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Calculation of internal-wave-driven instability
and vortex shedding along a flat bottom
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The instability and vortex shedding in the bottom boundary layer caused by internal
solitary waves of depression propagating along a shallow pycnocline of a fluid are
computed by finite-volume code in two dimensions. The calculated transition to instability
agrees very well with laboratory experiments (Carr et al., Phys. Fluids, vol. 20, issue 6,
2008, 06603) but disagrees with existing computations that give a very conservative
instability threshold. The instability boundary expressed by the amplitude depends on the
depth d of the pycnocline divided by the water depth H, and decays by a factor of 2.2
when d/H is 0.21, and by a factor of 1.6 when d/H is 0.16, and the stratification Reynolds
number increases by a factor of 32. The instability occurs at moderate amplitude at large
scale. The calculated oscillatory bed shear stress is strong in the wave phase and increases
with the scale. Its non-dimensional magnitude at stratification Reynolds number 650 000 is
comparable to the turbulent stress that can be extracted from field measurements of internal
solitary waves of similar nonlinearity, moving along a pycnocline of similar relative depth.
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1. Introduction

Internal solitary waves are a naturally occurring phenomenon in stratified oceans.
Typically, the waves are driven by the tide or wind (e.g. Helfrich & Melville 2006). In
this paper, we study internal solitary waves of depression and the instability that they
cause in the bottom boundary layer. The processes occur in the wave phase behind the
trough where the pressure gradient is adverse. A separation bubble develops and becomes
unstable, and vortices are formed downstream of the wave when the amplitude is large
enough (e.g. Diamessis & Redekopp 2006; Carr, Davies & Shivaram 2008; Aghsaee
et al. 2012; Verschaeve & Pedersen 2014). Sakai, Diamessis & Jacobs (2020) performed
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three-dimensional large-eddy simulation of the instability, vortex formation and break-up
into turbulence.

Internal solitary waves of elevation also induce this kind of instability, where a
background current is necessary for the instability to occur. The adverse pressure gradient,
separation bubble and unsteadiness develop then in the wave phase ahead of the crest (e.g.
Bogucki & Redekopp 1999; Stastna & Lamb 2002b, 2008; Carr & Davies 2010). The
wave-driven instability of the boundary layer at the bottom causes strong variations of the
shear stress and thus contributes to re-suspension of particles (e.g. Bogucki, Dickey &
Redekopp 1997; Bogucki & Redekopp 1999; Bourgault et al. 2007; Quaresma et al. 2007;
Boegman & Stastna 2019; Zulberti, Jones & Ivey 2020). Waves of depression interacting
with a weak slope may, beyond the turning point where the layer depths are equal, break
up into a series of elevation waves, and in turn cause instabilities at the bottom (e.g. Xu
& Stastna 2020). Adverse pressure gradients, separation bubbles and their instability are
investigated in aerodynamic flows (e.g. Gaster 1967; Pauley, Moin & Reynolds 1990; Reed
& Saric 1996). Depending on the forcing and the Reynolds number, the instability may
become global (e.g. Hammond & Redekopp 1998; Diamessis & Redekopp 2006); see also
Huerre & Monkewitz (1990), Schmid & Henningson (2001) and Chomaz (2005).

1.1. Review of internal-wave-driven instability in the bottom boundary layer
Motivated by observations of re-suspension of particles at the bottom beneath internal
solitary waves (Bogucki et al. 1997), Bogucki & Redekopp (1999) investigated the
boundary layer instability made by a sheared current interacting with a weakly nonlinear
internal solitary wave of elevation moving along a shallow bottom layer of a stratified fluid.
Above a threshold amplitude, the boundary layer separated in the adverse pressure gradient
region, in the front part of the wave. Vortices were formed in the centre below the wave.
Advecting with the flow, the vortex dynamics posed an excess bottom shear stress. Stastna
& Lamb (2002b) performed fully nonlinear simulations of the scenario described by
Bogucki and Redekopp, and showed that it is the wave’s velocity field interacting with the
boundary layer vorticity of an opposing current that leads to a vortex shedding instability
beneath the wave. Neither a separation bubble nor a wave with a recirculating region was
required for vortex shedding to occur. Co-propagating waves and current did not lead to
instability. In a follow-up paper, Stastna & Lamb (2008) found that the current-driven
vorticity in the boundary layer was advected into the footprint of the elevation wave.
In its front part, a separation bubble formed, grew and subsequently broke up. When
the Reynolds number was too low or the current too weak, no instability occurred.
By laboratory experiments, Carr & Davies (2010) measured internal solitary waves of
elevation propagating in an unsheared two-layer stably stratified fluid. The amplitude was
up to theoretical maximum. No boundary layer separation or vortices beneath the front
half of the wave were found. No instabilities were measured. Velocity reversal near the
bottom in the deceleration phase of the wave where the pressure gradient is favourable
was measured.

In the case of internal solitary waves of depression moving along a (moderately) shallow
pycnocline, the pressure gradient behind the wave trough is adverse. By direct numerical
simulations of the Navier–Stokes equations combined with weakly nonlinear Korteweg–de
Vries (KdV) theory of the internal solitary waves, Diamessis & Redekopp (2006) found
that global instability emerged in the boundary layer below the wave. The downstream
vortices were created at the bottom and ascended into the water column. The stratification
Reynolds number was Rew = 2 × 104 (Rew is defined properly in § 1.2). A jet at the bottom
along the wave propagating direction corresponding to the lower part of the calculated
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separation bubble was measured experimentally for the same Rew by Carr & Davies
(2006). No instability was found in the laboratory wave tank. However, Thiem et al. (2011)
performed a numerical re-calculation of one of the physical measurements. Instability was
found when the amplitude was increased by 14 %. Carr et al. (2008) performed a new set
of laboratory experiments at higher Reynolds number. They found that the flow separation
beneath the wave occurred at essentially lower amplitudes than calculated by the weakly
nonlinear KdV theory in combination with the Navier–Stokes equations (Diamessis &
Redekopp 2006). Aghsaee et al. (2012) solved the Navier–Stokes equations in combination
with a fully nonlinear internal wave formulation. They proposed a universal criterion of the
internal-solitary-wave-driven instability of the boundary layer, for the cases of either a flat
bottom or a slope. Their very conservative stability boundary does not fit the experiments
by Carr et al. (2008) or the numerical simulations by Thiem et al. (2011).

