝝀 = (𝜆𝑖)𝑖≥1 be the sequences given by 𝑏𝑖 = −𝑉−1
𝑖 and 𝜆𝑖 = 𝑉−1

𝑖 𝑉−1
𝑖−1

for all 𝑖. Then we have

𝜇≤3𝑘
−𝑛 (𝒃, 𝝀) = 𝑉0

∑
𝜋∈P̃V3,3𝑘

𝑛−1

wt(𝜋).

5. Negative moments using inverse matrices

In this section, we generalize Theorems 4.2 and 4.5 using inverse matrices.
For integers 𝑘 and 𝑖 with 0 ≤ 𝑖 ≤ 𝑘 , let 𝜖 ≤𝑘𝑖 be the standard basis vector in R𝑘+1 such that the 𝑖th

entry is equal to 1 and the other entries are all 0. If the size of 𝜖 ≤𝑘𝑖 is clear from the context, we will
simply write it as 𝜖𝑖 . We also define the tridiagonal matrix 𝐴≤𝑘 (𝒃, 𝝀) by

𝐴≤𝑘 (𝒃, 𝝀) =


�������

𝑏0 1
𝜆1 𝑏1 1

. . .

𝜆𝑘−1 𝑏𝑘−1 1
𝜆𝑘 𝑏𝑘

��������
. (13)

By the definition of 𝜇≤𝑘
𝑛,𝑟 ,𝑠 (𝒃, 𝝀), it is easy to see that

𝜇≤𝑘
𝑛,𝑟 ,𝑠 (𝒃, 𝝀) = 𝜖

𝑇
𝑟

(
𝐴≤𝑘 (𝒃, 𝝀)

)𝑛
𝜖𝑠 . (14)

The next proposition shows that 𝜇≤𝑘
−𝑛,𝑟 ,𝑠 (𝒃, 𝝀) can be computed similarly using the inverse of 𝐴≤𝑘 (𝒃, 𝝀).

This is essentially the same as [8, Lemma 2.7] due to Hopkins and Zaimi, which was first presented in
[20].

Proposition 5.1 [8, Lemma 2.7]. For nonnegative integers 𝑟, 𝑠, 𝑘, 𝑛with 𝑟, 𝑠 ≤ 𝑘 and 𝑛 ≥ 1, if 𝐴≤𝑘 (𝒃, 𝝀)
is invertible, then

𝜇≤𝑘
−𝑛,𝑟 ,𝑠 (𝒃, 𝝀) = 𝜖

𝑇
𝑟

(
𝐴≤𝑘 (𝒃, 𝝀)

)−𝑛
𝜖𝑠 . (15)

Proof. Let 𝑥𝑚 + 𝑐𝑚−1𝑥
𝑚−1 + · · · + 𝑐0 be the minimal polynomial of 𝐴≤𝑘 (𝒃, 𝝀) so that

(𝐴≤𝑘 (𝒃, 𝝀))𝑚 + 𝑐𝑚−1 (𝐴
≤𝑘 (𝒃, 𝝀))𝑚−1 + · · · + 𝑐0𝐼 = 𝑂,
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where 𝐼 (resp.𝑂) is the identity matrix (resp. zero matrix). For each 𝑁 ∈ Z, multiplying (𝐴≤𝑘 (𝒃, 𝝀))𝑁−𝑚

and then multiplying 𝜖𝑇𝑟 and 𝜖𝑠 on the left and right, respectively, in the above equation, we obtain

𝜖𝑇𝑟 (𝐴≤𝑘 (𝒃, 𝝀))𝑁 𝜖𝑠 + 𝑐𝑚−1𝜖
𝑇
𝑟 (𝐴≤𝑘 (𝒃, 𝝀))𝑁−1𝜖𝑠 + · · · + 𝑐0𝜖

𝑇
𝑟 (𝐴≤𝑘 (𝒃, 𝝀))𝑁−𝑚𝜖𝑠 = 0.

Therefore, (𝜖𝑇𝑟 (𝐴≤𝑘 (𝒃, 𝝀))𝑁 𝜖𝑠)𝑁 ∈Z is the sequence that is extended from (𝜇≤𝑘
𝑁 ,𝑟 ,𝑠 (𝒃, 𝝀))𝑁 ≥0 =

(𝜖𝑇𝑟 (𝐴≤𝑘 (𝒃, 𝝀))𝑁 𝜖𝑠)𝑁 ≥0 by the above linear recurrence relation, which implies (15). �

Usmani [17] found a formula for the inverse of a general tridiagonal matrix. Specializing Usmani’s
result to the tridiagonal matrix 𝐴≤𝑘 (𝒃, 𝝀), we obtain the following lemma.

Lemma 5.2. Suppose that 𝐴≤𝑘 (𝒃, 𝝀) is invertible and let
(
𝐴≤𝑘 (𝒃, 𝝀)

)−1
= (𝛼𝑖, 𝑗 )0≤𝑖, 𝑗≤𝑘 . Then

𝛼𝑖, 𝑗 =

{
(−1)𝑖+ 𝑗𝜃𝑖𝜙 𝑗+2/𝜃𝑘+1 if 𝑖 ≤ 𝑗 ,

(−1)𝑖+ 𝑗𝜆 𝑗 · · · 𝜆𝑖−1𝜃 𝑗𝜙𝑖+2/𝜃𝑘+1 if 𝑖 > 𝑗 ,
(16)

where 𝜃𝑖 and 𝜙𝑖 are defined by

𝜃𝑖 = 𝑏𝑖−1𝜃𝑖−1 − 𝜆𝑖−1𝜃𝑖−2, 𝑖 = 1, 2, . . . , 𝑘 + 1,
𝜙𝑖 = 𝑏𝑖−1𝜙𝑖+1 − 𝜆𝑖𝜙𝑖+2, 𝑖 = 𝑘 + 1, 𝑘, . . . , 1,

with initial conditions 𝜙𝑘+2 = 𝜃0 = 1 and 𝜙𝑘+3 = 𝜃−1 = 0.

The next lemma shows that if 𝝀 = 𝒃2, then there is a simple explicit formula for 𝛼𝑖, 𝑗 in Lemma 5.2.

Lemma 5.3. Let 𝒃 = (𝑏𝑖)𝑖≥0 and 𝝀 = (𝜆𝑖)𝑖≥1 be the sequences given by 𝑏𝑖 = −𝑉−1
𝑖 and 𝜆𝑖 = 𝑉−1

𝑖 𝑉−1
𝑖−1

for all 𝑖. Suppose that 𝐴≤𝑘 (𝒃, 𝝀) is invertible and let
(
𝐴≤𝑘 (𝒃, 𝝀)

)−1
= (𝛼𝑖, 𝑗 )0≤𝑖, 𝑗≤𝑘 . Then

𝛼𝑖, 𝑗 = (−1) �
𝑖
3 �+

⌊
𝑗
3

⌋
𝑉0 · · ·𝑉 𝑗

𝑉0 · · ·𝑉𝑖−1
𝜒𝑖, 𝑗 ,

where for 𝑘 ≡ −1 (mod 3),

𝜒𝑖, 𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if 𝑖 ≡ −1 (mod 3) and 𝑖 ≤ 𝑗 ,

0 if 𝑗 ≡ 0 (mod 3) and 𝑖 ≤ 𝑗 ,

0 if 𝑖 ≡ 0 (mod 3) and 𝑖 > 𝑗 ,

0 if 𝑗 ≡ −1 (mod 3) and 𝑖 > 𝑗 ,

1 otherwise,

and for 𝑘 ≡ 0 (mod 3),

𝜒𝑖, 𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if 𝑖 ≡ −1 (mod 3) and 𝑖 ≤ 𝑗 ,

0 if 𝑗 ≡ 1 (mod 3) and 𝑖 ≤ 𝑗 ,

0 if 𝑖 ≡ 1 (mod 3) and 𝑖 > 𝑗 ,

0 if 𝑗 ≡ −1 (mod 3) and 𝑖 > 𝑗 ,

1 otherwise.

Proof. By induction on 𝑖, one can easily verify that the 𝜃𝑖’s and 𝜙𝑖’s in Lemma 5.2 are given by

𝜃3𝑖 = 𝑉
−1
0 · · ·𝑉−1

3𝑖−1, 𝜙𝑘+1−3𝑖 = −𝑉−1
𝑘 · · ·𝑉−1

𝑘−3𝑖 ,

𝜃3𝑖+1 = −𝑉−1
0 · · ·𝑉−1

3𝑖 , 𝜙𝑘+2−3𝑖 = 𝑉
−1
𝑘 · · ·𝑉−1

𝑘+1−3𝑖 ,

𝜃3𝑖+2 = 0, 𝜙𝑘+3−3𝑖 = 0.
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If 𝑘 ≡ −1 (mod 3), then these can be written as

𝜃𝑖 =

{
0 if 𝑖 ≡ −1 (mod 3),
(−1)𝑖−3� 𝑖

3 �𝑉−1
0 · · ·𝑉−1

𝑖−1 otherwise,

𝜙𝑖 =

{
0 if 𝑖 ≡ −1 (mod 3),
(−1)𝑖−3� 𝑖

3 �+1𝑉−1
𝑖−1 · · ·𝑉

−1
𝑘 otherwise.

Substituting the formulas for 𝜙𝑖 and 𝜃𝑖 to (16) completes the proof for 𝑘 ≡ −1 (mod 3). One can obtain
the result for 𝑘 ≡ 0 (mod 3) in the same way. �

Note that if 𝑘 ≡ 1 (mod 3), then 𝛼𝑖, 𝑗 in (16) is not defined (i.e., 𝐴≤𝑘 (𝒃, 𝝀) is not invertible). Using
Proposition 5.1 and Lemma 5.2, we can give a combinatorial interpretation for 𝜇≤𝑘

−𝑛,𝑟 ,𝑠 (𝒃, 𝒃
2). To do

this, we first need to define (ℓ, 𝑟, 𝑠)-peak-valley sequences, which are a generalization of ℓ-peak-valley
sequences in Definition 3.1.

Definition 5.4. An (ℓ, 𝑟, 𝑠)-peak-valley sequence is a sequence (𝑎1, . . . , 𝑎𝑛) of nonnegative integers
such that for 𝑖 = 0, . . . , 𝑛 + 1,

◦ if 𝑎𝑖 ≡ 0 (mod ℓ), then 𝑎𝑖 is a valley; that is, 𝑎𝑖−1 > 𝑎𝑖 < 𝑎𝑖+1,
◦ if 𝑎𝑖 ≡ −1 (mod ℓ), then 𝑎𝑖 is a peak; that is, 𝑎𝑖−1 < 𝑎𝑖 > 𝑎𝑖+1,

where we set 𝑎0 = 𝑟 and 𝑎𝑛+1 = 𝑠. Here, we ignore the inequalities involving 𝑎𝑡 for 𝑡 = −1 or 𝑡 = 𝑛 + 2.
Denote by PVℓ,𝑘

𝑛,𝑟 ,𝑠 the set of (ℓ, 𝑟, 𝑠)-peak-valley sequences (𝑎1, . . . , 𝑎𝑛) with bound 𝑘 , i.e., 0 ≤ 𝑎𝑖 ≤ 𝑘
for all 𝑖 = 1, . . . , 𝑛.

Note that Definition 5.4 reduces to Definition 3.1 when 𝑟 = 𝑠 = 0. Cigler and Krattenthaler [3,
Theorem 28] found a combinatorial description of 𝜇≤2𝑘−1

−𝑛,𝑟 ,𝑠 (0, 𝝀). The next theorem gives a combinatorial
interpretation for 𝜇≤3𝑘−1

−𝑛,𝑟 ,𝑠 (𝒃, 𝝀) when 𝑏𝑖 = −𝑉−1
𝑖 and 𝜆𝑖 = 𝑉−1

𝑖 𝑉−1
𝑖−1 for all 𝑖. Note that this theorem

reduces to Theorem 4.2 if 𝑟 = 𝑠 = 0.

