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Abstract

If (X, T) is a topological space, si is a family of subsets of X, then the expansion of T by si is the
topology T(S4) on X having T U si as a subbase. If (X, T) has property £P, when does (X, r(sl)) have
property &1 In this paper we answer this question for the property 9 of dimension. We apply our
techniques to first countability and related properties.

1. Introduction

If (X, T) is a space'" and si is a family of subsets of X, the expansion of T by
si is the topology r(si) on X having T U i as a subbase, Anderson (1965). An
expansion is called finite, countable, point-finite, etc., provided the family si has
the corresponding property. If si = {A}, a singleton, then r(si) is just written
T ( A ) and is called a simple expansion of T. Note that a member of T ( A ) can be
expressed as U U (V C\ A) where U and V £ T. The study of simple expansions
was initiated by Levine (1964) where they are called simple extensions. Levine's
paper is concerned with the following basic question. If (X, T) has property ®,
when does (X, T (A) ) have t3>c>. A more comprehensive study of this question was
subsequently made by Borges (1967). Other authors have singled out the
property & of connectness in their attempts to discover whether maximal
connected spaces exist [Guthrie, Reynolds and Stone (1973) and Guthrie and
Stone (1973)].

In this paper, we study the above question of Levine for the important
property of dimension, but we do not limit ourselves to simple expansions.
Finally, we will apply our techniques to first countability and related properties.
The novelty of our approach is in our use of some recent results of Guthrie and
Stone (1972) concerning the expansion of a mapping.'2' More precisely, if /:

(') All spaces (X, ) are assumed to be Hausdorff.
C) All mappings are continuous surjections.
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(X, T)^>(Y, CT) is a mapping and a(si) is an expansion of a by si, we let
f\si) ={f~'(A); A Esi}. If we now expand T by f'(si), then /:
(X, r(f~\si)))-+ (Y, <r(si)) is still a mapping and is called the expansion offby si
or simply the expansion of / [Guthrie and Stone (1972)].

2. Expansion and dimension

Borges (1967) defines the notion of an infinite expansion of a space (X, T) as
follows. If s£ = {Aa} is a family of subsets of X and ^ = {r(Aa)} is a
corresponding family of simple expansions of T, then the topology on X
generated by & is called the ^-extension of T. This topology is denoted by A.
As the following proposition shows, the topology A is the same as the expansion
of T by si.

PROPOSITION 2.1. Let (X,T) be a space, i = j A o ; « e r } a family of
subsets of X and & = {r(Aa)} a corresponding family of simple expansions of r.
Then A = r(si).

PROOF. Let O G r(si). By a lemma of Reynolds (preprint), O =
U{OS n ( n A « , ) ; « e s , a finite subset of T and O' £ T}. Since each O' n Aa E
T(AO), it is easy to see that O G A. This shows that T(si)Q A. It is a simple
exercise to establish the reverse inclusion.

We will make frequent use of the following result of Borges (1967).

PROPOSITION 2.2. Let (X, T) be a regular space and A C X. Then (X, T(A ))
is regular if and only if c l (A) - A is closed in (X,T).

Here and throughout this paper cl means closure. The reader should consult
the texts of Nagata (1965) and Nagami (1970) for any dimension theory concepts
not defined here. We will denote covering dimension, large inductive dimension,
and small inductive dimension of a space (X, T) by dim(X, T), Ind(X, T) and
ind (X, T) respectively.

REMARK 2.3. It is well known that dim and Ind coincide for metric spaces
[Nagata (1965), p. 27] while all three dimension concepts coincide for separable
metric spaces. [Nagata (1965), p. 90].

A normal space (X, T) is called totally normal [Dowker (1952)], if every
U G T can be written as a union, locally finite in U, of open Fa sets of (X, T).
Totally normal spaces are hereditarily normal [Dowker (1952), 4.6].

THEOREM 2.4. Let (X, T) be a totally normal space and A C X. If
Ind(X,T)=in and c l ( A ) - A is closed in (X ,T) , then Ind(X, T(A))§ n.
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PROOF. By Proposition 2.2 and Borges (1967), Theorem 3.5 (X,T(A)) is
hereditarily normal. Note that X - A is closed in (X, T(A)) and so by Dowker
(1952), p. 269, Ind(X, T(A))gmax{Ind(A,T(A)DA), Ind(X- A, T ( A ) D
(X- A))}. By Levine (1964), Lemma 3, r(A) coincides with T on both A and
X - A. Therefore, since Ind(X, r ) S n and Ind is monotone in totally normal
spaces [Dowker (1952), Theorem 2] we have that Ind(X,r(A))S n. This
completes the proof.