Local instability made by internal solitary waves interacting with a variable bottom
topography may exhibit jet-like roll-up of vorticity near the crest of the topography,
as calculated in two and three dimensions at moderate Reynolds number by Harnanan,
Soontiens & Stastna (2015) and Harnanan, Stastna & Soontiens (2017). Re-suspension or
entrainment of internal solitary waves interacting with a bottom topography was modelled
numerically by Olsthoorn & Stastna (2014), and Soontiens, Stastna & Waite (2015)
calculated the viscous bottom boundary layer effects on the generation of internal solitary
waves at topography and the related instabilities in the case of a background current.

The three-dimensional large-eddy simulation by Sakai et al. (2020) showed three
regimes of the flow in the boundary layer, where below the wave phase, global
instability and transition occurred. Vortex break-up and formation of turbulent clouds,
and development of a turbulent boundary layer, took place downstream of the wave.
Two-dimensional laminar simulations were compared to the turbulent calculations.
A similar, essentially two-dimensional, vortex formation was taking place in the two
computations, in a distance of five water depths, corresponding to two wavelengths
behind the trough. The unstable simulations by Sakai et al. (2020) were performed with
a wave of large amplitude interacting with a strong counter-current. They found that
two- or three-dimensional simulations with a sufficient resolution of the near-bed scales
and no background current could not spontaneously generate any vortex shedding. We
note that Sakai et al. (2020, p. 9) write that the shed vortices appear to be initially
two-dimensional. In the abstract of the paper, they write: ‘In the separation bubble,
there exists a three-dimensional global oscillator, which is primarily excited by the
two-dimensional absolute instability of the separated shear layer.’

1.2. Motivation of the paper
Using laboratory experiments, Carr et al. (2008) investigated the flow separation and
vortex formation induced in the bottom boundary layer by an internal solitary wave of
depression moving along a flat bottom. The amplitude of the wave was varied from a large
value where instability occurred, to a small value where the instability disappeared. The
threshold wave amplitude where instability emerged was measured. Aghsaee et al. (2012)
performed numerical simulations in two dimensions of the wave-driven instability along
flat and sloping bottoms. Adopting the procedure of Pauley et al. (1990), they expressed
the inception of the instability in terms of the pressure gradient and the momentum
thickness Reynolds number of the boundary layer. However, Aghsaee et al. (2012) were
not able to reproduce the threshold of instability for the case of a flat bottom, which
occurred much earlier in the laboratory experiments by Carr et al. (2008). Aghsaee et al.
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(2012) suggested possible reasons for the discrepancy between their computations and the
experiments by Carr et al. (2008): (a) the laboratory-observed instabilities are primarily
three-dimensional; (b) errors in the estimation of the horizontal velocity below the wave
and the wavelength; (c) lack of finite-amplitude perturbations in the numerical solution
from which instabilities will grow through the phenomenon of subcritical transition; and
(d) existence of an oscillatory background barotropic flow in laboratory experiments
generated during the gate release, which may have influenced vortex generation. The
discrepancy between experiments and model calculations was repeated in the review by
Boegman & Stastna (2019). The conflicting results are addressed here.

By finite-volume solver, we simulate the experiments of Carr et al. (2008). The method
is detailed in § 2.1. We obtain very good agreement with the measurements. We also obtain
that the threshold for instability really depends on the depth of the pycnocline. The pressure
gradient and the Reynolds number of the boundary layer are evaluated and compared to
the transition proposed by Aghsaee et al. (2012). We find an essential mismatch. This is
detailed in §§ 3.2 and § 3.3.

The effect of scale is investigated systematically where the kinematic viscosity ν is
varied in the range 10−5.5–10−7 m2 s−1, where ν = 10−6 m2 s−1 for fresh water at 20 ◦C.
The variables ν, the linear internal long-wave speed of the stratified fluid c0 (defined
properly in § 2.2) and the water depth H form a stratification Reynolds number Rew =
c0H/ν. This quantity is denoted by the wave Reynolds number by Diamessis & Redekopp
(2006), Carr et al. (2008) and Aghsaee et al. (2012), and by the Reynolds number based
on the water column height by Sakai et al. (2020). Our computations are presented for Rew
in the range 1.9 × 104–6.5 × 105, while the experiments by Carr et al. were performed for
Rew ∼ 5.8 × 104–6.6 × 104.

The computations exhibit two separation bubbles, one in the wave phase behind the
trough and a second well behind the wave phase. In contrast, one separation bubble
has been found in previous computations of the flat bottom case (e.g. Diamessis &
Redekopp 2006; Aghsaee et al. 2012; Sakai et al. 2020). Note that Xu & Stastna (2020)
have found that a separation bubble below waves of elevation interacting with a slope
eventually breaks down into two parts. In the present calculations, the instability develops
in separation bubble one.