Theorem 5.5. Suppose that 𝒃 = (𝑏𝑖)𝑖≥0 and 𝝀 = (𝜆𝑖)𝑖≥1 are the sequences given by 𝑏𝑖 = −𝑉−1
𝑖 and

𝜆𝑖 = 𝑉−1
𝑖 𝑉−1

𝑖−1 for all 𝑖. Then

𝜇≤3𝑘−1
−𝑛,𝑟 ,𝑠 (𝒃, 𝝀) = (−1) �𝑟/3�+�𝑠/3� 𝑉0 · · ·𝑉𝑠

𝑉0 · · ·𝑉𝑟−1

∑
𝜋∈PV3,3𝑘−1

𝑛−1,𝑟 ,𝑠

wt(𝜋).

Here, we set 𝑉0 · · ·𝑉𝑟−1 = 1 if 𝑟 = 0.

Proof. Let 𝑎0 = 𝑟 , 𝑎𝑛 = 𝑠 and (𝛼𝑖, 𝑗 )0≤𝑖, 𝑗≤3𝑘−1 =
(
𝐴≤3𝑘−1(𝒃, 𝝀)

)−1. By Proposition 5.1,

𝜇≤3𝑘−1
−𝑛,𝑟 ,𝑠 (𝒃, 𝝀) = 𝜖

𝑇
𝑟

(
𝐴≤3𝑘−1(𝒃, 𝝀)

)−𝑛
𝜖𝑠 =

∑
(𝑎1 ,...,𝑎𝑛−1) ∈𝑋

𝑛−1∏
𝑖=0

𝛼𝑎𝑖 ,𝑎𝑖+1 , (17)

where 𝑋 is the set of sequences (𝑎1, . . . , 𝑎𝑛−1) of integers with 0 ≤ 𝑎𝑖 ≤ 3𝑘 − 1 for all 𝑖.
For (𝑎1, . . . , 𝑎𝑛−1) ∈ 𝑋 , we claim that

∏𝑛−1
𝑖=0 𝛼𝑎𝑖 ,𝑎𝑖+1 = 0 unless (𝑎1, . . . , 𝑎𝑛−1) ∈ PV3,3𝑘−1

𝑛−1,𝑟 ,𝑠 . To see
this, suppose (𝑎1, . . . , 𝑎𝑛−1) ∉ PV3,3𝑘−1

𝑛−1,𝑟 ,𝑠 . Then there is an integer 0 ≤ 𝑗 ≤ 𝑛 satisfying one of the
following two conditions:

◦ 𝑎 𝑗 ≡ 0 (mod 3) and 𝑎 𝑗 is not a valley,
◦ 𝑎 𝑗 ≡ −1 (mod 3) and 𝑎 𝑗 is a not peak.

First, suppose 𝑎 𝑗 ≡ 0 (mod 3) and 𝑎 𝑗 is not a valley. Then 𝑎 𝑗−1 ≤ 𝑎 𝑗 or 𝑎 𝑗 ≥ 𝑎 𝑗+1. By Lemma 5.3,
𝑎 𝑗−1 ≤ 𝑎 𝑗 implies 𝛼𝑎 𝑗−1 ,𝑎 𝑗 = 0 and each of 𝑎 𝑗 = 𝑎 𝑗+1 and 𝑎 𝑗 > 𝑎 𝑗+1 implies 𝛼𝑎 𝑗 ,𝑎 𝑗+1 = 0. Hence,
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we always have
∏𝑛−1

𝑖=0 𝛼𝑎𝑖 ,𝑎𝑖+1 = 0. Similarly, one can prove
∏𝑛−1

𝑖=0 𝛼𝑎𝑖 ,𝑎𝑖+1 = 0 in the second case that
𝑎 𝑗 ≡ −1 (mod 3) and 𝑎 𝑗 is not a peak for some integer 𝑗 .

By (17) and the claim, we have

𝜇≤3𝑘−1
−𝑛,𝑟 ,𝑠 (𝒃, 𝝀) =

∑
(𝑎1 ,...,𝑎𝑛−1) ∈PV3,3𝑘−1

𝑛−1,𝑟 ,𝑠

𝑛−1∏
𝑖=0

𝛼𝑎𝑖 ,𝑎𝑖+1 . (18)

By Lemma 5.3, for 𝜋 = (𝑎1, . . . , 𝑎𝑛−1) ∈ PV3,3𝑘−1
𝑛−1,𝑟 ,𝑠 , we have

𝑛−1∏
𝑖=0

𝛼𝑎𝑖 ,𝑎𝑖+1 = (−1) �
𝑎0
3 �+2�

𝑎1
3 �+···+2�

𝑎𝑛−1
3 �+� 𝑎𝑛

3 �
𝑛−1∏
𝑖=0

𝑉0 · · ·𝑉𝑎𝑖+1

𝑉0 · · ·𝑉𝑎𝑖
𝑉𝑎𝑖

= (−1) �
𝑟
3 �+�

𝑠
3 �

𝑉0 · · ·𝑉𝑠
𝑉0 · · ·𝑉𝑟−1

𝑉𝑎1 · · ·𝑉𝑎𝑛−1 ,

which together with (18) gives the theorem. �

Putting 𝑉𝑖 = −1 in Theorem 5.5 gives the following corollary.

Corollary 5.6. We have

𝜇≤3𝑘−1
−𝑛,𝑟 ,𝑠 (1, 1) = (−1) �𝑟/3�+�𝑠/3�+𝑟+𝑠+𝑛

			PV3,3𝑘−1
𝑛−1,𝑟 ,𝑠

			.
Similarly, we can find a combinatorial interpretation for 𝜇≤3𝑘

−𝑛,𝑟 ,𝑠 (𝒃, 𝝀). To do this, we introduce
modified peak-valley sequences.

Definition 5.7. A modified (ℓ, 𝑟, 𝑠)-peak-valley sequence is a sequence (𝑎1, . . . , 𝑎𝑛) of nonnegative
integers such that for 𝑖 = 0, . . . , 𝑛 + 1,

◦ if 𝑎𝑖 ≡ 1 (mod ℓ), then 𝑎𝑖 is a valley; that is, 𝑎𝑖−1 > 𝑎𝑖 < 𝑎𝑖+1,
◦ if 𝑎𝑖 ≡ −1 (mod ℓ), then 𝑎𝑖 is a peak; that is, 𝑎𝑖−1 < 𝑎𝑖 > 𝑎𝑖+1,

where we set 𝑎0 = 𝑟 and 𝑎𝑛+1 = 𝑠. Here, we ignore the inequalities involving 𝑎𝑡 for 𝑡 = −1 or 𝑡 = 𝑛 + 2.
Denote by P̃Vℓ,𝑘

𝑛,𝑟 ,𝑠 the set of modified (ℓ, 𝑟, 𝑠)-peak-valley sequences (𝑎1, . . . , 𝑎𝑛) with bound 𝑘 (i.e.,
0 ≤ 𝑎𝑖 ≤ 𝑘 for all 𝑖 = 0, . . . , 𝑛 + 1).

Theorem 5.8. Suppose that 𝒃 = (𝑏𝑖)𝑖≥0 and 𝝀 = (𝜆𝑖)𝑖≥1 are the sequences given by 𝑏𝑖 = −𝑉−1
𝑖 and

𝜆𝑖 = 𝑉−1
𝑖 𝑉−1

𝑖−1 for all 𝑖. Then

𝜇≤3𝑘
−𝑛,𝑟 ,𝑠 (𝒃, 𝝀) = (−1) �(𝑟+1)/3�+�(𝑠+1)/3�+𝑛 𝑉0 · · ·𝑉𝑠

𝑉0 · · ·𝑉𝑟−1

∑
𝜋∈P̃V3,3𝑘

𝑛−1,𝑟 ,𝑠

wt(𝜋).

Proof. This can be proved by the same arguments as in the proof of Theorem 5.5. We omit the details. �

Putting 𝑉𝑖 = −1 in Theorem 5.8, we obtain the following corollary.

Corollary 5.9. We have

𝜇≤3𝑘
−𝑛,𝑟 ,𝑠 (1, 1) = (−1) �(𝑟+1)/3�+�(𝑠+1)/3�+𝑟+𝑠

			P̃V3,3𝑘
𝑛−1,𝑟 ,𝑠

			.
6. A general reciprocity theorem

In this section, we prove a general reciprocity theorem, Theorem 6.1. Using this theorem, we will prove
the Cigler–Krattenthaler conjectures, Theorems 1.4 and 1.5, in the next section.
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Following the notation in [3], let 𝑅 (𝑛) be the operator defined on polynomials in 𝑏𝑖’s and 𝜆𝑖’s that
replaces each 𝑏𝑖 by 𝑏𝑛−𝑖 and each 𝜆𝑖 by 𝜆𝑛+1−𝑖 . For example, 𝑅 (5) (𝑏1 + 𝜆2 + 𝑏

2
3𝜆1) = 𝑏4 + 𝜆4 + 𝑏

2
2𝜆5.

Recall the matrix 𝐴≤𝑘 (𝒃, 𝝀) given in (13). We now state the general reciprocity theorem.

Theorem 6.1. For positive integers k and m, we have

det
(
𝜇≤𝑘+𝑚−1
𝑛+𝑖+ 𝑗+2𝑚−2(𝒃, 𝝀)

) 𝑘−1

𝑖, 𝑗=0

=

(
𝑘+𝑚−1∏
𝑖=1

𝜆𝑘−𝑖𝑖

)
det

(
𝐴≤𝑘+𝑚−1(𝒃, 𝝀)

)𝑛+2𝑚−2
𝑅 (𝑘+𝑚−1)

(
det

(
𝜇≤𝑘+𝑚−1
−𝑛−𝑖− 𝑗 (𝒃, 𝝀)

)𝑚−1

𝑖, 𝑗=0

)
.

Before proving Theorem 6.1, we define several terminologies and prove some auxiliary results.

Definition 6.2. For a matrix 𝐴 = (𝐴𝑖, 𝑗 )
𝑘
𝑖, 𝑗=0 and two subsets 𝐼, 𝐽 ⊆ {0, . . . , 𝑘} of the same cardinality,

we define

[𝐴]𝐼 ,𝐽 = det(𝐴𝑖, 𝑗 )𝑖∈𝐼 , 𝑗∈𝐽 .

The following well-known lemma is an important tool in our proofs.

Lemma 6.3. Suppose that 𝐴 = (𝐴𝑖, 𝑗 )
𝑘
𝑖, 𝑗=0 is an invertible matrix. For subsets 𝐼, 𝐽 ⊆ {0, . . . , 𝑘} of the

same cardinality, we have [
𝐴−1]

𝐼 ,𝐽
= (−1) ‖𝐼 ‖+‖𝐽 ‖

[𝐴]𝐽 ′,𝐼 ′

det(𝐴)
,

where ‖𝐼 ‖ =
∑

𝑖∈𝐼 𝑖 and 𝐼 ′ = {0, . . . , 𝑘} \ 𝐼.

Definition 6.4. Let 𝐴 = (𝐴𝑖, 𝑗 )
𝑘
𝑖, 𝑗=0. We define the weighted directed graph 𝐺 (𝐴) whose vertex set is

𝑉 (𝐴) = {(𝑖, 𝑗) : 𝑖 ∈ Z, 𝑗 ∈ {0, . . . , 𝑘}} and edge set is 𝐸 (𝐴) = {(𝑖, 𝑗) → (𝑖 + 1, 𝑗 ′) : 𝑖 ∈ Z, 𝑗 , 𝑗 ′ ∈
{0, . . . , 𝑘}}. We assign the weight 𝐴 𝑗 , 𝑗′ to each edge (𝑖, 𝑗) → (𝑖 + 1, 𝑗 ′) and ignore the edges with zero
weights.

