CLEFT EXTENSIONS FOR A HOPF ALGEBRA $k_{q}\left[X, X^{-1}, Y\right]$
 by HUI-XIANG CHEN

(Received 25 June, 1996; revised 5 December, 1996)

The concept of cleft extensions, or equivalently of crossed products, for a Hopf algebra is a generalization of Galois extensions with normal basis and of crossed products for a group. The study of these subjects was founded independently by Blattner-Cohen-Montgomery [1] and by Doi-Takeuchi [4]. In this paper, we determine the isomorphic classes of cleft extensions for a infinite dimensional non-commutative, non-cocommutative Hopf algebra $k_{q}\left[X, X^{-1}, Y\right]$, which is generated by a group-like element X and a ($1, X$)-primitive element Y. We also consider the quotient algebras of the cleft extensions.

Throughout we work over a field k. Algebra, Hopf algebra, linear and \otimes mean k-algebra, Hopf algebra over k, k-linear and \otimes_{k}, respectively.

1. Preliminaries. In this section, we recall some fundamental definitions and results on cleft extensions.

Let H be a Hopf algebra with coalgebra structure Δ, ε. Fix an algebra C.
A right H-comodule algebra A (with H-comodule structure $\rho: A \rightarrow A \otimes H$) is called an H-cleft extension over C [2, p.41], if A contains C as coinvariant subalgebra; that is, $C=\{a \in A \mid \rho(a)=a \otimes 1\}$, and if there exists a right H-comodule map $\phi: H \rightarrow A$ which is invertible in the convolution algebra $\operatorname{Hom}(H, A)[10, p .69]$. In this case, ϕ can be chosen so as to be unitary $(\phi(1)=1)[4, \mathrm{p} .813]$. A unitary invertible H-comodule map $H \rightarrow A$ is called a section [3, p. 3056]. We call a pair (A, ϕ) of an H-cleft extension A / C and a section ϕ a cleft system for H over C.

A morphism (isomorphism) $f: A \rightarrow A^{\prime}$ between H-extensions over C means a morphism (isomorphism) of H-comodule algebras such that $f(c)=c$ for all $c \in C$. Denote by

$$
\operatorname{Cleft}(H, C)
$$

the set of isomorphic classes of H-cleft extensions over C.
Lemma 1.2. Let $f: A \rightarrow A^{\prime}$ be a morphism of H-extensions over C. If A / C is an H-cleft extension, then A^{\prime} / C is also an H-cleft extension and f is an isomorphism.

Proof. See the proof of [8, Lemma 1.3]
A cleft system (A, ϕ) can be characterized as a crossed product. Explicitly, if (A, ϕ) is a cleft system, set

$$
\begin{array}{rlr}
h \rightharpoonup c & =\sum \phi\left(h_{(1)}\right) c \phi^{-1}\left(h_{(2)}\right), & (c \in C, h \in H) \\
\sigma(h, g) & =\sum \phi\left(h_{(1)}\right) \phi\left(g_{(1)}\right) \phi^{-1}\left(h_{(2)} g_{(2)}\right), & (h, g \in H)
\end{array}
$$

then (\neg, σ) is a crossed system for H over C, and one can form a crossed product $C \#_{\sigma} H$ which is an H-extension over C with structure map id $\otimes \Delta: C \#_{\sigma} H \rightarrow C \#_{\sigma} H \otimes H$ [4], [1].

Glasgow Math. J. 40 (1998) 147-160.

In this case, $C \#_{\sigma} H \rightarrow A, c \# h \mapsto c \phi(h)$, is an isomorphism of H-extensions over C. Conversely, if (\rightarrow, σ) is a crossed system, $C \#_{\sigma} H$ is the corresponding crossed product, then $i d \otimes \Delta: C \#_{\sigma} H \rightarrow C \#_{\sigma} H \otimes H$ makes $C \#_{\sigma} H$ into an H-cleft extension over C, and $\phi: H \rightarrow C \#_{\sigma} H, h \mapsto 1 \# h$, is a section. See [2] and [3]. These give a $1-1$ correspondence between the isomorphic classes of cleft systems and the crossed systems (both for H over C).

An H-cleft extension A / C is said to be t wisted (respectively, smashed), if there exists a section ϕ such that $\phi(H) \subset A^{C}$ (respectively, ϕ is an algebra map), where A^{C} is the centralizer of C in A. See [3, p. 3056, p. 3059].