The vortex formation that emerges in the wave phase gives rise to powerful oscillations
of the bottom shear stress. We use a Froude number scaling of the velocity field outside the
boundary layer. The shear stress scaled by c2

0 times the fluid density is investigated in the
range of the Reynolds number. A similar scaling was employed by Boegman & Ivey (2009)
and Xu & Stastna (2020). The velocities of the boundary layer in the field are turbulent.
The non-dimensional shear stress in a few available measurements (Quaresma et al. 2007;
Zulberti et al. 2020) is obtained just as well and compared to the laminar calculations.
The internal solitary waves in the model and the field are of similar nonlinearity and move
along similar relative pycnocline depth.

The calculated internal solitary waves are fully nonlinear and dispersive, and agree
very well with exact interfacial methods (e.g. Michallet & Barthélemy 1998; Grue et al.
1999, 2000; Camassa et al. 2006; Fructus et al. 2009) and solutions of the continuously
stratified case (e.g. Turkington, Eydeland & Wang 1991; Stastna & Lamb 2002a; Dunphy,
Subich & Stastna 2011) (results are not shown). The Navier–Stokes equations resolve the
Stokes bottom boundary layer below the wave phase.

Section 2 describes the method, the numerical wave tank and the resolution. The
stratification of the fluid and the procedure of the wave generation are introduced. The
noise of the solver is discussed. The Stokes boundary layer thickness is presented.
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The results section (§ 3) includes comparison to the experiments by Carr et al. (2008) and
calculation of the stability border in the range of the Reynolds number (§ 3.1), evaluation of
the pressure gradient, the Reynolds number of the bottom boundary layer, and comparison
to the results by Aghsaee et al. (2012) (§ 3.2). Proposed reasons for the discrepancy
between computed and measured instability are discussed (§ 3.3). The separation bubbles,
instability and vortex rolls are calculated (§ 3.4). The non-dimensional bed shear stress is
compared to a few results extracted from field measurements, at the turbulent scale (§ 3.5).
We draw some conclusions in § 4.

2. Method

2.1. Numerical wave tank
We present direct numerical simulations of internal-solitary-wave-driven instability and
vortex roll formation in the bottom boundary layer along a flat bottom. The two-phase
incompressible Navier–Stokes equations are solved in two dimensions by the low-order
finite-volume solver Basilisk (basilisk.fr); see Popinet (2003, 2009) and Lagrée, Staron
& Popinet (2011). Details of the elliptic solve are given in Popinet (2003, 2015) (where
in Popinet (2015) the elliptic problem is different to the one studied here but the method
used is the same). Details of the finite-volume approach and the advection scheme can be
found in Lagrée et al. (2011). The advection equation is integrated by second-order upwind
scheme (the parabolic scheme of Bell, Colella & Glaz (1989); Popinet 2003. The spatial
discretisation uses a quadtree scheme (Popinet 2009; van Hooft et al. 2018). Basilisk
uses the volume-of-fluid method to describe variable-density two-phase flows where the
interfaces are immiscible. The Basilisk multi-phase flow library has been validated by
several recent papers in Journal of Fluid Mechanics, e.g. Mostert, Popinet & Deike (2022)
(breaking waves), Alventosa, Cimpeanu & Harris (2023) (droplet impact), Riviére et al.
(2021) (turbulent bubble break-up), Mostert & Deike (2020) (dissipation in waves) and
Innocenti et al. (2021) (bubble-induced turbulence). The noise of the solver is estimated
in § 2.3.

The numerical wave tank has length L and depth H. The grid is composed of square
finite-volume cells. The size of a cell is �x along the horizontal, and �z along the vertical,
where �x = �z = ΔN = L/2N . Integer N gives the resolution. The thin boundary layer
along the bottom and its effects are resolved. A coarse grid with ΔN1 well above the
boundary layer is refined sequentially according to the tree-grid structure of Basilisk, with
ΔN1 above ΔN1+1, above ΔN1+2, and so on, until a finest resolution of ΔN2 near the bottom
(N2 > N1). The combined grid is termed N1–N2. The fine grid (ΔN2) is used up to 0.015
water depths above the bottom, and up to 0.02 water depths in the runs with kinematic
viscosity ν = 10−5.5 m2 s−1. In terms of the boundary layer thickness δ (defined in § 2.4),
the finest resolution is ΔN2/δ = 0.06 (see table 3 in § 3).

The simulations were run in parallel using shared memory (OpenMP) on the Norwegian
Research and Education Cloud (NREC) with eight or sixteen cores and eight or sixteen
threads. The CPU time varied between 12 and 16 h for N = 12, between 96 and 216 h for
N = 13, between 12 and 60 h for N1–N2 = 12–14 (sixteen cores and threads), between 84
and 96 h for N1–N2 = 12–15 (sixteen cores and threads), and between 48 and 168 h for
N1–N2 = 11–16 (sixteen cores and threads).

Horizontal and vertical coordinates (x, z) are introduced, with x = 0 at the position of
the gate used for the wave generation (§ 2.2), and z = 0 at the bottom. A rigid lid is placed
at z = H. There is no motion for z > H. The viscous boundary layer is modelled along
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Figure 1. Sketches of the wave tank: (a) initial condition, and (b) with generated wave. (c) Calculated
internal solitary wave at tc0/H = 6.42, a/H = 0.189, ν = 10−7 m2 s−1. (d) Same as (c) with a/H = 0.325,
ν = 10−6 m2 s−1. Separation point indicated by the red star. Vorticity ω/(c0/H) in colour scale. Contour lines
(black) of ω/(c0/H).

the bottom where the no-slip condition applies. The free-slip condition is applied at the
upper boundary (z = H), at the vertical end walls of the tank and at the gate used for wave
generation.