THEOREM 2.5. Let (X, T) be a totally normal space and A C X. If
) ^ n and c l (A) -A is closed in (X,'T), then dim (X, T(A )) S n.

PROOF. The proof is the same as that of Theorem 2.4 except that we make
use of Dowker (1955), 2.3 and 2.8.

The following example shows that we cannot relax the hypothesis that
c l (A)-A be closed in (X, T) in Theorems 2.4 and 2.5 even if (X, T) is
hereditarily Lindelof.

EXAMPLE 2.6. Let (X, T) be the real line with the right half-open interval
topology and let A be the set of rationals. By Proposition 2.2 and Borges (1967),
Theorem 3.4 (X,r(A)) is not normal. Therefore, Ind(X, T ( A ) ) > 0 and so
dim(X,r(A))>0. But Ind(X, T ) = dim(X, T) = 0.

The next example shows that we cannot relax the hypothesis that (X, T) be
totally normal in Theorems 2.4 and 2.5 even if (X, T) is compact and A is a point.

EXAMPLE 2.7. Let (X, T ) = [0, w] x [0,n], the Tychonoff plank and let
A = {(w, il)}. Since X - A is not normal, (X, T(A )) is not normal [Borges (1967),
Theorem 3.4]. Therefore, Ind (X, T(A ))> 0 and so dim(X, T ( A ) ) > 0 . But
Ind(X,T) = dim(X,T) = 0.

In the following theorem we will use the notation in Borges (1967), Lemma
5.5. That is, if {A,} is a countable family of subsets of X; let A, = T(AI) and
An= An-i(An) for each n.

THEOREM 2.8. Let (X, T) be metric, A, C X and & = {T(AJ)} a countable
family of simple expansions of T such that cl (A,) - A, is closed in (X, T) for each j .
If Ind(X,r)gO, then Ind(X, A)SO.

PROOF. We first show that Ind(X, An)S=0 for each n and we do this by
induction on n. The case n = 1 is handled by Theorem 2.4 since a metric space is
totally normal. Now suppose that Ind(X, An_,)S0. By Borges (1967), Lemma
5.5(b)(X, A„) is regular for each n. Since An = An_,(An) we have by Proposition
2.2 that cln-,(An)-An is closed in (X, An_,). Here, cl,,-, denotes the closure in
A„_,. By Borges (1967), Lemma 5.5(d), (X, A„_,) is metric and so Ind(X, A„) S 0
by Theorem 2.4 again.
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Now let $„ be a cr-locally finite base for (X, A,,) consisting of open and
closed sets. By Borges (1967), Lemma 5.5(c) and Theorem 5.2, 38 = U »„ is a
cr-locally finite base for (X, A) consisting of open and closed sets and (X,A) is
metric; therefore, Ind(X,A)S0. This completes the.proof.

Our main theorem uses a mapping characterization of dimension originally
due to Morita, but may be found embodied in Nagami (1970), Theorem 12.6.

THEOREM 2.9. (Morita). (X, T) is metric with Ind(X, T ) S « if and only if
there exist a metric space (Y,cr) with Ind (Y,cr) SO and a closed mapping f:
(Y, cr)—>(X, T) with order g n + 1 (here order of f is the maximum of the
cardinals of f~\x), x G X).

THEOREM 2.10. Let (X, T) be metric and sA = {A,} a countable family of
subsets of X such that cl(A,)- A, is closed in (X, T) for each j . If Ind(X, T) S k,
then Ind (X,T(s4))Sk.

PROOF. By Theorem 2.9, there exist a metric space (Y, cr) with
Ind(Y, o-) SO and a closed mapping/: (Y, o-)->(X, T) with o rde r /gk + 1. Let
f:(Y,cr(j-\$l)))^>(X, T(J#)) be the expansion of / by si. By Guthrie and Stone
(1972), Theorem 7, this expansion is a closed mapping, and since it is the
same function /, the order is unchanged. Now since cl (A,) — A, is closed in (X, T)
for each /, it is easy to see that cl (/"'(Ay)) - /~l(A,) is closed in (Y, a) for each /.
By Proposition 2.1, o-(f~l(s&)) is the ^-expansion of cr where 9 = {o-(J~\A,))}.
Therefore, by Theorem 2.8, Ind(Y,(r(/"I(^)))S0. Then by [Borges (1967),
Theorem 5.2] (Y, o-(f'\si)) is metric and so Ind(X, T(.S/))S k by applying
Theorem 2.9 again. This completes the proof.