Throughout, the boldface letters \mathbf{N}, \mathbf{Z}, stand for nonnegative integers, all integers respectively. $U(R)$ denotes the group of units in an algebra R.
2. Cleft Extensions for $\boldsymbol{k}_{\boldsymbol{q}}\left[\boldsymbol{X}, X^{-1}, Y\right]$. Let $k\{X, Y, Z\}$ be the non-commutative free algebra on three variables. Then $k\{X, Y, Z\}$ has a bialgebra structure determined by

$$
\begin{array}{ll}
\Delta(X)=X \otimes X, & \varepsilon(X)=1 \\
\Delta(Y)=1 \otimes Y+Y \otimes X, & \varepsilon(Y)=0 \\
\Delta(Z)=Z \otimes Z, & \varepsilon(Z)=1
\end{array}
$$

See [10, p. 89] or [8, p. 4543]. Now let $0 \neq q \in k$, then the two-sided ideal generated by $X Z-1$, $Z X-1, Y X-q X Y$, is a bi-ideal, and we have $Z=X^{-1}$ in the quotient bialgebra, denote by $k_{q}\left[X, X^{-1}, Y\right]$ the quotient bialgebra. $k_{q}\left[X, X^{-1}, Y\right]$ has an antipode determined by

$$
S(X)=X^{-1}, \quad S\left(X^{-1}\right)=X, \quad S(Y)=-Y X^{-1}
$$

For convenience, we write H_{∞} for $k_{q}\left[X, X^{-1}, Y\right]$.
Lemma 2.1.
(1) H_{∞} has a k-basis $\left\{X^{n} Y^{m}, n \in \mathbf{Z}, m \in \mathbf{N}\right\}$,
(2) $\Delta\left(X^{n} Y^{m}\right)=\sum_{i=0}^{m}\binom{m}{i} X^{n} Y^{i} \otimes X^{n+i} Y^{m-i}, n \in \mathbf{Z}, m \in \mathbf{N}$, where $\binom{m}{i}_{q}$ denote the q_{-} binomial coefficients (cf. [7, p. 74]).

Proof. Easy.
Theorem 2.2. Let $C \subset A$ be an H_{∞}-extension. Then A is H_{∞}-cleft if and only if there exist elements x and y in A with $x \in U(A)$ such that

$$
\rho(x)=x \otimes X \quad \text { and } \quad \rho(y)=1 \otimes Y+y \otimes X
$$

If this is the case, we have:
(1) The map $\phi: H_{\infty} \rightarrow A, \phi\left(X^{n} Y^{m}\right)=x^{n} y^{m}(n \in \mathbf{Z}, m \in \mathbf{N})$, is a section. The inverse is given by

$$
\phi^{-1}\left(X^{n} Y^{m}\right)=(-1)^{m} q^{m(m-1) / 2} y^{m} x^{-(n+m)}, \quad n \in \mathbf{Z}, m \in \mathbf{N}
$$

(2) A is a free left C-module with a basis $\left\{x^{n} y^{m}, n \in \mathbf{Z}, m \in \mathbf{N}\right\}$.
(3) $(y x-q x y) x^{-2} \in C$.

Proof. See [5, Theorem 3.2].
Let (A, ϕ) be a cleft system for H_{∞} over $C, x=\phi(X), y=\phi(Y)$. Then x and y have properties described in Theorem 2.2. Set

$$
\alpha(c)=x c x^{-1}, \delta(c)=[y, c] x^{-1}, c \in C, \text { and } \gamma=(y x-q x y) x^{-2}
$$

then we have the following result.

Lemma 2.3.

(1) $\alpha: C \rightarrow C$ is an algebra automorphism.
(2) $\delta: C \rightarrow C$ is a $(1, \alpha)$-derivation, that is, a linear endomorphism such that

$$
\delta\left(c c^{\prime}\right)=\delta(c) \alpha\left(c^{\prime}\right)+c \delta\left(c^{\prime}\right), \quad c, c^{\prime} \in C .
$$

(3) $\delta \alpha(c)-q \alpha \delta(c)=\gamma \alpha^{2}(c)-\alpha(c) \gamma$.

Proof. It is a straightforward verification. If $(-, \sigma)$ is the crossed system induced from (A, ϕ), then $\alpha(c)=X \rightharpoonup c, \delta(c)=Y \rightharpoonup c$, and $\gamma=(\sigma(Y, X)-q \sigma(X, Y)) \sigma(X, X)^{-1}$. See [5], [8].