2.2. Generation
The fluid is stratified with a pycnocline of thickness h2. This is sandwiched between an
upper layer of depth h1 and density ρ1, and a lower layer of depth h3 and density ρ3. The
continuous density varies linearly within the pycnocline. The physical length 6.4 m and
depth 0.38 m of the numerical tank (L/H = 16.84), and the stratification and the wave
generation process, are the same as in the experiments by Carr et al. (2008). The gate is
located 0.6 m from the left tank wall (figure 1a).

Three different stratifications used in the experiments by Carr et al. are also used in the
present computations. We denote these by Strat.1, Strat.2 and Strat.3 (table 1). Stratification
1 has middle depth d � 0.16H and a thin pycnocline with h2 � 0.07H, where d = h1 +
(1/2)h2. Stratification 2 has the same middle depth but is twice as thick (0.14H). The third
pycnocline is relatively deeper (d = 0.21H) and of thickness 0.12H.

Upon release of an added volume (x0 × (d0 − h1)) of the light fluid trapped by the gate,
a leading nonlinear internal solitary wave is generated. The amplitude a is defined by the
maximum excursion of the interface separating layers 2 and 3 (figure 1b). The two-layer
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No. Date Strat. h3/h2/h1 aL aC aC/H L C θsep/δ Reθsep −Pxsep

(cm) (cm) (cm)

1a 050207 30.2/2.7/5.2 10.4 10.17 0.268 Yes Yes 0.107 29.1 0.109
1b 140207 Strat.1 30.8/2.5/4.7 10.1 10.00 0.263 No Yes 0.108 25.9 0.109
1c 30.8/2.5/4.7 — 9.41 0.248 Yes 0.112 23.8 0.102
1d 30.8/2.5/4.7 — 9.14 0.241 Yes 0.111 21.7 0.094
1e 30.8/2.5/4.7 — 8.63 0.220 No 0.113 19.8 0.087
2* 080207 Strat.2 29.3/5.2/3.5 11.0 11.4 0.300 Yes Yes 0.108 39.2 0.129
2a 060307 29.0/5.2/3.8 9.5 9.41 0.248 Yes Yes 0.109 25.7 0.104
2b 090207 29.2/5.3/3.7 9.2 9.24 0.243 No Yes 0.113 24.2 0.102
2c 29.3/5.2/3.5 — 8.94 0.235 Yes 0.114 22.9 0.098
2d 29.3/5.2/3.5 — 8.47 0.223 No 0.116 20.6 0.091
3a 210207 27.6/5.3/5.0 8.6 8.59 0.226 Yes Yes 0.115 25.7 0.090
3b 230207 Strat.3 28.0/4.7/5.5 8.3 8.29 0.218 No Yes 0.118 23.8 0.087
3c 28.0/4.7/5.5 — 7.81 0.206 No 0.121 21.5 0.079

Table 1. Experiment number and date in Carr et al. (2008, table 1), stratification (Strat.), and amplitude
measured in laboratory (aL) or computed (aC). Instability in laboratory (L) or computation (C). Numerical
values of θsep/δ, Reθsep , Pxsep defined in the text. Resolution N = 12–14, and Rew = 5.9 × 104.

approximation of the linear internal long-wave speed, used by Carr et al. (2008), is also
used here as reference speed: c0 = [g′d(H − d)/H]1/2, where g′ = g(ρ3 − ρ1)/ρ3, and g
denotes the acceleration due to gravity. The fully nonlinear wave speed c, obtained in the
experiment or simulation, is used to connect time and propagation distance.

In each physical or numerical experiment, a leading depression wave of mode one
is generated (figure 1c). Two smaller disturbances also of mode one propagate behind
the main wave. Strong vorticity on small-scale results from the velocity shear during
the generation and disperse along the pycnocline behind a slower wave of mode two
found at approximately nine water depths behind the main trough, a feature of the
wave-making procedure. Note that the main wave and the subsequent small mode
one waves exhibit neither shear instability nor mixing of the pycnocline in this case.
The wave amplitude is right above the threshold for vortex generation in the bottom
boundary layer. Figure 1(d) shows a stronger internal solitary wave with a/H = 0.325.
The wave causes both instability and vortex generation in the boundary layer, as well
as breaking due to shear instability in the pycnocline (e.g. Fructus et al. 2009; Lamb
2014).

2.3. Noise of the solver
The truncation error of the solver is the only perturbation that creates instability in
the computations. The noise is computed from the vertical velocity variable w(xi, z =
0.402H) = wi, where xi are all of the horizontal evaluation points. We evaluate the locally
averaged variable fi = [

∑j=i+n1
j=i−n1

wi]/(2n1 + 1), where n1 = 1 or 2, and the relative error
err = ‖w − f ‖2/‖w‖2 = const. × 10−5 (here, ‖ · ‖2 is the 2-norm). The const. equals 1.3
(n1 = 1, N1 = N2 = 13), 1.8 (n1 = 2, N1 = N2 = 13) or 2.0 (n1 = 1, N1 = N2 = 12), and
shows that the growth of the unstable modes arises from the truncation error of the solver
at the fifth decimal place.
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2.4. Boundary layer thickness
The Stokes boundary layer at the bottom below the wave phase is characterised by the
thickness δ, the kinematic viscosity ν, and the frequency of the wave ω0, where

δ = (2ν/ω0)
1/2. (2.1)

The frequency is estimated by ω0 = c0/Lw, with the wave speed c0 defined in § 2.2. The
wavelength is defined by the integral Lw = (1/a)

∫ ∞
−∞ η23 dx, where η23 is the vertical

excursion of the isoline separating layers two and three.