For 𝑢, 𝑣 ∈ 𝑉 (𝐴), let 𝑃(𝐺 (𝐴); 𝑢 → 𝑣) be the set of paths in𝐺 (𝐴) from u to v. The weight wt𝐴(𝜋) of a
path 𝜋 is defined to be the product of weights on its edges. For 𝑢0, . . . , 𝑢𝑛, 𝑣0, . . . , 𝑣𝑛 ∈ 𝑉 (𝐴), we define
NI(𝐺 (𝐴); (𝑢0, . . . , 𝑢𝑛) → (𝑣0, . . . , 𝑣𝑛)) to be the set of tuples 𝝅 = (𝜋0, . . . , 𝜋𝑛) of nonintersecting
paths (i.e., no two paths meet at a vertex in 𝑉 (𝐴)), such that each 𝜋𝑖 is a path in 𝐺 (𝐴) from 𝑢𝑖 to 𝑣 𝑗 for
some j. For such a path tuple 𝝅, there exists a permutation 𝜎 of {0, . . . , 𝑛} such that each 𝜋𝑖 is a path
from 𝑢𝑖 to 𝑣𝜎 (𝑖) . The weight wt𝐴(𝝅) of the path tuple is defined to be sgn(𝜎)

∏𝑛
𝑖=0 wt𝐴(𝜋𝑖).

Note that if 𝐴 is the tridiagoanl matrix 𝐴≤𝑘 (𝒃, 𝝀), then, for any 𝑖 ∈ Z, a path 𝜋 in 𝑃(𝐺 (𝐴); (𝑖, 0) →
(𝑖 + 𝑛, 0)) can be identified with a Motzkin path in Mot≤𝑘𝑛 , and we have

𝜇≤𝑘
𝑛 (𝒃, 𝝀) =

∑
𝜋∈Mot≤𝑘𝑛

wt(𝜋) =
∑

𝜋∈𝑃 (𝐺 (𝐴);(𝑖,0)→(𝑖+𝑛,0))
wt𝐴(𝜋). (19)

Moreover, by Proposition 5.1,

𝜇≤𝑘
−𝑛 (𝒃, 𝝀) = 𝜖

𝑇
0

(
𝐴−1

)𝑛
𝜖0 =

∑
𝜋∈𝑃 (𝐺 (𝐴−1);(𝑖,0)→(𝑖+𝑛,0))

wt𝐴−1 (𝜋). (20)

Lemma 6.5. For the tridiagoanl matrix 𝐴 = 𝐴≤𝑘 (𝒃, 𝝀), the following statements hold.

1. Given 𝐼, 𝐽 ⊆ {0, . . . , 𝑘} of the same cardinality and {0, . . . , 𝑖} ⊆ 𝐼 for some i, if J misses two or
more elements in {0, . . . , 𝑖 + 1}, then [𝐴]𝐼 ,𝐽 = 0.
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2. Given 𝐼 ⊆ {0, . . . , 𝑖 − 1}, 𝐽 ⊆ {0, . . . , 𝑖} of the same cardinality, we have

[𝐴]𝐼∪{𝑖,...,𝑘−1},𝐽∪{𝑖+1,...,𝑘 } = [𝐴]𝐼 ,𝐽 ,

[𝐴]𝐼∪{𝑖+1,...,𝑘 },𝐽∪{𝑖,...,𝑘−1} = [𝐴]𝐼 ,𝐽

𝑘∏
𝑗=𝑖+1

𝜆 𝑗 .

Proof. (1) Let B be the submatrix of 𝐴 consisting of the rows indexed by 0, . . . , 𝑖. Since A is a tridiagonal
matrix, the jth column of B is zero if 𝑗 > 𝑖 + 1. So if J misses two or more elements in 0, . . . , 𝑖 + 1, the
submatrix of B consisting of the columns indexed by J has rank at most i. We conclude [𝐴]𝐼 ,𝐽 = 0.

(2) The submatrix of A with rows indexed by 𝑖, . . . , 𝑘 − 1 and columns indexed by 𝑖 + 1, . . . , 𝑘 is a
lower triangular matrix with diagonal entries all 1. So the first identity follows. Likewise, the submatrix
of A with rows indexed by 𝑖 + 1, . . . , 𝑘 and columns indexed by 𝑖, . . . , 𝑘 − 1 is an upper triangular matrix
with diagonal entries 𝜆𝑖+1, . . . , 𝜆𝑘 . This gives the second identity. �

Lemma 6.6. Letting 𝐴 = 𝐴≤𝑘+𝑚−1(𝒃, 𝝀), we have

det
(
𝜇≤𝑘+𝑚−1
𝑛+𝑖+ 𝑗+2𝑚−2(𝒃, 𝝀)

) 𝑘−1

𝑖, 𝑗=0
=

(
𝑘−1∏
𝑖=1

𝜆𝑘−𝑖𝑖

) ∑
(𝐼0 ,...,𝐼𝑛+2𝑚−2) ∈𝑋

𝑛+2𝑚−3∏
𝑗=0

[𝐴]𝐼 𝑗 ,𝐼 𝑗+1 ,

where X is the set of all tuples (𝐼0, . . . , 𝐼𝑛+2𝑚−2) of k-element subsets of {0, . . . , 𝑘 + 𝑚 − 1} such that
𝐼 𝑗 , 𝐼𝑛+2𝑚−2− 𝑗 ⊆ {0, . . . , 𝑘 − 1 + 𝑗} for all 0 ≤ 𝑗 ≤ 𝑚 − 1.

Proof. By (19), we have

𝜇≤𝑘+𝑚−1
𝑛+𝑖+ 𝑗+2𝑚−2(𝒃, 𝝀) =

∑
𝜋∈𝑃 (𝐺 (𝐴);(−𝑖,0)→(𝑛+2𝑚−2+ 𝑗 ,0))

wt𝐴(𝜋).

Thus, the Lindström–Gessel–Viennot lemma [6, 13] gives

det
(
𝜇≤𝑘+𝑚−1
𝑛+𝑖+ 𝑗+2𝑚−2(𝒃, 𝝀)

) 𝑘−1

𝑖, 𝑗=0
=

∑
𝝅∈NI(𝐺 (𝐴);𝑅→𝑆)

wt𝐴(𝝅),

where 𝑅 = ((0, 0), (−1, 0), . . . , (−𝑘+1, 0)) and 𝑆 = ((𝑛+2𝑚−2, 0), (𝑛+2𝑚−1, 0), . . . , (𝑛+2𝑚+𝑘−3, 0)).
Suppose 𝝅 = (𝜋0, . . . , 𝜋𝑘−1) ∈ NI(𝐺 (𝐴); 𝑅 → 𝑆). Since 𝜋0, . . . , 𝜋𝑘−1 are nonintersecting Motzkin

paths and each 𝜋𝑖 is from (−𝑖, 0) to (𝑛 + 2𝑚 − 2 + 𝜎(𝑖), 0), for some permutation 𝜎, the first 𝑖 steps
(resp. last 𝜎(𝑖) steps) of 𝜋𝑖 are up steps (resp. down steps) whose weights are 1’s (resp. 𝜆1, . . . , 𝜆𝜎 (𝑖) ).
Considering the subpath obtained from 𝜋𝑖 by deleting the first 𝑖 steps and last 𝜎(𝑖) steps, we obtain

det
(
𝜇≤𝑘+𝑚−1
𝑛+𝑖+ 𝑗+2𝑚−2(𝒃, 𝝀)

) 𝑘−1

𝑖, 𝑗=0
=

(
𝑘−1∏
𝑖=1

𝜆𝑘−𝑖𝑖

) ∑
𝝅∈NI(𝐺 (𝐴);𝑅1→𝑆1)

wt𝐴(𝝅), (21)

where 𝑅1 = ((0, 0), (0, 1), . . . , (0, 𝑘−1)) and 𝑆1 = ((𝑛+2𝑚−2, 0), (𝑛+2𝑚−2, 1), . . . , (𝑛+2𝑚−2, 𝑘−1)).
For each 𝝅 = (𝜋0, . . . , 𝜋𝑘−1) ∈ NI(𝐺 (𝐴); 𝑅1 → 𝑆1), we define 𝐼 (𝝅) = (𝐼0, . . . , 𝐼𝑛+2𝑚−2), where

each 𝐼 𝑗 is the k-element subset of {0, . . . , 𝑘 + 𝑚 − 1} consisting of the y-coordinates of the points
of 𝜋0, . . . , 𝜋𝑘−1 on the line 𝑥 = 𝑗 . For brevity we write 𝑰 = (𝐼0, . . . , 𝐼𝑛+2𝑚−2). Observe that, since
𝝅 ∈ NI(𝐺 (𝐴); 𝑅1 → 𝑆1), we have 𝐼0 = 𝐼𝑛+2𝑚−2 = {0, . . . , 𝑘 − 1}. Moreover, since 𝜋0, . . . , 𝜋𝑘−1 are
Motzkin paths, we also have 𝐼 𝑗 , 𝐼𝑛+2𝑚−2− 𝑗 ⊆ {0, . . . , 𝑘 − 1 + 𝑗} for all 0 ≤ 𝑗 ≤ 𝑚 − 1; that is, 𝑰 ∈ 𝑋 .
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Therefore, we can rewrite (21) as

det
(
𝜇≤𝑘+𝑚−1
𝑛+𝑖+ 𝑗+2𝑚−2(𝒃, 𝝀)

) 𝑘−1

𝑖, 𝑗=0
=

(
𝑘−1∏
𝑖=1

𝜆𝑘−𝑖𝑖

) ∑
𝑰 ∈𝑋

∑
𝝅∈NI(𝐺 (𝐴);𝑅1→𝑆1)

𝐼 (𝝅)=𝑰

wt𝐴(𝝅). (22)

For a fixed tuple 𝑰 = (𝐼0, . . . , 𝐼𝑛+2𝑚−2) ∈ 𝑋 , applying the Lindström–Gessel–Viennot lemma repeat-
edly to the paths (of length 1) starting from the points ( 𝑗 , 𝑟) for 𝑟 ∈ 𝐼 𝑗 to the points ( 𝑗 +1, 𝑠) for 𝑠 ∈ 𝐼 𝑗+1,
we obtain ∑

𝝅∈NI(𝐺 (𝐴);𝑅1→𝑆1)
𝐼 (𝝅)=𝑰

wt𝐴(𝝅) =
𝑛+2𝑚−3∏

𝑗=0
[𝐴]𝐼 𝑗 ,𝐼 𝑗+1 . (23)

Combining (22) and (23) completes the proof. �

Lemma 6.7. Letting 𝐴 = 𝐴≤𝑘+𝑚−1(𝒃, 𝝀), we have

det
(
𝜇≤𝑘+𝑚−1
−𝑛−𝑖− 𝑗 (𝒃, 𝝀)

)𝑚−1

𝑖, 𝑗=0

=
∑

(𝐽0 ,...,𝐽𝑛+2𝑚−2) ∈𝑌

𝑚−2∏
𝑗=0

[𝐴−1]𝐽 𝑗 ,𝐽 𝑗+1\{0}

𝑛+𝑚−2∏
𝑗=𝑚−1

[𝐴−1]𝐽 𝑗 ,𝐽 𝑗+1

𝑛+2𝑚−3∏
𝑗=𝑛+𝑚−1

[𝐴−1]𝐽 𝑗\{0},𝐽 𝑗+1 ,

where Y is the set of all tuples (𝐽0, . . . , 𝐽𝑛+2𝑚−2) of subsets of {0, . . . , 𝑘 +𝑚 −1} satisfying the following
conditions:

1. Both 𝐽 𝑗 and 𝐽𝑛+2𝑚−2− 𝑗 have cardinality 𝑗 + 1 and contain 0 for all 0 ≤ 𝑗 ≤ 𝑚 − 1.
2. |𝐽 𝑗 | = 𝑚 for all 𝑚 − 1 ≤ 𝑗 ≤ 𝑛 + 𝑚 − 1.
3. 𝐽 𝑗 ∩ {1, . . . , 𝑚 − 1 − 𝑗} = 𝐽𝑛+2𝑚−2− 𝑗 ∩ {1, . . . , 𝑚 − 1 − 𝑗} = ∅ for all 0 ≤ 𝑗 ≤ 𝑚 − 2.