REMARK 2.11. Theorem 2.10 holds if Ind is everywhere replaced by dim.
This follows from Remark 2.3 and Borges (1967), Theorem 5.2.

A metric space (X, T) is countable dimensional if (X, T) is a countable union
of subspaces X, such that IndX( SO for each i [Nagata (1965), p. 162].

THEOREM 2.12. [Nagata (1965), p. 169]. A space (X, T) is metric and
countable dimensional if and only if there exist a metric space (Y, cr) with
Ind (Y, cr) S 0 and a closed mapping f: (Y, cr)—* (X, T) such that f~'(x) is finite for
each x G X.

THEOREM 2.13. Let (X, T) be metric and si ={A;} a countable family of
subsets of X such that cl(A,)-A, is closed in (X, T) for each j . If (X, T) is
countable dimensional, so is (X,

PROOF. The same as the proof of Theorem 2.10 except that we make use of
Theorem 2.12 instead of Theorem 2.9.
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The next example has been gleaned from an example in Borges (1967) and
shows that the countability of the family si in Theorem 2.10 is essential.

EXAMPLE 2.14 Let X be those points in the plane both of whose coordi-
nates are irrational and let T be the usual topology of the plane relative to X. Let
<T be Sorgenfrey's half-open rectangle topology of the plane relative to X. For
each (a, b) G X, let Aab = {(x, y) £ X; a ^ x < a + 1, b S x < b + 1}. It is easy to
see that (X, or) = (X, r{st)) where si = {Aab}. Note that cl(Aab)- Aab is closed in
(X, T) for each (a, b) £ X. However, (X, <T) is not normal and so Ind (X, a) and
dim (X, o-) > 0. But Ind (X, T) = dim (X, T) = 0.

REMARK 2.15. Dowker (1955) defines the local dimension of a space
(X T). It is an easy consequence of 3.3 and 3.4 of that paper that if (X, T) is
hereditarily paracompact, we may replace Ind by loc Ind and dim by loc dim in
Theorems 2.4 and 2.5 respectively.

The next example is mentioned as an afterthought in case the reader might
wonder if the simple expansion of a space can have dimension strictly less than
the given space. Unfortunately, our space (X, T) isn't even normal.

EXAMPLE 2.16. Let (X, T) be the Dieudonne plank as described in Steen
and Seebach (1970), p. 108. Let A be the union of the top and right side of the
plank. Since A is closed in (X, T), (X, T(A )) is the disjoint union of A and X - A
which are each open and closed in (X, T(A)). Since A and X- A are discrete
subspaces of (X, T), it is easy to see that Ind A = Ind (X — A) = 0. Now T and
T(A ) coincide on both A and X - A. Therefore, we have that Ind (X, T(A )) = 0
by Dowker (1952), 5.1. But Ind(X, T ) > 0 since (X, T) is not normal.

THEOREM 2.17. Let (X, T) b'e hereditarily Lindelof, ind(X, T) = 0 (resp.
ind (X, T) = 1). If A C X and c! (A) - A is closed in (X, T), then ind (X, r{A)) = 0
{resp. ind(X, T ( A ) ) = 1).

PROOF, n = 0: By Engelking (1968), Theorem 10, p. 269, ind(X,r) = 0
and Ind(X, T) = 0 are equivalent. Now an hereditarily Lindelof space is totally
normal (Dowker (1952), 4.2]. Note that by Proposition 2.2 and Borges (1967),
Theorem 3.8, it follows that (X, T(A )) is a Lindelof space. Then ind(X, T(A )) = 0
by Theorem 2.4.

n = 1: This case is proved similarly except that we use Engelking (1968),
Theorem 5, p. 280 in place of Theorem 10, p. 269 of that paper. This completes
the proof.