3. Results

3.1. Stability border
Carr et al. (2008) investigated transition to instability at Reynolds number
Rew = 5.8 × 104–6.6 × 104. Seven measurements are referred to by date in table 1,
column 2. The transition expressed in terms of the measured amplitude is found between
rows 1a,b (stratification 1), rows 2a,b (stratification 2) and rows 3a,b (stratification 3).
The computations show instability at a somewhat smaller amplitude, indicated in rows
1d,e of the table (stratification 1), rows 2c,d (stratification 2) and rows 3b,c (stratification
3). The comparison is quite good. The highest stable experimental wave and the lowest
unstable computed wave in row 3b (stratification 3) are matching (a = 8.3 cm). The
similar amplitudes are a = 9.2 cm (experiment) and a = 8.94 cm (computation) for
stratification 2 (rows 2b,c), and a = 10.1 cm (experiment) and a = 9.14 cm (computation)
for stratification 1 (rows 1b,d).

The kinematic viscosity in the computations is varied in the range ν = 10−n m2 s−1

with 5.5 < n < 7. The extended Reynolds number range is Rew ∼ 1.9 × 104–6.5 × 105.
Unstable waves with the lowest possible amplitude, and stable waves with the largest
possible amplitude, are searched by trial and error for the four values n = 5.5, 6, 6.5
and 7. Unstable waves are judged by the presence of small unstable disturbances in
the computations. Two separation bubbles and the onset of instability are discussed and
visualised in § 3.4 and figures 4–6 below. A linear fit to a logarithmic relationship of the
eight calculated amplitudes of the transition obtains

log10 a = log10 a0,C − m1 log10(Rew/Rew,0), (3.1)

with results presented in figures 2(a–c). Here, a0,C estimates the computed threshold
amplitude of instability for Rew,0 = c0H/ν0, with ν0 = 10−6 m2 s−1 (fresh water at
20 ◦C) such as in the Carr et al. experiments. The computed a0,C/H (table 2, column
2) and experimental a0,L/H (table 2, column 1) – obtained by an average between the
experimental waves right above and below instability – show very good agreement. The
relative difference between computation and experiment is less than 1 % for stratifications
2 and 3, and 8 % for the thin pycnocline of stratification 1, while Carr et al. have suggested
an accuracy of 2 % of the experimental amplitude measurement. The threshold decreases
according to Re−m1

w , where exponent m1 � 0.13 in practice is the same for stratifications
1 and 2, which are of the same middle depth. The deeper pycnocline of stratification 3 has
a greater decay exponent, m1 = 0.23. The computed threshold amplitude decreases by a
factor of 1.6 for stratifications 1 and 2, and by a factor of 2.2 for the deeper stratification 3,
when Rew increases by a factor of 101.5 � 31.6.

The experimental runs of a previous paper by Carr & Davies (2006) with a
smaller Reynolds number Rew ∼ 2.4 − 3.4 × 104 showed no instability in the bottom
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Figure 2. Threshold of instability. (a–c) Plots of a/H versus Rew (both log scale). Solid line shows fit to
(3.1). (d) Plots of a0(Rew/Rew,0)

−m1 (black lines) and C0(Rew/Rew,0)
−m3 (red lines) versus n. (e–h) Plots

of Pxsep versus Reθsep (both log scale). Solid line shows fit to B0(Reθsep )
−m2 . In (h), Aghsaee et al. (2012),

Re−0.51
θsep

(thick solid line). Present computations for Strat.1 (dashed), Strat.2 (thin solid), Strat.3 (dash-dotted).

Symbols in colour with ν = 10−n m2 s−1: n = 5.5 (yellow), 6 (red), 6.5 (green), 7 (blue); unstable shown
filled, stable shown open, × threshold for instability measured by C08. In (a) and (c), unstable (•) and stable
(◦) observations: 1 (Sakai et al. 2020), 2 (Thiem et al. 2011), 3 (Carr & Davies 2006), 4 (Bourgault et al. 2007),
5 (Quaresma et al. 2007), 6 and 7 (Zulberti et al. 2020).

boundary layer. In a re-computation of one of the experiments (labelled 20538), Thiem
et al. (2011) increased the amplitude by 14 % and obtained instability. The parameters of
the unstable wave were a/H = 0.30, d/H = 0.2, Rew = 2.6 × 104, while the stable wave
measured in the experiments had a/H = 0.27, d/H = 0.2, Rew = 2.4 × 104 fitting at each
side of the predicted stability border of stratification 3 (figure 2c).

The amplitude and Reynolds number of unstable calculations (Thiem et al. 2011; Sakai
et al. 2020), field observations (Bourgault et al. 2007; Quaresma et al. 2007; Zulberti et al.
2020) and stable measurements (Carr & Davies 2006) are included in figures 2(a,c).

3.2. The pressure gradient and Reynolds number of the bottom boundary layer
Aghsaee et al. (2012) have discussed the threshold of instability in terms of the pressure
gradient and the momentum thickness Reynolds number of the boundary layer beneath
the wave. They were motivated by studies in aerodynamic flows (e.g. Gaster 1967;
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a0,L/H a0,C/H m1 B0 m2 C0 m3 Stratification d/H h2/H

0.269 0.249 0.131 0.629 0.595 0.098 0.202 Strat.1 0.16 0.07
0.245 0.243 0.135 1.082 0.752 0.102 0.231 Strat.2 0.16 0.14
0.222 0.221 0.228 1.400 0.906 0.083 0.338 Strat.3 0.21 0.12

Table 2. Wave variables at threshold for instability. Amplitude a0,L/H obtained from the Carr et al.
experiments, a0,C/H calculated from the fit (3.1), exponent m1 from (3.1), B0 and m2 from fit to Pxsep =
B0(Reθsep )

−m2 , C0 and m3 from fit to Pxsep = C0(Rew/Rew,0)
−m3 . Stratifications 1–3 with d = h1 + h2/2.