Proof. By (20) and the Lindström–Gessel–Viennot lemma, we have

det
(
𝜇≤𝑘+𝑚−1
−𝑛−𝑖− 𝑗 (𝒃, 𝝀)

)𝑚−1

𝑖, 𝑗=0
=

∑
𝝅∈NI(𝐺 (𝐴−1);𝑅→𝑆)

wt𝐴−1 (𝝅), (24)

where 𝑅 = ((𝑚 − 1, 0), (𝑚 − 2, 0), . . . , (0, 0)) and 𝑆 = ((𝑛 +𝑚 − 1, 0), (𝑛 +𝑚, 0), . . . , (𝑛 + 2𝑚 − 2, 0)).
For each 𝝅 = (𝜋0, . . . , 𝜋𝑚−1) ∈ NI(𝐺 (𝐴−1); 𝑅 → 𝑆), we define 𝐽 (𝝅) = (𝐽0, . . . , 𝐽𝑛+2𝑚−2), where 𝐽 𝑗

is the subset of {0, . . . , 𝑘 + 𝑚 − 1} consisting of the y-coordinates of the points of 𝜋0, . . . , 𝜋𝑚−1 on the
line 𝑥 = 𝑗 . For brevity, we write 𝑱 = (𝐽0, . . . , 𝐽𝑛+2𝑚−2). It is easy to check that the tuple 𝑱 satisfies the
first two conditions for the elements in 𝑌 . Let 𝑍 be the set of such tuples 𝑱. Then we can rewrite (24) as

det
(
𝜇≤𝑘+𝑚−1
−𝑛−𝑖− 𝑗 (𝒃, 𝝀)

)𝑚−1

𝑖, 𝑗=0
=

∑
𝑱 ∈𝑍

∑
𝝅∈NI(𝐺 (𝐴−1);𝑅→𝑆)

𝐽 (𝝅)=𝑱

wt𝐴−1 (𝝅). (25)

For a fixed tuple 𝑱 = (𝐽0, . . . , 𝐽𝑛+2𝑚−2) ∈ 𝑍 , applying the Lindström–Gessel–Viennot lemma
repeatedly to the paths (of length 1) starting from the points ( 𝑗 , 𝑟) for 𝑟 ∈ 𝐽 𝑗 to the points ( 𝑗 + 1, 𝑠) for
𝑠 ∈ 𝐽 𝑗+1, where we ignore the point ( 𝑗 + 1, 0) (resp. ( 𝑗 , 0)) if 0 ≤ 𝑗 ≤ 𝑚 − 2 (resp. 𝑛 + 𝑚 − 1 ≤ 𝑗 ≤
𝑛 + 2𝑚 − 3), we obtain ∑

𝝅∈NI(𝐺 (𝐴−1);𝑅→𝑆)
𝐽 (𝝅)=𝑱

wt𝐴−1 (𝝅) = 𝑤(𝑱), (26)
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where

𝑤(𝑱) =
𝑚−2∏
𝑗=0

[𝐴−1]𝐽 𝑗 ,𝐽 𝑗+1\{0}

𝑛+𝑚−2∏
𝑗=𝑚−1

[𝐴−1]𝐽 𝑗 ,𝐽 𝑗+1

𝑛+2𝑚−3∏
𝑗=𝑛+𝑚−1

[𝐴−1]𝐽 𝑗\{0},𝐽 𝑗+1 .

Combining (25) and (26) gives

det
(
𝜇≤𝑘+𝑚−1
−𝑛−𝑖− 𝑗 (𝒃, 𝝀)

)𝑚−1

𝑖, 𝑗=0
=

∑
𝑱 ∈𝑍

𝑤(𝑱).

Since 𝑍 is the set of tuples (𝐽0, . . . , 𝐽𝑛+2𝑚−2) satisfying the conditions (1) and (2) (but not necessarily
(3)) for the elements in 𝑌 , it remains to show the following claim.

Claim. Let 𝑱 = (𝐽0, . . . , 𝐽𝑛+2𝑚−2) ∈ 𝑍 . If 𝐽 𝑗∩{1, . . . , 𝑚−1− 𝑗} ≠ ∅ or 𝐽𝑛+2𝑚−2− 𝑗∩{1, . . . , 𝑚−1− 𝑗} ≠ ∅

for some 0 ≤ 𝑗 ≤ 𝑚 − 2, then 𝑤(𝑱) = 0.

To prove the claim, suppose that 𝐽 𝑗 ∩{1, . . . , 𝑚−1− 𝑗} ≠ ∅ for some 0 ≤ 𝑗 ≤ 𝑚−2. Take the largest
𝑗 so that 𝐽 𝑗+1 ∩ {1, . . . , 𝑚 − 2 − 𝑗} = ∅, which is clearly true if 𝑗 = 𝑚 − 2. By Lemma 6.3, we have

[𝐴−1]𝐽 𝑗 ,𝐽 𝑗+1\{0} = (−1) ‖𝐽 𝑗 ‖+‖𝐽 𝑗+1\{0} ‖
[𝐴](𝐽 𝑗+1\{0})′, (𝐽 𝑗 )′

det(𝐴)
.

By the assumption on 𝑗 , we have {0, . . . , 𝑚 − 2 − 𝑗} ⊆ (𝐽 𝑗+1 \ {0})′ and 0, 𝑡 ∉ (𝐽 𝑗 )
′ for some

𝑡 ∈ {1, . . . , 𝑚 − 1 − 𝑗}. Thus, by Lemma 6.5 (1), we have [𝐴](𝐽 𝑗+1\{0})′, (𝐽 𝑗 )′ = 0, which implies
𝑤(𝑱) = 0. Similarly, one can prove that if 𝐽𝑛+2𝑚−2− 𝑗 ∩ {1, . . . , 𝑚 − 𝑗 − 1} ≠ ∅ for some 0 ≤ 𝑗 ≤ 𝑚 − 2,
then 𝑤(𝑱) = 0. This settles the claim and the proof is completed. �

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. Abusing the notation, let 𝑅 (𝑘+𝑚−1) also denote the operator acting on the subsets
K of {0, . . . , 𝑘 + 𝑚 − 1} by

𝑅 (𝑘+𝑚−1) (𝐾) = {𝑘 + 𝑚 − 1 − 𝑖 : 𝑖 ∈ 𝐾}.

Recall the sets 𝑋 and 𝑌 given in Lemmas 6.6 and 6.7, respectively. We define the map 𝑓 : 𝑋 → 𝑌 by
𝑓 (𝐼0, . . . , 𝐼𝑛+2𝑚−2) = (𝐽0, . . . , 𝐽𝑛+2𝑚−2), where

𝐽 𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{0} ∪ 𝑅 (𝑘+𝑚−1) ({0, . . . , 𝑘 − 1 + 𝑗} \ 𝐼 𝑗 ) if 0 ≤ 𝑗 ≤ 𝑚 − 1,
𝑅 (𝑘+𝑚−1) ({0, . . . , 𝑘 + 𝑚 − 1} \ 𝐼 𝑗 ) if 𝑚 − 1 ≤ 𝑗 ≤ 𝑛 + 𝑚 − 1,
{0} ∪ 𝑅 (𝑘+𝑚−1) ({0, . . . , 𝑘 + 𝑛 + 2𝑚 − 3 − 𝑗} \ 𝐼 𝑗 ) if 𝑛 + 𝑚 − 1 ≤ 𝑗 ≤ 𝑛 + 2𝑚 − 2.

(27)

Note that 𝐽 𝑗 is well-defined when 𝑗 = 𝑚 − 1 or 𝑗 = 𝑛 − 𝑚 − 1. It is not hard to see that the map f is a
bijection.

We claim that, for 0 ≤ 𝑗 ≤ 𝑚 − 2,

[𝐴−1]𝐽 𝑗 ,𝐽 𝑗+1\{0} = (−1) ‖𝐽 𝑗 ‖+‖𝐽 𝑗+1\{0} ‖
𝑅 (𝑘+𝑚−1) ( [𝐴]𝐼 𝑗+1 ,𝐼 𝑗 )

det(𝐴)
. (28)

To prove the claim, we first use Lemma 6.3 to obtain

[𝐴−1]𝐽 𝑗 ,𝐽 𝑗+1\{0} = (−1) ‖𝐽 𝑗 ‖+‖𝐽 𝑗+1\{0} ‖
[𝐴](𝐽 𝑗+1\{0})′, (𝐽 𝑗 )′

det(𝐴)
. (29)
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Note that, for 0 ≤ 𝑗 ≤ 𝑚 − 2, (27) implies

(𝐽 𝑗 )
′ = {0, . . . , 𝑘 + 𝑚 − 1} \ 𝐽 𝑗 = 𝑅 (𝑘+𝑚−1) (𝐼 𝑗 ∪ {𝑘 + 𝑗 , . . . , 𝑘 + 𝑚 − 2}),

(𝐽 𝑗+1 \ {0})′ = {0, . . . , 𝑘 + 𝑚 − 1} \ (𝐽 𝑗+1 \ {0})

= 𝑅 (𝑘+𝑚−1) (𝐼 𝑗+1 ∪ {𝑘 + 𝑗 + 1, . . . , 𝑘 + 𝑚 − 1}).

Thus, the right-hand side of (29) is equal to

(−1) ‖𝐽 𝑗 ‖+‖𝐽 𝑗+1\{0} ‖
[𝐴]𝑅 (𝑘+𝑚−1) (𝐼 𝑗∪{𝑘+ 𝑗 ,...,𝑘+𝑚−2}) ,𝑅 (𝑘+𝑚−1) (𝐼 𝑗+1∪{𝑘+ 𝑗+1,...,𝑘+𝑚−1})

det(𝐴)

= (−1) ‖𝐽 𝑗 ‖+‖𝐽 𝑗+1\{0} ‖
𝑅 (𝑘+𝑚−1) ( [𝐴]𝐼 𝑗∪{𝑘+ 𝑗 ,...,𝑘+𝑚−2}) ,𝐼 𝑗+1∪{𝑘+ 𝑗+1,...,𝑘+𝑚−1})

det(𝐴)
,

which, by Lemma 6.5 (2), is equal to the right-hand side of (28), and the claim is proved.
A similar argument shows that, for 𝑚 − 1 ≤ 𝑗 ≤ 𝑛 + 𝑚 − 2,

[𝐴−1]𝐽 𝑗 ,𝐽 𝑗+1 = (−1) ‖𝐽 𝑗 ‖+‖𝐽 𝑗+1 ‖
𝑅 (𝑘+𝑚−1) ( [𝐴]𝐼 𝑗+1 ,𝐼 𝑗 )

det(𝐴)
, (30)

and, for 𝑛 + 𝑚 − 1 ≤ 𝑗 ≤ 𝑛 + 2𝑚 − 3,

[𝐴−1]𝐽 𝑗\{0},𝐽 𝑗+1 = (−1) ‖𝐽 𝑗\{0} ‖+‖𝐽 𝑗+1 ‖

(∏ 𝑗−𝑛−𝑚+1
𝑖=1 𝜆𝑘+𝑚−𝑖

)
𝑅 (𝑘+𝑚−1) ( [𝐴]𝐼 𝑗+1 ,𝐼 𝑗 )

det(𝐴)
. (31)

By (28), (30), and (31) and using the fact that ‖𝐽0‖ = ‖𝐽𝑛+2𝑚−2‖ = 0 and ‖𝐽 \ {0}‖ = ‖𝐽‖ for any
set 𝐽, we obtain

𝑚−2∏
𝑗=0

[𝐴−1]𝐽 𝑗 ,𝐽 𝑗+1\{0}

𝑛+𝑚−2∏
𝑗=𝑚−1

[𝐴−1]𝐽 𝑗 ,𝐽 𝑗+1

𝑛+2𝑚−3∏
𝑗=𝑛+𝑚−1

[𝐴−1]𝐽 𝑗\{0},𝐽 𝑗+1

=

∏𝑘+𝑚−1
𝑖=𝑘 𝜆𝑘−𝑖𝑖

det(𝐴)𝑛+2𝑚−2 𝑅
(𝑘+𝑚−1)
��

𝑛+2𝑚−2∏
𝑗=1

[𝐴]𝐼 𝑗+1 ,𝐼 𝑗
���. (32)