Definition 2.4. Let $\alpha, \delta=\in$ End (C), $\gamma \in C$. The 3-tuple (α, δ, γ) is called an H_{∞}-cleft datum over C, if the three conditions in Lemma 2.3 are satisfied. We denote the set of all such data by

$$
\mathcal{D}=\mathcal{D}\left(H_{\infty}, C\right)
$$

Now let $\underline{d}=(\alpha, \delta, \gamma)$ be an H_{∞}-cleft datum over C. Define $F_{n}, n \in \mathbf{Z}$, as follows:

$$
\left\{\begin{array}{l}
F_{0}=0, F_{n}=\gamma+q \alpha\left(F_{n-1}\right), n>0 \tag{a}\\
F_{n}=-q^{n} \alpha^{n}\left(F_{-n}\right), n<0
\end{array}\right.
$$

Lemma 2.5.
(1) $F_{n}=F_{n-1}+q^{n-1} \alpha^{n-1}(\gamma), \forall n \in \mathbf{Z}$.
(2) $F_{n+m}=F_{n}+q^{n} \alpha^{n}\left(F_{m}\right), \forall n, m \in \mathbf{Z}$.

Proof. (1) We first prove it for $n \geq 0$ by induction on n. It is clear that (1) holds for $n=0$ and 1 . Now suppose that $n>1$ and $F_{n-1}=F_{n-2}+q^{n-2} \alpha^{n-2}(\gamma)$, then

$$
\begin{aligned}
F_{n} & =\gamma+q \alpha\left(F_{n-1}\right)=\gamma+q \alpha\left(F_{n-2}+q^{n-2} \alpha^{n-2}(\gamma)\right) \\
& =\gamma+q \alpha\left(F_{n-2}\right)+q^{n-1} \alpha^{n-1}(\gamma)=F_{n-1}+q^{n-1} \alpha^{n-1}(\gamma) .
\end{aligned}
$$

Thus (1) holds for all $n \geq 0$.

Next, let $n<0$, then

$$
\begin{aligned}
F_{n} & =-q^{n} \alpha^{n}\left(F_{-n}\right)=-q^{n-1} \alpha^{n-1}\left(q \alpha\left(F_{-n}\right)\right) \\
& =-q^{n-1} \alpha^{n-1}\left(F_{-n+1}-\gamma\right) \\
& =-q^{n-1} \alpha^{n-1}\left(F_{-(n-1)}\right)+q^{n-1} \alpha^{n-1}(\gamma) \\
& =F_{n-1}+q^{n-1} \alpha^{n-1}(\gamma)
\end{aligned}
$$

(2) If $m=0$, it is trivial. If $m=1$, this is the case (1). Now let $m>1$, and suppose that $F_{n+m-1}=F_{n}+q^{n} \alpha^{n}\left(F_{m-1}\right)$ holds for all $n \in \mathbf{Z}$. Then

$$
\begin{array}{rlrl}
F_{n+m} & =F_{n+m-1}+q^{n+m-1} \alpha^{n+m-1}(\gamma) & & \text { (by (1)) } \\
& =F_{n}+q^{n} \alpha^{n}\left(F_{m-1}\right)+q^{n+m-1} \alpha^{n+m-1}(\gamma) & & \text { (by induction hypothesis) } \\
& =F_{n}+q^{n} \alpha^{n}\left(F_{m-1}+q^{m-1} \alpha^{m-1}(\gamma)\right) \\
& =F_{n}+q^{n} \alpha^{n}\left(F_{m}\right) & & \tag{1}\\
& \text { (by (1)). }
\end{array}
$$

Next, let $m<0$, then

$$
\begin{aligned}
F_{n} & =F_{n+m+(-m)} \\
& =F_{n+m}+q^{n+m} \alpha^{n+m}\left(F_{-m}\right) \quad(\text { by the case } m \geq 0) \\
& =F_{n+m}-q^{n} \alpha^{n}\left(-q^{m} \alpha^{m}\left(F_{-m}\right)\right) \\
& =F_{n+m}-q^{n} \alpha^{n}\left(F_{m}\right) \quad \text { (by (a)) } .
\end{aligned}
$$

Hence $F_{n+m}=F_{n}+q^{n} \alpha^{n}\left(F_{m}\right)$, and so (2) holds.
Lemma 2.6.

$$
\delta \alpha^{n}(c)=q^{n} \alpha^{n} \delta(c)+F_{n} \alpha^{n+1}(c)-\alpha^{n}(c) F_{n}, \forall c \in C, n \in \mathbf{Z}
$$