The following example shows that cl (A) - A be closed in (X, T) is essential
in Theorem 2.17. In fact, for n = 0, this condition is easily seen to be equivalent
to ind(X, T(A)) - 0. The reader can convince himself of this by Proposition 2.2
and the fact that ind (X, T) = 0 implies (X, T) is regular.
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EXAMPLE 2.18. Let (X, T) and A be as in Example 2.6. Now ind(X, T) = 0
but (X,T(A)) is not regular. Therefore, ind(X, T(A))>0 .

THEOREM 2.19. Let (X, T) be hereditarily Lindelof, ind (X, T) = 0 and si =
{Aa; a G F} a family of subsets of X such that cl (Aa) — Aa is closed in (X, T) /or
each a G F. 77ien ind (X, r(si)) = 0.

PROOF. By Theorem 2.17, ind (X, r(Aa)) = 0 for each a G F. Let 3Sa be a
clopen base of (X, r(Aa)) for each a G F and let 38 = { D {Ba; Ba G $„, a G 5, s
a finite subset of F}}. Let A be the topology on X generated by {r(Aa); a G F}.
Clearly, 38 is a clopen base for (X, A) and hence for (X, T(.S/)) by Proposition
2.1. Therefore, ind(X,r(si)) = 0 and we are done.

EXAMPLE 2.20. This example appears in Franklin (1969) in a different
context. Let (X, T) be /3N, the Stone-Cech compactification of the natural
numbers N. Let Np ={p}U N for each p G /3N - N and let si = {Np}. Observe
that the space F described in Franklin's paper is just the expansion of r by si. By
Nagami (1970), Theorem 10-3 and Proposition 8.4 it follows that ind/3N = 0. But
indF>0. Note that clpN(Np)-Np is not closed in /3N, nor is /3N hereditarily
normal [Orevkov (1962)].

3. Application to first countability

In this last section we show that the properties: first countable, point
countable base and bi-sequential are preserved by countable expansions, while
the property Frechet is preserved by countable point-finite expansions.

THEOREM 3.1. Let (X, T) have any one of the following properties:
(a) First countable
(b) Point countable base
(c) Bi-sequential.

If si = {An} is a countable family of subsets of X, then (X,r(si)) has the
corresponding property.

PROOF, (a) if {VJ is a countable local base at x in (X, T), it is easy to see
that {VJ U {Vj fl An} is a countable local base at x in (X, r(An)) and so
(X, r(An)) is first countable for each n. Now by Proposition 2.1 and Levine
(1966), Corollary 9 we have that (X, r(si)) is first countable.

(b) The proof for point countable base is very similar to the proof of (a) and
is left to the reader.

(c) By a result of Michael (1972), Theorem 3.D.2, there exist a metric
space (equivalently, a first countable space) (Y, cr) and a bi-quotient mapping /:
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(Y,a)^>(X,T). Let / : (Y,o-(f-\si)))-*{X, r(si)) be the expansion of / by si.
By Guthrie and Stone (1972), Theorem 3, this expansion is bi-quotient
and by (a), (Y, cr(f~l($&))) is first countable. By applying Michael's result again,
we have that (X, T{S£)) is bi-sequential. This completes the proof.

THEOREM 3.2. Let (X, T) be a Frechet space and si ={An} a countable
family of subsets of X such that si is point-finite in (X, T). Then (X, r(si)) is a
Frechet space.

PROOF. By a result of Franklin (1965), Proposition 2.4, there exist a
metric space (equivalently, a first countable space) (Y, a) and a pseudo-open
mapping / : (Y, cr)—»(X, T). The proof now parallels that of Theorem 3.1 (c)
except that we use Corollary 2B in Guthrie and Stone (1972) and then apply
Franklin's result again.

The following example shows that the countability of si in the above
theorems and the point-finiteness in Theorem 3.2 are essential even if (X, T) is
separable metric.

EXAMPLE 3.3. Let (X, r) be the reals with the usual topology. Let Av =
{0} U U where U is a usual neighborhood of the sequence {1/n}. Let si = {Av}.
Then (X,r(si)) is just Example 1.8 in Franklin (1965) where it is shown that
(X, T(S4)) is not Frechet (see Franklin (1965), Example 2.2).

REMARK 3.4. Theorem 3.1 also holds for the property countable bi-
sequential Siwiec (1971). The proof would be similar to that of Theorem 3.1 (c)
except that we use Theorem 4.4 in Siwiec (1971) in place of Michael's result and
Theorem 4 in place of Theorem 3 in Guthrie and Stone (1972).
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