Since (𝐼0, . . . , 𝐼𝑛+2𝑚−2) ∈ 𝑋 if and only if (𝐼𝑛+2𝑚−2, . . . , 𝐼0) ∈ 𝑋 , combining Lemma 6.6, Lemma 6.7
and (32) completes the proof. �

7. Proof of Cigler–Krattenthaler conjectures

In this section, we show that Theorem 6.1 implies the Cigler–Krattenthaler conjectures, Theorems 1.4
and 1.5. To obtain Theorem 1.5, we can simply put 𝒃 = 1 and 𝝀 = 1 in Theorem 6.1. However, it is
more difficult to derive Theorem 1.4 from Theorem 6.1 because the left-hand side of the equation in
Theorem 1.4 is not of the form as written in Theorem 6.1. To remedy this, we find suitable sequences 𝒃
and 𝝀 such that

𝜇≤𝑘+𝑚−1
𝑛+𝑖+ 𝑗+2𝑚−2(𝒃, 𝝀) =

2𝑘+2𝑚−1∑
𝑠=0

𝜇≤2𝑘+2𝑚−1
𝑛+𝑖+ 𝑗+2𝑚−1,0,𝑠 (0, 1). (33)

Indeed, we will show in Lemma 7.3 that (33) holds if 𝒃 = 𝒃 (𝑘+𝑚−1) and 𝝀 = −1, where the sequences
𝒃 (ℓ) and −1 are defined by
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𝒃 (ℓ) =
(
𝑏 (ℓ)𝑖

)
𝑖≥0

, 𝑏 (ℓ)𝑖 =

{
(−1)𝑖2 if 0 ≤ 𝑖 < ℓ,

(−1)𝑖 if 𝑖 ≥ ℓ,
(34)

−1 = (−1,−1, . . . ). (35)

We will mostly consider 𝜇≤ℓ
𝑛 (𝒃 (ℓ) , 𝝀), which does not depend on the values 𝑏 (ℓ)𝑖 for 𝑖 > ℓ.

Remark 7.1. One may wonder how to guess that 𝒃 = 𝒃 (𝑘+𝑚−1) and 𝝀 = −1 is a solution to (33). Such a
solution can be found by computer once we fix the value of 𝑘 + 𝑚. For example, if 𝑘 + 𝑚 = 3, then the
sequences 𝒃 and 𝝀 must satisfy

𝜇≤2
𝑛 (𝒃, 𝝀) =

5∑
𝑠=0

𝜇≤5
𝑛+1,0,𝑠 (0, 1). (36)

Substituting 𝑛 = 1, . . . , 5 in (36) gives five equations with variables 𝑏0, 𝑏1, 𝑏2, 𝜆1, 𝜆2. One can check
by computer that there is a unique solution to these equations, which is 𝑏0 = 2, 𝑏1 = −2, 𝑏2 = 1, 𝜆1 =
−1, 𝜆2 = −1. After computing more solutions for different choices of 𝑘 + 𝑚, one can guess that
𝒃 = 𝒃 (𝑘+𝑚−1) and 𝝀 = −1 is a solution to (33).

Now we begin with a simple lemma.

Lemma 7.2. We have

det
(
𝐴≤𝑘−1(1, 1)

)
=

{
0 if 𝑘 ≡ 2 (mod 3),
(−1) �𝑘/3� otherwise,

(37)

det
(
𝐴≤𝑘−1(𝒃 (𝑘−1) ,−1)

)
= (−1) �𝑘/2� . (38)

Proof. To prove (37), we expand the determinant with respect to the first row to get

det
(
𝐴≤𝑘−1(1, 1)

)
= det

(
𝐴≤𝑘−2(1, 1)

)
− det

(
𝐴≤𝑘−3(1, 1)

)
.

Then (37) follows easily by induction on k.
For the second identity, let𝑈 = (𝑈𝑖, 𝑗 )

𝑘−1
𝑖, 𝑗=0 and 𝐿 = (𝐿𝑖, 𝑗 )

𝑘−1
𝑖, 𝑗=0 be the matrices defined by

𝑈𝑖, 𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if 𝑖 = 𝑗 ,

(−1)𝑖−1 if 𝑖 = 𝑗 − 1,
0 otherwise,

𝐿𝑖, 𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−1)𝑖 if 𝑖 = 𝑗 ,

−1 if 𝑖 = 𝑗 + 1,
0 otherwise.

It is easy to check that 𝐴≤𝑘−1(𝒃 (𝑘−1) ,−1) = 𝑈𝐿. Since U is an upper-triangular matrix with diagonal
entries all 1 and L is a lower-triangular matrix with diagonal entries 1,−1, 1,−1, . . . , we obtain (38). �

Since the proof of Theorem 1.5 is simpler than that of Theorem 1.4, we present it first.

Proof of Theorem 1.5. We put 𝒃 = 1 and 𝝀 = 1 in Theorem 6.1. Then Theorem 1.5 immediately follows
from (37) and

𝑅 (𝑘+𝑚−1)
(
𝜇≤𝑘+𝑚−1
−𝑛−𝑖− 𝑗 (𝒃, 𝝀)

)			𝒃=1,𝝀=1 = 𝜇≤𝑘+𝑚−1
−𝑛−𝑖− 𝑗 (1, 1). �

In order to prove Theorem 1.4, we need the following two technical lemmas whose proofs will be
given later.
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Lemma 7.3. For 𝑛 ≥ 0 and 𝑘 ≥ 1, we have

𝜇≤𝑘
𝑛 (𝒃 (𝑘) ,−1) =

2𝑘+1∑
𝑠=0

𝜇≤2𝑘+1
𝑛+1,0,𝑠 (0, 1).

Lemma 7.4. For 𝑛 ≥ 0 and 𝑘 ≥ 1, we have

(−1)𝑘𝑛
(
𝑅 (𝑘)

(
𝜇≤𝑘
−𝑛 (𝒃, 𝝀)

))			𝒃=𝒃 (𝑘) ,𝝀=−1 =
		Alt≤𝑘+1

𝑛

		.
Proof of Theorem 1.4. We put 𝒃 = 𝒃 (𝑘+𝑚−1) and 𝝀 = −1 in Theorem 6.1 and apply Lemma 7.3, (38)
and Lemma 7.4, which gives

det

(2𝑘+2𝑚−1∑
𝑠=0

𝜇≤2𝑘+2𝑚−1
𝑛+𝑖+ 𝑗+2𝑚−1,0,𝑠 (0, 1)

) 𝑘−1

𝑖, 𝑗=0

=

(
𝑘+𝑚−1∏
𝑖=1

(−1)𝑘−𝑖
)
(−1) �

𝑘+𝑚
2 � (𝑛+2𝑚−2) det

(
(−1) (𝑘+𝑚−1) (𝑛+𝑖+ 𝑗) | Alt≤𝑘+𝑚𝑛+𝑖+ 𝑗 |

)𝑚−1

𝑖, 𝑗=0
. (39)

Observe that
⌊
𝑘+𝑚

2
⌋
≡

(𝑘+𝑚
2

)
(mod 2) and

det
(
(−1) (𝑘+𝑚−1) (𝑛+𝑖+ 𝑗) | Alt≤𝑘+𝑚𝑛+𝑖+ 𝑗 |

)𝑚−1

𝑖, 𝑗=0
= (−1) (𝑘+𝑚−1)𝑛𝑚 det

(
| Alt≤𝑘+𝑚𝑛+𝑖+ 𝑗 |

)𝑚−1

𝑖, 𝑗=0
,

and (−1) (𝑘+𝑚−1)𝑛𝑚 = (−1)𝑘𝑚𝑛. Therefore, we can rewrite (39) as

det

(2𝑘+2𝑚−1∑
𝑠=0

𝜇≤2𝑘+2𝑚−1
𝑛+𝑖+ 𝑗+2𝑚−1,0,𝑠 (0, 1)

) 𝑘−1

𝑖, 𝑗=0

= 𝑠 · det
(
| Alt≤𝑘+𝑚𝑛+𝑖+ 𝑗 |

)𝑚−1

𝑖, 𝑗=0
,

where 𝑠 = (−1)𝑘 (𝑘+𝑚−1)−(𝑘+𝑚2 ) (−1)𝑛(
𝑘+𝑚

2 ) (−1)𝑘𝑛𝑚, which is equal to

(−1)𝑘𝑚+(𝑛+1) (𝑘+𝑚2 )+𝑘𝑛𝑚 = (−1)
(
𝑘𝑚+(𝑘+𝑚2 )

)
(𝑛+1)

= (−1)
(
(𝑘2)+(

𝑚
2 )

)
(𝑛+1)

.

This completes the proof. �

Now it remains to prove Lemmas 7.3 and 7.4.

Proof of Lemma 7.3. Using (14), we can restate the lemma as

𝜖𝑇0 (𝐴≤𝑘 (𝒃 (𝑘) ,−1))𝑛𝜖0 = 𝜖𝑇0 (𝐴≤2𝑘+1(0, 1))𝑛+1𝑣, (40)

where 𝑣 =
∑2𝑘+1

𝑠=0 𝜖𝑠 .
Fix the integer 𝑘 ≥ 1 and, for 𝑛 ≥ 0, let

(𝐴≤𝑘 (𝒃 (𝑘) ,−1))𝑛𝜖0 = (𝑎𝑛,0, . . . , 𝑎𝑛,𝑘 )
𝑇 ,

(𝐴≤2𝑘+1(0, 1))𝑛𝑣 = (𝑑𝑛,0, . . . , 𝑑𝑛,2𝑘+1)
𝑇 .
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We also define 𝑎𝑛, 𝑗 = 0 for 𝑗 ∉ {0, . . . , 𝑘} and 𝑑𝑛,𝑖 = 0 for 𝑖 ∉ {0, . . . , 2𝑘 + 1}. Then, by definition, we
have

𝑎𝑛+1,𝑖 = −𝑎𝑛,𝑖−1 + (−1)𝑖2𝑎𝑛,𝑖 + 𝑎𝑛,𝑖+1, 0 ≤ 𝑖 ≤ 𝑘 − 1, (41)

𝑎𝑛+1,𝑘 = −𝑎𝑛,𝑘−1 + (−1)𝑘𝑎𝑛,𝑘 , (42)

𝑑𝑛+1,𝑖 = 𝑑𝑛,𝑖−1 + 𝑑𝑛,𝑖+1, 0 ≤ 𝑖 ≤ 2𝑘 + 1, (43)

𝑑𝑛+1,𝑖 = 𝑑𝑛+1,2𝑘+1−𝑖 , 0 ≤ 𝑖 ≤ 2𝑘 + 1, (44)

where (44) follows from the symmetry of the matrix 𝐴≤2𝑘+1(0, 1).
We claim that, for all 𝑛 ≥ 0 and 0 ≤ 𝑖 ≤ 𝑘 , (with 𝑘 ≥ 1 fixed)

𝑑𝑛+1,𝑖 − 𝑑𝑛+1,𝑖−1 = 𝑎𝑛,𝑖 + (−1)𝑖−1𝑎𝑛,𝑖−1. (45)

Note that if 𝑖 = 0, we have 𝑑𝑛+1,0 = 𝑎𝑛,0, which is equivalent to (40). Thus, it suffices to prove the claim.
To prove the claim (45), we proceed by induction on n. The base case 𝑛 = 0 is easily checked by

(𝑑1,0, . . . , 𝑑1,2𝑘+1)
𝑇 = (𝐴≤2𝑘+1(0, 1))1𝑣 = (1, 2, . . . , 2, 1)𝑇 ,

(𝑎0,0, . . . , 𝑎0,𝑘 )
𝑇 = 𝜖0 = (1, 0, . . . , 0)𝑇 .