Pauley et al. 1990). Both quantities were evaluated at the separation point of the separation
bubble, at xsep at the bottom. It appears from their paper that only one separation bubble
was calculated. The present evaluation of xsep refers to the separation point of bubble one.

The pressure gradient is expressed in non-dimensional form by Pxsep = (1/ρ0g′)
(∂p/∂x)|xsep , where p denotes pressure. The momentum thickness of the boundary layer
is evaluated by θsep = ∫ Z∞

0 u(U∞ − u)|xsep dz/U2∞, where U∞ is the horizontal velocity,
and Z∞ is the vertical coordinate outside of the boundary layer at the position of xsep. The
momentum thickness Reynolds number at xsep is calculated by Reθsep = U∞θsep/ν.

The boundary layer is resolved by fine grid resolution obtaining convergence. Section
2.1 describes the discretisation of the numerical wave tank and the bottom boundary
layer. The resolution varies from N1 = 13 and N1–N2 = 12–14 for the thickest boundary
layer (ν = 10−5.5 m2 s−1) to N1–N2 = 12–15 and N1–N2 = 11–16 for the thinnest (ν =
10−7 m2 s−1). The finest resolution of the boundary layer of �x = �z = ΔN2 � 0.06δ is
used up to z = 0.015H (up to 0.02H for ν = 10−5.5 m2 s−1).

The variables xsep, u/U∞, θsep, Reθsep and Pxsep are calculated. The functions u/U∞
and u(U∞ − u)/U2∞ for the marginally unstable cases are illustrated in figure 3 for each
ν = 10−n m2 s−1 (5.5 < n < 7) with the two different resolutions. Values of Reθsep have
relative discrepancies 6.9 % (n = 5.5), 3 % (n = 6), 1.9 % (n = 6.5) and 0.8 % (n = 7)
(see table 3). Calculations of the other variables are convergent. Note from tables 1
and 3 that θsep � (0.11 ± 0.01)δ in all cases. Note further that Reθsep = 0.11U∞δ/ν �
0.16U∞/(νω0), where U∞ and ω0 both depend on the relative depth of the pycnocline;
see § 3.3.1. This questions the assertion that Pxsep is function of just Reθsep . The present
calculations document that this is not a valid assumption for the case of the bottom
boundary layer beneath internal solitary waves of depression.

The lowest possible unstable wave and the greatest possible stable wave are computed
for n = 5.5, 6, 6.5 and 7. The results fitted to Pxsep = B0(Reθsep)

−m2 show that coefficient
B0 and exponent m2 both depend on depth and thickness of the pycnocline; see
figures 2(e–h) and table 2, columns 4 and 5. A lower threshold is observed for the deeper
pycnocline or for the thicker pycnocline (figure 2h). The figure also plots the function
Pxsep = (Reθsep)

−0.51 as proposed by Aghsaee et al. (2012). This is insensitive to the depth
and thickness of the pycnocline, and suggests a very conservative threshold in terms of a
large amplitude.

Their proposed universal stability criterion is contrary to the experiments by Carr et al.
and the present computations. A corresponding fit to Pxsep = C0(Rew/Rew,0)

−m3 suggests
that C0 and m3 both depend on the depth of the pycnocline. The instability threshold is only
weakly sensitive to the thickness h2/H of the pycnocline (figure 2d). The calculated Reθsep
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Figure 3. Horizontal velocity u/U∞ and u(U∞ − u)/U2∞ in the boundary layer, for the runs in table 3. Blue
dotted line shows N = 13, black dashed line shows N1–N2 = 12−14, red dashed line shows N1–N2 = 12−15,
and blue solid line shows N1–N2 = 11−16. Evaluation at xsep.

N1–N2 ΔN2/δ aC/H xsep/H θsep/δ Reθsep −Pxsep n Rew

13–13 0.120 0.298 −0.713 0.101 20.5 0.128 5.5 1.9 × 104

12–14 0.060 0.297 −0.716 0.096 19.2 0.139 5.5 1.9 × 104

12–14 0.122 0.235 −0.568 0.114 22.9 0.098 6.0 5.9 × 104

12–15 0.061 0.235 −0.561 0.116 23.6 0.097 6.0 5.9 × 104

12–15 0.111 0.223 −0.526 0.114 37.2 0.088 6.5 1.9 × 105

11–16 0.055 0.223 −0.571 0.117 36.7 0.090 6.5 1.9 × 105

12–15 0.204 0.186 −0.461 0.113 48.5 0.062 7.0 5.9 × 105

11–16 0.102 0.188 −0.561 0.123 48.9 0.063 7.0 5.9 × 105

Table 3. Computed waves, right above the instability threshold, as function of Rew and grid refinement
(N1–N2), for Strat.2, with ν = 10−n m2 s−1.

increases according to Reθsep ∼ Re0.231
w (stratification 1), Reθsep ∼ Re0.256

w (stratification 2)
and Reθsep ∼ Re0.095

w (stratification 3), at the threshold of instability. Present calculations

disagree with Aghsaee et al. (2012, their eq. (5.2)), which suggests that Reθsep ∼ Re1/2
w .

3.3. Computed versus measured instability
Aghsaee et al. (2012) were not able to reproduce the threshold of instability as measured
by Carr et al. (2008) for the case of a flat bottom and Rew ∼ 5.8 × 104–6.6 × 104. They
proposed several reasons for the discrepancy: (a) the laboratory-observed instabilities
are primarily three-dimensional; (b) errors in the estimation of the horizontal velocity
below the wave and the wavelength; (c) lack of finite-amplitude perturbations in the
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numerical solution from which instabilities will grow through the phenomenon of
subcritical transition; and (d) existence of an oscillatory background barotropic flow in
laboratory experiments generated during the gate release, which may have influenced
vortex generation.

In response to the possible reasons suggested by Aghsaee et al. (2012), we note that
present calculations: (a) are two-dimensional; (b) solve the full Navier–Stokes equations,
and include convergent estimates of the wave-induced velocities and wavelength;
(c) do not, however, include finite-amplitude perturbations; and (d) mimic the wave
generation procedure of the laboratory experiments by Carr et al. (2008). At the threshold
of the vortex formation, the computations document that there is no vorticity at the position
of the wave resulting from the generation (figure 1c).

Our calculations obtain very accurately the threshold that was measured by Carr et al.
(2008), and suggest that the onset of instability in the wave tank was predominantly
two-dimensional. The calculated instability appears because of the truncation error of
the solver. This suggests that the instability may appear spontaneously because of small
perturbations of the experimental waves. Note that Sakai et al. (2020) calculated this
kind of instability by large eddy-simulation in three dimensions. They found that the shed
vortices were initially two-dimensional.

The instability threshold depends on the depth of the pycnocline and is found in both
experiment and computation. The instability threshold is here computed for a wider
Reynolds number range. The computed internal solitary waves of finite amplitude have
been tested with excellent fit to the exact two- and three-layer models by Michallet
& Barthélemy (1998), Grue et al. (1999, 2000), Camassa et al. (2006) and Fructus
et al. (2009) (results not shown). Our calculations document that the instability criterion
proposed by Aghsaee et al. (2012) is not universal.

3.3.1. Instability threshold dependence of the pycnocline depth
The horizontal velocity below the trough (U∞,0) depends on the depth of the
pycnocline. The dependency may be illustrated at large Reynolds number where the
instability threshold depends on the weakly nonlinear amplitude. The KdV theory
is then a valid approximation. The velocity becomes UKdV

∞,0/c0 � a/(H − d). The
velocity scale of the bottom boundary layer is δω0, with ω0 = c0/Lw. The wavelength
estimated by the KdV approximation obtains LKdV

w /d = 2(3a/4H)−1/2[1 − d2/(H −
d)2]−1/2 (�ρ/ρ � 1) (e.g. Grue et al. 1999). The dimensionless velocity estimated by
UKdV

∞,0/(δω0) is thus a function of the depth of the pycnocline d/H and the amplitude
a/H. Moreover, the Reynolds number evaluated at the separation point is a function of
d/H since Reθsep � 0.11U∞δ/ν (table 3), where U∞ and δ are functions of d/H and a/H.
Similar results for waves with a/H outside the KdV range are computed.

3.4. Separation bubbles and instability
Two separation bubbles of anticlockwise vorticity form in the boundary layer behind the
wave trough. The first is located in the wave phase, and the second is found downstream of
the wave. They are calculated at the onset of instability in figure 4. The bubbles separate for
the larger Rew = 5.9 × 105, and partially overlap for Rew = 5.9 × 104, but merge for the
smaller Rew = 2 × 104 (Diamessis & Redekopp 2006). Bubble one has width 2.2H–3.5H,
and bubble two has width 10H. The height of bubble one is slightly less than half of the
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Figure 4. Vorticity plot of separation bubbles, with ω(c0/H) in colour scale. Amplitude right above threshold
of instability in Strat.2. Instability shown by red arrow, separation point of bubble one shown by red ∗. (a) Run
2c, a/H = 0.235, Rew = 5.9 × 104; (b) a/H = 0.188, Rew = 5.9 × 105.

w1/H β1/δ w2/H β2/δ a/H Rew

3.50 0.43 10.4 0.78 0.235 5.9 × 104

2.20 0.46 10.1 0.78 0.165 5.9 × 105

Table 4. Width w and height β of the separation bubbles one (index 1) and two (index 2) calculated right
above the threshold of instability, for amplitude a/H and Reynolds number Rew, in stratification 2.

αil0 l0/δ λ0/δ λv,0/δ Reδ Rew Stratification

5.2 80 5.3 5.4 490 5.9 × 104 Run 2∗
6.6 80 4.2 3.5 1630 5.9 × 105 Strat.2
5.7 80 5.1 5.1 1650 6.5 × 105 Strat.3

Table 5. Initial instability: growth rate times distance of growth (αil0), distance of growth (l0/δ), wavelength
during growth (λ0/δ), separation length between initial rolls (λv,0/δ), Reδ , Rew and stratifications 2 and 3 for
unstable waves of amplitude a/H = 0.30.

boundary layer thickness, and the height of bubble two is 0.78 times the boundary layer
thickness. The heights do not depend on the scale (table 4). Flow reversal occurs closer to
the bottom and decreases in strength when the Reynolds number increases.