Now assume (45) is true for n and consider the case 𝑛 + 1. Suppose 0 ≤ 𝑖 ≤ 𝑘 − 1. By (43) and the
induction hypothesis,

𝑑𝑛+2,𝑖 − 𝑑𝑛+2,𝑖−1 = (𝑑𝑛+1,𝑖−1 + 𝑑𝑛+1,𝑖+1) − (𝑑𝑛+1,𝑖−2 + 𝑑𝑛+1,𝑖)

= 𝑎𝑛,𝑖−1 + (−1)𝑖−2𝑎𝑛,𝑖−2 + 𝑎𝑛,𝑖+1 + (−1)𝑖𝑎𝑛,𝑖 .

However, by (41),

𝑎𝑛+1,𝑖 + (−1)𝑖−1𝑎𝑛+1,𝑖−1

= (−𝑎𝑛,𝑖−1 + (−1)𝑖2𝑎𝑛,𝑖 + 𝑎𝑛,𝑖+1) + (−1)𝑖−1(−𝑎𝑛,𝑖−2 + (−1)𝑖−12𝑎𝑛,𝑖−1 + 𝑎𝑛,𝑖)

= 𝑎𝑛,𝑖−1 + (−1)𝑖−2𝑎𝑛,𝑖−2 + 𝑎𝑛,𝑖+1 + (−1)𝑖𝑎𝑛,𝑖 .

Thus, 𝑑𝑛+2,𝑖 − 𝑑𝑛+2,𝑖−1 = 𝑎𝑛+1,𝑖 + (−1)𝑖−1𝑎𝑛+1,𝑖−1. Suppose 𝑖 = 𝑘 . By (43), (44) and the induction
hypothesis,

𝑑𝑛+2,𝑘 − 𝑑𝑛+2,𝑘−1 = (𝑑𝑛+1,𝑘−1 + 𝑑𝑛+1,𝑘+1) − (𝑑𝑛+1,𝑘−2 + 𝑑𝑛+1,𝑘 )

= 𝑑𝑛+1,𝑘−1 − 𝑑𝑛+1,𝑘−2

= 𝑎𝑛,𝑘−1 + (−1)𝑘−2𝑎𝑛,𝑘−2.

However, by (42),

𝑎𝑛+1,𝑘 + (−1)𝑘−1𝑎𝑛+1,𝑘−1

= (−𝑎𝑛,𝑘−1 + (−1)𝑘𝑎𝑛,𝑘 ) + (−1)𝑘−1(−𝑎𝑛,𝑘−2 + (−1)𝑘−12𝑎𝑛,𝑘−1 + 𝑎𝑛,𝑘 )

= 𝑎𝑛,𝑘−1 + (−1)𝑘−2𝑎𝑛,𝑘−2.

Thus, we also have 𝑑𝑛+2,𝑖 − 𝑑𝑛+2,𝑖−1 = 𝑎𝑛+1,𝑖 + (−1)𝑖−1𝑎𝑛+1,𝑖−1. This settles (45) by induction and the
proof is completed. �

In order to prove Lemma 7.4, we need the following two lemmas.
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Lemma 7.5. We have

| Alt≤𝑘+1
𝑛 | = 𝜖𝑇0 (𝐴′)𝑛𝑣,

where 𝑣 =
∑2𝑘+1

𝑠=0 𝜖𝑠 and 𝐴′ = (𝐴′
𝑖, 𝑗 )

2𝑘+1
𝑖, 𝑗=0 is the matrix defined by

𝐴′
𝑖, 𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if 𝑖 ≡ 0 (mod 2), 𝑗 ≡ 1 (mod 2), and 𝑖 < 𝑗 ,

1 if 𝑖 ≡ 1 (mod 2), 𝑗 ≡ 0 (mod 2), and 𝑖 > 𝑗 ,

0 otherwise.

Proof. From the definition of 𝐴′, the value 𝜖𝑇0 (𝐴′)𝑛𝜖𝑠 equals the number of sequences (𝑎1, . . . , 𝑎𝑛)
satisfying the following three conditions:

1. 0 ≤ 𝑎𝑖 ≤ 2𝑘 + 1 and 𝑎𝑖 ≡ 𝑖 (mod 2),
2. 𝑎1 > 𝑎2 < 𝑎3 > 𝑎4 < · · · ,
3. 𝑎𝑛 = 𝑠.

So 𝜖𝑇0 (𝐴′)𝑛𝑣 counts the number of sequences (𝑎1, . . . , 𝑎𝑛) satisfying the conditions (1) and (2). Using
the bijection in Proposition 3.3, such sequences are in bijection with the elements of Alt≤𝑘+1

𝑛 . �

Lemma 7.6. We have

𝑅 (𝑘)
(
𝐴≤𝑘 (𝒃, 𝝀)

)			𝒃=𝒃 (𝑘) ,𝝀=−1 = 𝐵−1,

where 𝐵 = (𝐵𝑖, 𝑗 )
𝑘
𝑖, 𝑗=0 is the matrix defined by

𝐵𝑖, 𝑗 = (−1) �
𝑘−𝑖

2 �+
⌊
𝑘+1− 𝑗

2

⌋
(𝑘 + 1 − max(𝑖, 𝑗)).

Proof. Denote �̄� =
(
�̄�𝑖, 𝑗

) 𝑘
𝑖, 𝑗=0 =

(
𝑅 (𝑘) (𝐴≤𝑘 (𝒃, 𝝀))

)
|𝒃=𝒃 (𝑘) ,𝝀=−1. In other words,

�̄�𝑖, 𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)𝑘 if 𝑖 = 𝑗 = 0,
(−1)𝑘−𝑖2 if 𝑖 = 𝑗 ≥ 1,
−1 if 𝑖 = 𝑗 + 1,
1 if 𝑖 = 𝑗 − 1,
0 otherwise.

We must show
(
𝐵�̄�

)
𝑖, 𝑗 = 𝛿𝑖, 𝑗 for 0 ≤ 𝑖, 𝑗 ≤ 𝑘 , where 𝛿𝑖, 𝑗 = 1 if 𝑖 = 𝑗 and 𝛿𝑖, 𝑗 = 0 otherwise. To this

end, we consider the following three cases.
First, suppose 𝑗 = 0. Then

(
𝐵�̄�

)
𝑖,0 = (−1)𝑘𝐵𝑖,0 − 𝐵𝑖,1. Since 𝑘 =

⌊
𝑘
2
⌋
+

⌊
𝑘+1

2
⌋
,(

𝐵�̄�
)
𝑖,0 = (−1)𝑘 (−1) �

𝑘−𝑖
2 �+� 𝑘+1

2 � (𝑘 + 1 − 𝑖) − (−1) �
𝑘−𝑖

2 �+� 𝑘
2 � (𝑘 + 1 − max(𝑖, 1))

= (−1) �
𝑘−𝑖

2 �+� 𝑘
2 � (−𝑖 + max(𝑖, 1)) = 𝛿𝑖,0.

Second, suppose 1 ≤ 𝑗 ≤ 𝑘 − 1. Then(
𝐵�̄�

)
𝑖, 𝑗 = 𝐵𝑖, 𝑗−1 + (−1)𝑘− 𝑗2𝐵𝑖, 𝑗 − 𝐵𝑖, 𝑗+1.
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Letting 𝑠 = (−1) �
𝑘−𝑖

2 �+
⌊
𝑘− 𝑗

2

⌋
, we have

𝐵𝑖, 𝑗−1 = −𝑠(𝑘 + 1 − max(𝑖, 𝑗 − 1)),

(−1)𝑘− 𝑗2𝐵𝑖, 𝑗 = (−1)
⌊
𝑘− 𝑗

2

⌋
+
⌊
𝑘+1− 𝑗

2

⌋
2𝐵𝑖, 𝑗 = 2𝑠(𝑘 + 1 − max(𝑖, 𝑗)),

−𝐵𝑖, 𝑗+1 = −𝑠(𝑘 + 1 − max(𝑖, 𝑗 + 1)).

Thus, (
𝐵�̄�

)
𝑖, 𝑗 = 𝑠(max(𝑖, 𝑗 − 1) − 2 max(𝑖, 𝑗) + max(𝑖, 𝑗 + 1)) = 𝛿𝑖, 𝑗 .

Finally, suppose 𝑗 = 𝑘 . In this case, we have(
𝐵�̄�

)
𝑖,𝑘 = 𝐵𝑖,𝑘−1 + 2𝐵𝑖,𝑘

= (−1) �
𝑘−𝑖

2 �+1(𝑘 + 1 − max(𝑖, 𝑘 − 1)) + 2(−1) �
𝑘−𝑖

2 � (𝑘 + 1 − 𝑘)

= (−1) �
𝑘−𝑖

2 � (max(𝑖, 𝑘 − 1) − 𝑘 + 1) = 𝛿𝑖,𝑘 .

Therefore,
(
𝐵�̄�

)
𝑖, 𝑗 = 𝛿𝑖, 𝑗 for all 0 ≤ 𝑖, 𝑗 ≤ 𝑘 and the lemma follows. �

Now we are ready to prove Lemma 7.4.

Proof of Lemma 7.4. Recall the matrices 𝐴′ and B in Lemmas 7.5 and 7.6, respectively. By these lemmas
and Proposition 5.1, it is enough to show

𝜖𝑇0 (𝐴′)𝑛𝑣 = (−1)𝑘𝑛𝜖𝑇0 𝐵
𝑛𝜖0, (46)

where 𝑣 =
∑2𝑘+1

𝑠=0 𝜖𝑠 .
Denote (𝐴′)𝑛𝑣 = (𝑎𝑛,0, . . . , 𝑎𝑛,2𝑘+1)

𝑇 and 𝐵𝑛𝜖0 = (𝑏𝑛,0, . . . , 𝑏𝑛,𝑘 )
𝑇 . We have 𝑎𝑛,𝑖 = 𝑎𝑛,2𝑘+1−𝑖 for

0 ≤ 𝑖 ≤ 𝑘 due to the symmetry of the matrix 𝐴′.
We claim that for 0 ≤ 𝑖 ≤ 𝑘 ,

𝑎𝑛,𝑖 − 𝑎𝑛,𝑖−1 =

{
(−1)𝑛−1+� 𝑖−1

2 �𝑏𝑛,𝑖 if 𝑘 ≡ 1 (mod 2),
(−1) � 𝑖

2 �𝑏𝑛,𝑖 if 𝑘 ≡ 0 (mod 2),
(47)

where 𝑎𝑛,𝑖 = 𝑏𝑛,𝑖 = 0 if 𝑖 < 0. Observe that if 𝑖 = 0 in (47), we have 𝑎𝑛,0 = (−1)𝑛𝑏𝑛,0 if 𝑘 ≡ 1 (mod 2)
and 𝑎𝑛,0 = 𝑏𝑛,0 if 𝑘 ≡ 0 (mod 2), which is equivalent to (46). Hence, it suffices to prove (47).

To prove the claim (47), we proceed by induction on n. The base case 𝑛 = 0 is trivial. Now assume
(47) is true for n and consider the case 𝑛 + 1. We will only prove the case when k is even because the
other case can be proved similarly.

For 0 ≤ 𝑖 ≤ 𝑘 , using the symmetry 𝑎𝑛,𝑖 = 𝑎𝑛,2𝑘+1−𝑖 , we get

𝑎𝑛+1,𝑖 =
2𝑘+1∑
𝑗=0

𝐴′
𝑖, 𝑗𝑎𝑛, 𝑗 =

𝑘∑
𝑗=0

(
𝐴′
𝑖, 𝑗 + 𝐴

′
𝑖,2𝑘+1− 𝑗

)
𝑎𝑛, 𝑗 ,

which implies

𝑎𝑛+1,𝑖 =

{∑𝑘
𝑗=0 𝑎𝑛, 𝑗 −

∑𝑖/2
𝑗=0 𝑎𝑛,2 𝑗−1 if 𝑖 ≡ 0 (mod 2),∑(𝑖−1)/2

𝑗=0 𝑎𝑛,2 𝑗 if 𝑖 ≡ 1 (mod 2).
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Therefore, we have

𝑎𝑛+1,𝑖 − 𝑎𝑛+1,𝑖−1 = (−1)𝑖
𝑘∑
𝑗=𝑖

𝑎𝑛, 𝑗 . (48)

Using the induction hypothesis, we sum the identities (47), where the index 𝑖 takes the values 𝑖, 𝑖−1, . . . , 1,
to obtain

𝑎𝑛,𝑖 =
𝑖∑
𝑗=0

(−1)
⌊
𝑗
2

⌋
𝑏𝑛, 𝑗 . (49)

Now we compare both sides of (47) for the case 𝑛 + 1. By (48) and (49), we have

𝑎𝑛+1,𝑖 − 𝑎𝑛+1,𝑖−1 =
𝑖∑
𝑗=0

(−1)𝑖+
⌊
𝑗
2

⌋
(𝑘 + 1 − 𝑖)𝑏𝑛, 𝑗 +

𝑘∑
𝑗=𝑖+1

(−1)𝑖+
⌊
𝑗
2

⌋
(𝑘 + 1 − 𝑗)𝑏𝑛, 𝑗 . (50)

However,

(−1) �
𝑖
2 �𝑏𝑛+1,𝑖 = (−1) �

𝑖
2 �

𝑘∑
𝑗=0

𝐵𝑖, 𝑗𝑏𝑛, 𝑗 =
𝑘∑
𝑗=0

(−1) �
𝑖
2 �+�

𝑘−𝑖
2 �+

⌊
𝑘+1− 𝑗

2

⌋
(𝑘 + 1 − max(𝑖, 𝑗))𝑏𝑛, 𝑗 ,

which is equal to the right-hand side of (50) because the assumption that 𝑘 is even implies

(−1) �
𝑖
2 �+�

𝑘−𝑖
2 �+

⌊
𝑘+1− 𝑗

2

⌋
= (−1) �

𝑖
2 �+�

−𝑖
2 �+

⌊
1− 𝑗

2

⌋
= (−1)𝑖+

⌊
𝑗
2

⌋
.

Therefore, (47) is also true for 𝑛 + 1. By induction, the claim is settled, which completes the proof. �

We finish this section by presenting an interesting consequence of Lemma 7.4.

Corollary 7.7. We have∑
𝑛≥1

| Alt≤𝑘+1
𝑛 |𝑥𝑛 =

− 𝑦

𝑦 − 𝑏0 −
− 1

𝑦 − 𝑏1 −
− 1

𝑦 − 𝑏2 − . . . −
− 1

𝑦 − 𝑏𝑘

,

where 𝑦 = (−1)𝑘𝑥 and

𝑏𝑖 =

{
(−1)𝑘 if 𝑖 = 0,
(−1)𝑘−𝑖2 if 1 ≤ 𝑖 ≤ 𝑘.

Proof. This is immediate from Proposition 2.7 and Lemma 7.4. �

It would be interesting to find a direct combinatorial proof of Corollary 7.7.

8. Application of the general reciprocity theorem

In this section, we show that the general reciprocity theorem (Theorem 6.1) implies the following
result of Cigler and Krattenthaler [3, Theorem 34]. Using this theorem, we give a generalization of a
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result on reverse plane partitions, which was conjectured by Morales, Pak and Panova [14] and proved
independently by Hwang et al. [9] and Guo et al. [7].

Theorem 8.1 [3, Theorem 34]. We have

det
(
𝜇≤2𝑘+2𝑚−1

2𝑛+2𝑖+2 𝑗+4𝑚−2(0, 𝝀)
) 𝑘−1

𝑖, 𝑗=0

=

(
𝑘+𝑚−1∏
𝑖=1

𝜆𝑘−𝑖2𝑖

𝑘+𝑚∏
𝑖=1

𝜆𝑘−𝑖+𝑛+2𝑚−1
2𝑖−1

)
𝑅 (2𝑘+2𝑚−1)

(
det

(
𝜇≤2𝑘+2𝑚−1
−2𝑛−2𝑖−2 𝑗 (0, 𝝀)

)𝑚−1

𝑖, 𝑗=0

)
.

We note that the statement in [3, Theorem 34] uses the change of variables 𝜆2𝑖−1 = 𝐴−1
𝑖 𝑉

−1
𝑖 and

𝜆2𝑖 = 𝐴−1
𝑖 𝑉

−1
𝑖+1.

As before, let 𝒃 = (𝑏𝑖)𝑖≥0 and 𝝀 = (𝜆𝑖)𝑖≥1 be sequences of indeterminates. We define 𝜆0 = 0 and the
following sequences:

𝒃′ =
(
𝑏′𝑖

)
𝑖≥0, 𝑏′𝑖 = 𝜆2𝑖 + 𝜆2𝑖+1,

𝝀′ =
(
𝜆′𝑖

)
𝑖≥1, 𝜆′𝑖 = 𝜆2𝑖−1𝜆2𝑖 ,

𝒃′′ =
(
𝑏′′𝑖

)
𝑖≥0, 𝑏′′𝑖 = 𝜆2𝑖+1 + 𝜆2𝑖+2,

𝝀′′ =
(
𝜆′′𝑖

)
𝑖≥1, 𝜆′′𝑖 = 𝜆2𝑖𝜆2𝑖+1.

Lemma 8.2. We have

𝜇≤2𝑘−1
2𝑛 (0, 𝝀) = 𝜇≤𝑘−1

𝑛 (𝒃′, 𝝀′) = 𝜆1𝜇
≤𝑘−1
𝑛−1 (𝒃′′, 𝝀′′)

		
𝜆2𝑘=0.

Proof. This can be proved by the same method in the proof of [4, Proposition 4.2]. �

Lemma 8.3. We have

det
(
𝐴≤𝑘−1(𝒃′, 𝝀′)

)
=

𝑘∏
𝑖=1

𝜆2𝑖−1.

Proof. Expanding the determinant along the last row gives a simple recurrence for the left-hand side.
Then the lemma follows easily by induction. �

Lemma 8.4. We have(
𝑅 (𝑘−1)

(
𝜇≤𝑘−1
−𝑛 (𝒃, 𝝀)

))			𝒃=𝒃′,𝝀=𝝀′ = 𝑅 (2𝑘−1)
(
𝜆−1

1 𝜇≤2𝑘−1
−2𝑛+2 (0, 𝝀)

)
.

Proof. It is easy to see that(
𝑅 (𝑘−1)

(
𝜇≤𝑘−1
𝑛 (𝒃, 𝝀)

))			𝒃=𝒃′,𝝀=𝝀′ = 𝑅 (2𝑘−1)
(
𝜇≤𝑘−1
𝑛 (𝒃′′, 𝝀′′)

)			𝜆2𝑘=0,

where in the right-hand side 𝜇≤𝑘−1
𝑛 (𝒃′′, 𝝀′′) is a polynomial in 𝜆𝑖’s and the operator 𝑅 (2𝑘−1) replaces

𝜆𝑖 to 𝜆2𝑘−𝑖 . Thus, by Lemma 8.2, we obtain(
𝑅 (𝑘−1)

(
𝜇≤𝑘−1
𝑛 (𝒃, 𝝀)

))			𝒃=𝒃′,𝝀=𝝀′ = 𝑅 (2𝑘−1)
(
𝜆−1

1 𝜇≤2𝑘−1
2𝑛+2 (0, 𝝀)

)
.

Extending both sides to the negative indices completes the proof. �
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Proof of Theorem 8.1. We put 𝒃 = 𝒃′ and 𝝀 = 𝝀′ in Theorem 6.1. By Lemmas 8.2, 8.3 and 8.4, we get

det
(
𝜇≤2𝑘+2𝑚−1

2𝑛+2𝑖+2 𝑗+4𝑚−4 (0, 𝝀)
) 𝑘−1

𝑖, 𝑗=0

=

(
𝑘+𝑚−1∏
𝑖=1

𝜆𝑘−𝑖2𝑖−1𝜆
𝑘−𝑖
2𝑖

𝑘+𝑚∏
𝑖=1

𝜆𝑛+2𝑚−2
2𝑖−1

)
𝑅 (2𝑘+2𝑚−1)

(
det

(
𝜆−1

1 𝜇≤2𝑘+2𝑚−1
−2𝑛−2𝑖−2 𝑗+2(0, 𝝀)

)𝑚−1

𝑖, 𝑗=0

)
.

Pulling out the factor 𝜆−1
1 in the determinant and replacing 𝑛 by 𝑛 + 1 gives the desired equation. �

Now we will give an application of Theorem 8.1 to reverse plane partitions. We will use the definitions
of partitions and reverse plane partitions in Hwang et al. [9].

We denote by RPP(𝜆/𝜇) the set of reverse plane partitions of shape 𝜆/𝜇. We also denote by
RPP≤𝑘 (𝜆/𝜇) the set of reverse plane partitions in RPP(𝜆/𝜇) whose entries are contained in {0, . . . , 𝑘}.
For a reverse plane partition 𝑇 , we define |𝑇 | to be the sum of all entries in 𝑇 .

Recall that Alt2𝑛+1 is the set of sequences 𝑎1 ≤ 𝑎2 ≥ 𝑎3 ≤ · · · ≥ 𝑎2𝑛+1 of positive integers and
Alt≤𝑘2𝑛+1 is the set of sequences in Alt2𝑛+1 whose entries are contained in {1, . . . , 𝑘}. We define Alt2𝑛+1 to
be the set of sequences 𝑎1 ≥ 𝑎2 ≤ 𝑎3 ≥ · · · ≤ 𝑎2𝑛+1 of positive integers and define Alt

≤𝑘

2𝑛+1 to be the set
of sequences in Alt2𝑛+1 whose entries are contained in {1, . . . , 𝑘}. For a sequence 𝑠 = (𝑎1, . . . , 𝑎2𝑛+1)
in Alt2𝑛+1 or Alt2𝑛+1, let |𝑠 | = 𝑎1 + · · · + 𝑎2𝑛+1.

Morales, Pak and Panova [14] conjectured the following identity, which was proved independently
by Hwang et al. [9] and Guo et al. [7]:

∑
𝜋∈RPP(𝛿𝑛+2𝑚/𝛿𝑛)

𝑞 |𝜋 | = 𝑞−
𝑚(𝑚+1) (6𝑛+8𝑚−5)

6 det

���

∑
𝑠∈Alt2𝑛+2𝑖+2 𝑗+1

𝑞 |𝑠 |
����
𝑚−1

𝑖, 𝑗=0

, (51)

where 𝛿𝑛 = (𝑛−1, . . . , 0). In [9, Theorem 1.2] the matrix entries are generating functions for alternating
sequences of nonnegative integers (see [9, (20)]), whereas (51) uses alternating sequences of positive
integers. It is easy to check that the two statements are equivalent.

In [3, Theorem 36] Cigler and Krattenthaler gave an equivalent statement of Theorem 8.1 using
trapezoidal arrays. They also found a bijection between trapezoidal arrays and bounded plane partitions.
Using their bijection, a simple connection between bounded plane partitions and bounded reverse
plane partitions, a simple connection between Alt≤𝑘+𝑚2𝑛+1 and Alt

≤𝑘+𝑚

2𝑛+1 , and the change of variables
𝑉𝑖 ↦→ 𝑉𝑘+𝑚+1−𝑖 and 𝐴𝑖 ↦→ 𝐴𝑘+𝑚+1−𝑖 , we can restate [3, Theorem 36] as follows.