The instability emerges in the back part of bubble one and moves to the front part when
the amplitude increases. A wavelength (λ0) of the dominant unstable mode is defined
(table 5). The amplitude increases approximately exponentially according to the rate αi,
and takes place over a short distance l0, where l0/δ � 80 is independent of the scale
(figure 5). The large vertical velocity is confined mainly to the wave phase when Rew
grows. A series of vortex rolls of separation length λv,0 � λ0 forms. The growth then
slows down, and the instability saturates. The distance between the downstream vortices
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Figure 5. Vertical velocity w/c0 versus horizontal position, with a/H = 0.30 in Strat.2, where inserts show
estimated amplitude of exponential growth (red line): (a) z/H = 0.0226, Rew = 5.9 × 104, run 2∗; (b) z/H =
0.00218, Rew = 5.9 × 105.
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Figure 6. Vorticity ω/(c0/H) (colour scale), with a/H = 0.30 in Strat.2: (a) Rew = 5.9 × 104, run 2∗;
(b) Rew = 5.9 × 105.

increases. Figure 6 illustrates the instability and the vortex roll-up. The vortex rolls ascend
vertically beyond the boundary layer. The vorticity strength reduces with the downstream
position. No new instability occurs in bubble two.

3.5. Bed shear stress
The calculated bed shear stress τ is of the form τ/(ρc2

0/2) � A0 sin[kv,0(x − x̂)] and
oscillates according to the wavenumber kv,0 = 2π/λv,0 of the vortex rolls, where x̂ denotes
the forward position of the oscillation (figure 7). In the sense of Froude number scaling,
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Figure 7. Shear stress τ (blue line) at the bottom versus horizontal position, with a/H = 0.30, and averaged
τ (red line): (a) Rew = 5.9 × 104, Strat.2, run 2∗; (b) Rew = 5.9 × 105, Strat.2; (c) Rew = 6.5 × 105, Strat.3.

the linear long-wave speed is used to scale the stress (e.g. Boegman & Ivey 2009; Xu
& Stastna 2020). The stress amplitude is strong in the wave phase and during the vortex
roll-up phase, and occurs over a distance of 1–1.5 water depths but is weak otherwise.
The maximum strength A0 is �1.5 × 10−3 for the smaller Rew, and �5 × 10−3 for the
higher Rew. The fluctuating stress has a root-mean-square estimate A0/

√
2. The strength

and oscillation frequency of the stress both increase when the scale increases. A similar
growth of the bed shear stress amplitude with the scale has been found in the case of
internal waves of elevation interacting with a weak slope; see Xu & Stastna (2020). The
Rew value was 1.5–6 × 104 in their calculations.

3.5.1. Field observations
The bed shear stress has been estimated in field measurements by the Reynolds stress
method and the quadratic drag method using acoustic doppler velocimetry. Both methods
assume that a log layer exists and extends to the measurement height above the bottom.
Measurements on the Australian North West Shelf by Zulberti et al. (2020) showed
enhanced turbulent shear stress below nonlinear internal solitary waves, and maximum
stress 1 Pa. A non-dimensional shear stress becomes 1 Pa/(ρc2

0/2) � 3 × 10−3, where
c0 � 0.77 m s−1 and Rew = 1.9 × 108 are computed from Zulberti et al. (2020).
Measurements on the northern shelf of Portugal by Quaresma et al. (2007) found
maximum bed shear stress 0.2 Pa below the strong internal waves. A non-dimensional

966 A40-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

47
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.476


T.J. Ellevold and J. Grue

shear stress becomes 0.2 Pa/(ρc2
0/2) � 4 × 10−3, where c0 � 0.34 m s−1 and Rew =

2 × 107 are calculated from Quaresma et al. (2007). The strong shear stress measured in
the field occurs in the wave phase. The calculated laminar shear stress also occurs below
the wave, in the vortex roll-up phase. The relative wave amplitude and pycnocline depth
of the field measurements and the model waves are similar (a/H � 0.3, d/H � 0.2). The
non-dimensional shear stress is also similar.

4. Conclusions

Instability and vortex shedding in the bottom boundary layer beneath internal solitary
waves of depression have been calculated by finite-volume code Basilisk in two
dimensions. The modelled waves compare very well to exact solutions. The range of the
stratification Reynolds number is Rew = c0H/ν ∼ 1.9 × 104–6.5 × 105.

Our calculations obtain very accurately the threshold of instability that was measured
by Carr et al. (2008). The very good agreement suggests that the instability in their wave
tank experiments was predominantly two-dimensional. The calculated instability is caused
spontaneously by the truncation error of the solver. This suggests that small perturbations
caused the instability in the wave tank experiments. Note that Sakai et al. (2020) calculated
this kind of instability by large-eddy simulation in three dimensions. They found that the
shed vortices were initially two-dimensional.

We have computed the instability threshold and vortex formation for a wider Reynolds
number range. The instability is found to depend on the depth of the pycnocline, and
has a stronger decay with Rew for a deeper pycnocline than for a shallower pycnocline.
For example, the threshold amplitude decays according to (Rew)−m1 , where m1 = 0.23
when d = 0.21H, and m1 = 0.13 when d = 0.16H. The instability criterion proposed by
Aghsaee et al. (2012) is re-calculated. Their criterion is not universal and is also very
conservative in the sense that only waves of very large amplitude are unstable.

The computations show two separation bubbles. The first is located in the wave phase
behind the trough. The second is found well behind the wave phase. The instability
emerges as a tiny short-wave disturbance in the back part of bubble one, and moves to
the front part when the amplitude increases. Instability and vortex rolls appear in the wave
phase behind the trough. No new instability occurs in bubble two.

The vortex formation causes an oscillating bed shear stress. The stress amplitude is
strong in the wave phase and during the roll-up phase, and occurs over a distance of 1–1.5
water depths but is weak otherwise. The strong shear stress measured in the field also
occurs in the wave phase (Quaresma et al. 2007; Zulberti et al. 2020). The shear stress
computed in the laminar model and measured in the field has similar non-dimensional
value (scaled by ρc2

0/2) when the non-dimensional amplitude and relative pycnocline
depth are similar (a/H � 0.3, d/H � 0.2).
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