Theorem 8.5 [3, Theorem 36 (restated)]. We have

∑
𝑇 ∈RPP≤𝑘 (𝛿𝑛+2𝑚/𝛿𝑛)

wt(𝑇) = det

���

∑
𝑡 ∈Alt

≤𝑘+𝑚
2𝑛+2𝑖+2 𝑗+1

wt(𝑡)
����
𝑚−1

𝑖, 𝑗=0

, (52)

where for 𝑇 ∈ RPP≤𝑘 (𝛿𝑛+2𝑚/𝛿𝑛) and 𝑡 = (𝑡1, . . . , 𝑡2𝑝+1) ∈ Alt
≤𝑘+𝑚

2𝑝+1 ,

wt(𝑡) = 𝑉𝑡1𝑉𝑡3 · · ·𝑉𝑡2𝑛+1𝐴𝑡2𝐴𝑡4 · · · 𝐴𝑡2𝑛 ,

wt(𝑇) =
∏

(𝑖, 𝑗) ∈𝛿𝑛+2𝑚/𝛿𝑛

wt(𝑇 (𝑖, 𝑗)),

wt(𝑇 (𝑖, 𝑗)) =

{
𝐴𝑇 (𝑖, 𝑗)+�(𝑖+ 𝑗−𝑛+1)/2� if 𝑖 + 𝑗 − 𝑛 is odd,
𝑉𝑇 (𝑖, 𝑗)+�(𝑖+ 𝑗−𝑛+1)/2� if 𝑖 + 𝑗 − 𝑛 is even.
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Substituting 𝑉𝑖 = 𝐴𝑖 = 𝑞𝑖 in the equation (52) gives the following corollary.

Corollary 8.6. We have

∑
𝑆∈RPP≤𝑘 (𝛿𝑛+2𝑚/𝛿𝑛)

𝑞 |𝑆 | = 𝑞−
𝑚(𝑚+1) (6𝑛+8𝑚−5)

6 det

���

∑
𝑠∈Alt

≤𝑘+𝑚
2𝑛+2𝑖+2 𝑗+1

𝑞 |𝑠 |
����
𝑚−1

𝑖, 𝑗=0

.

If 𝑘 → ∞ in Corollary 8.6, we get (51).

9. Negative moments of Laurent biorthogonal polynomials

Recall that we have combinatorial reciprocity theorems for the number of Dyck paths of bounded height
and for the number of Motzkin paths of bounded height. Therefore, it is natural to ask whether there
is a reciprocity theorem for the number of Schröder paths of bounded height. In this section we study
the negative version of the number of Schröder paths with bounded height and its connection with the
negative moment of Laurent biorthogonal polynomials.

The Laurent biorthogonal polynomials (𝐿𝑛 (𝑥))𝑛≥0 can be defined by a three-term recurrence

𝐿𝑛+1 (𝑥) = (𝑥 − 𝑏𝑛)𝐿𝑛 (𝑥) − 𝑎𝑛𝑥𝐿𝑛−1 (𝑥), 𝑛 ≥ 0, 𝐿−1 (𝑥) = 0, 𝐿0 (𝑥) = 1, (53)

for some sequences 𝒃 = (𝑏𝑛)𝑛≥0 and 𝒂 = (𝑎𝑛)𝑛≥1. To emphasize sequences 𝒃 and 𝒂 we will write
the polynomials 𝐿𝑛 (𝑥) as 𝐿𝑛 (𝑥; 𝒃, 𝒂). There is a unique linear functional L on the space of Laurent
polynomials such that L(1) = 1 and

L
(
𝐿𝑚 (𝑥; 𝒃, 𝒂) ·

𝐿𝑛 (𝑥; 𝒃, 𝒂)
𝑥𝑛

)
= 0, 0 ≤ 𝑚 < 𝑛.

Since the linear functional L is defined on the space of Laurent polynomials, we have positive
moments L(𝑥𝑛) and negative moments L(𝑥−𝑛). Kamioka [10, 11] showed that both positive and negative
moments are generating functions for Schröder paths. To state Kamioka’s results, we need the following
definitions.

Recall that a lattice path is a finite sequence of points in Z × Z≥0.

Definition 9.1. A Schröder path is a lattice path in which every step is an up step (1, 1), a double-
horizontal step (2, 0) or a down step (1,−1). The set of Schröder paths from (0, 0) to (𝑛, 0) is denoted
by Sch𝑛.

For given sequences 𝒃 = (𝑏0, 𝑏1, . . . ) and 𝒂 = (𝑎1, 𝑎2, . . . ), the weight wt(𝜋; 𝒃, 𝒂) of a Schröder path
𝜋 is defined to be the product of 𝑏𝑖 for each double-horizontal step starting at a point with 𝑦-coordinate
𝑖 and 𝑎𝑖 for each down step starting at a point with 𝑦-coordinate 𝑖.

Kamioka [10, 11] showed that the moments L(𝑥𝑛), 𝑛 ∈ Z, of Laurent biorthogonal polynomials
𝐿𝑛 (𝑥; 𝒃, 𝒂) are generating functions for Schröder paths. For 𝑛 ≥ 0,

L(𝑥𝑛) =
∑

𝜋∈Sch2𝑛

wt(𝜋; 𝒃, 𝒂), (54)

L(𝑥−𝑛−1) = 𝑏−1
0

∑
𝜋∈Sch2𝑛

wt(𝜋; 𝒃′, 𝒂′), (55)

https://doi.org/10.1017/fms.2023.23 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.23


32 J. Jang et al.

where 𝒃′ and 𝒂′ are the sequences defined by

𝒃′ = (𝑏′𝑖)𝑖≥0, 𝑏′𝑖 = 𝑏−1
𝑖 , (56)

𝒂′ = (𝑎′𝑖)𝑖≥1, 𝑎′𝑖 = 𝑎𝑖𝑏
−1
𝑖−1𝑏

−1
𝑖 . (57)

Definition 9.2. We define the bounded moment 𝜎≤𝑘
𝑛 (𝒃, 𝒂) of the Laurent biorthogonal polynomials

𝐿𝑛 (𝑥; 𝒃, 𝒂) by

𝜎≤𝑘
𝑛 (𝒃, 𝒂) =

∑
𝜋∈Sch≤𝑘2𝑛

wt(𝜋; 𝒃, 𝒂),

where Sch≤𝑘
2𝑛 is the set of Schröder paths from (0, 0) to (2𝑛, 0) that stay weakly below the line 𝑦 = 𝑘 .

Note that if the sequence (𝜎≤𝑘
𝑛 (𝒃, 𝒂))𝑛≥0 satisfies a homogeneous linear recurrence relation, then its

negative version (𝜎≤𝑘
−𝑛 (𝒃, 𝒂))𝑛≥1 is defined. By definition, we have

L(𝑥𝑛) = lim
𝑘→∞

𝜎≤𝑘
𝑛 (𝒃, 𝒂), 𝑛 ≥ 0.

The goal of this section is to prove that the negative moment L(𝑥−𝑛) is also the limit of the negative
version of (𝜎≤𝑘

𝑛 (𝒃, 𝒂))𝑛≥0.
By specializing the results of Kim and Stanton [12, Corollary 5.4 and Propositions 5.5] on orthogonal

polynomials of type 𝑅𝐼 , we obtain the following.

Proposition 9.3. We have∑
𝑛≥0

𝜎≤𝑘
𝑛 (𝒃, 𝒂)𝑥𝑛 =

𝛿𝑃∗
𝑘 (𝑥; 𝒃, 𝒂)

𝑃∗
𝑘+1(𝑥; 𝒃, 𝒂)

=
1

1 − 𝑏0𝑥 −
𝑎1𝑥

1 − 𝑏1𝑥 −
𝑎2𝑥

1 − 𝑏2𝑥 − . . . −
𝑎𝑘𝑥

1 − 𝑏𝑘𝑥

,

where 𝛿𝑃∗
𝑘 (𝑥; 𝒃, 𝒂) and 𝑃∗

𝑘+1(𝑥; 𝒃, 𝒂) are defined similarly as in Definition 2.3.

The following proposition can be proved similarly as Propositions 2.10 and 2.11.

Proposition 9.4. If 𝑃𝑘+1(0; 𝒃, 𝒂) ≠ 0, then 𝜎≤𝑘
−𝑛 (𝒃, 𝒂) is well-defined for 𝑛 ≥ 1. In particular, if 𝑏𝑖 ≠ 0

for all 𝑖 ≥ 0, then 𝜎≤𝑘
−𝑛 (𝒃, 𝒂) is well-defined for 𝑛 ≥ 1.

By the same argument as the one in the proof of Proposition 2.7, we obtain the generating function
for 𝜎≤𝑘

−𝑛 (𝒃, 𝒂) as follows.

Proposition 9.5. If (𝜎≤𝑘
−𝑛 (𝒃, 𝒂))𝑛≥1 is defined, we have∑

𝑛≥1
𝜎≤𝑘
−𝑛 (𝒃, 𝒂)𝑥𝑛 = −

𝑥𝛿𝑃𝑘 (𝑥; 𝒃, 𝒂)
𝑃𝑘+1(𝑥; 𝒃, 𝒂)

=
𝑥

𝑏0 − 𝑥 −
𝑎1𝑥

𝑏1 − 𝑥 −
𝑎2𝑥

𝑏2 − 𝑥 − . . . −
𝑎𝑘𝑥

𝑏𝑘 − 𝑥

.

Using Proposition 9.5, we can find a combinatorial interpretation for 𝜎≤𝑘
−𝑛 (𝒃, 𝒂).
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Theorem 9.6. Let 𝑛, 𝑘 be positive integers. We have

𝜎≤𝑘
−𝑛 (𝒃, 𝒂) = 𝑏−1

0

∑
𝜋∈Sch≤𝑘𝑛−1

wt(𝜋; 𝒃′, 𝒂′),

where 𝒃′ and 𝒂′ are defined in (56) and (57).

Proof. Let

𝑓 ≤𝑘𝑛 =
∑

𝜋∈Sch≤𝑘𝑛

wt(𝜋; 𝒃′, 𝒂′).

By Proposition 9.3, we have∑
𝑛≥0

𝑓 ≤𝑘𝑛 𝑥𝑛 =
1

1 − 𝑏−1
0 𝑥 −

𝑎1𝑏
−1
0 𝑏−1

1 𝑥

1 − 𝑏−1
1 𝑥 −

𝑎2𝑏
−1
1 𝑏−1

2 𝑥

1 − 𝑏−1
2 𝑥 − . . . −

𝑎𝑘𝑏
−1
𝑘−1𝑏

−1
𝑘 𝑥

1 − 𝑏−1
𝑘 𝑥

=
𝑏0

𝑏0 − 𝑥 −
𝑎1𝑥

𝑏1 − 𝑥 −
𝑎2𝑥

𝑏2 − 𝑥 − . . . −
𝑎𝑘𝑥

𝑏𝑘 − 𝑥

.

Comparing this with Proposition 9.5, we obtain∑
𝑛≥1

𝜎≤𝑘
−𝑛 (𝒃, 𝒂)𝑥𝑛 = 𝑏−1

0 𝑥
∑
𝑛≥0

𝑓 ≤𝑘𝑛 𝑥𝑛 =
∑
𝑛≥1

𝑏−1
0 𝑓 ≤𝑘𝑛−1𝑥

𝑛.

Therefore, 𝜎≤𝑘
−𝑛 (𝒃, 𝒂) = 𝑏−1

0 𝑓 ≤𝑘𝑛−1, which is the desired result. �

Substituting 𝒃 = 𝒂 = 1 in Theorem 9.6, we see that the negative version of the number of bounded
Schröder paths is also the number of bounded Schröder paths.

Corollary 9.7. Let 𝑠𝑛 = | Sch≤𝑘
𝑛 | for 𝑛 ≥ 0. Then for 𝑛 ≥ 1, we have 𝑠−𝑛 = 𝑠𝑛−1.

By Theorem 9.6 and (55), we obtain that the negative moments L(𝑥−𝑛) are the limits of the negative
versions 𝜎≤𝑘

−𝑛 (𝒃, 𝒂) of the bounded moments 𝜎≤𝑘
𝑛 (𝒃, 𝒂).

Corollary 9.8. For 𝑛 ≥ 1,

L(𝑥−𝑛) = lim
𝑘→∞

𝜎≤𝑘
−𝑛+1(𝒃, 𝒂).
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