Proof. One can prove it for $n \geq 0$ by induction on n. If $n<0$, then

$$
\begin{array}{rlr}
\delta \alpha^{n}(c) & =\alpha^{n}\left(\alpha^{-n} \delta\left(\alpha^{n}(c)\right)\right)=q^{n} \alpha^{n}\left(q^{-n} \alpha^{-n} \delta\left(\alpha^{n}(c)\right)\right) \\
& \left.=q^{n} \alpha^{n}\left(\delta \alpha^{-n}\left(\alpha^{n}(c)\right)-F_{-n} \alpha^{-n+1}\left(\alpha^{n}(c)\right)+\alpha^{-n}\left(\alpha^{n}(c)\right) F_{-n}\right) \quad \text { (by the case of } n \geq 0\right) \\
& =q^{n} \alpha^{n} \delta(c)-q^{n} \alpha^{n}\left(F_{-n}\right) \alpha^{n+1}(c)+q^{n} \alpha^{n}(c) \alpha^{n}\left(F_{-n}\right) \\
& =q^{n} \alpha^{n} \delta(c)+F_{n} \alpha^{n+1}(c)-\alpha^{n}(c) F_{n} . \tag{a}
\end{array}
$$

Now we can form an H_{∞}-extension of C for the cleft datum $\underline{d}=(\alpha, \delta, \gamma)$ as follows.
(1) Let B_{d} be the skew Laurent polynomial algebra $C\left[x, x^{-1}, \alpha\right]$ on one variable x, that is $B_{\underline{d}}=\left\{\sum_{i=m}^{n} \bar{c}_{i} x^{i} \mid m, n \in \mathbf{Z}, m \leq n, c_{i} \in C\right\}$ with the multiplication determined by $x c=\alpha(c) x$ for all $c \in C$.
(2) Define $\bar{\alpha}: B_{\underline{d}} \rightarrow B_{\underline{d}}, c x^{n} \mapsto c q^{n} x^{n}, c \in C, n \in \mathbf{Z}$, then $\bar{\alpha}$ is an algebra automorphism.
(3) Define $\bar{\delta}: B_{\underline{d}} \rightarrow B_{\underline{d}}, c x^{n} \mapsto\left(c F_{n}+\delta(c)\right) x^{n+1}, c \in C, n \in \mathbf{Z}$, then $\bar{\delta}$ is an $\bar{\alpha}$-derivation of $B_{\underline{d}}$ by the following Lemma 2.7.
(4) Define $A_{\underline{d}}$ to be the Ore extension $B_{\underline{d}}[y, \bar{\alpha}, \bar{\delta}]$ with one variable y attached to the data ($B_{\underline{d}}, \bar{\alpha}, \bar{\delta}$) (cf. [7, Theorem I.7.1]), then $A_{\underline{d}}$ is a free left C-module with a basis $\left\{x^{n} y^{m}, n \in \mathbf{Z}\right.$, $m \in \mathbf{N}\}$.
(5) Define

$$
\begin{gathered}
\rho_{\underline{d}}: A_{\underline{d}} \rightarrow A_{\underline{d}} \otimes H_{\infty}, c x^{n} y^{m} \mapsto \sum_{i=0}^{m}\binom{m}{i}_{q} c x^{n} y^{i} \otimes X^{n+i} Y^{m-i}, c \in C, n \in \mathbf{Z}, m \in \mathbf{N}, \\
\phi_{\underline{d}}: H_{\infty} \rightarrow A_{\underline{d}}, X^{n} Y^{m} \mapsto x^{n} y^{m}, n \in \mathbf{Z}, m \in \mathbf{N}
\end{gathered}
$$

Lemma 2.7. Let $B_{\underline{d}}, \bar{\alpha}, \bar{\delta}$ be as above. Then $\bar{\delta}$ is an $\bar{\alpha}$-derivation of $B_{\underline{d}}$.
Proof. Note that $B_{\underline{d}}=\oplus_{n \in \mathbf{Z}} C x^{n}$ as a k-vector space, hence $\bar{\delta}$ is well-defined. Now for any $c, c^{\prime} \in C, n, m \in \mathbf{Z}$,

$$
\begin{array}{rlrl}
\bar{\delta}\left(\left(c x^{n}\right)\left(c^{\prime} x^{m}\right)\right)= & \bar{\delta}\left(c \alpha^{n}\left(c^{\prime}\right) x^{n+m}\right) & & \\
= & \left(c \alpha^{n}\left(c^{\prime}\right) F_{n+m}+\delta\left(c \alpha^{n}\left(c^{\prime}\right)\right)\right) x^{n+m+1} & & \\
= & \left(c \alpha^{n}\left(c^{\prime}\right) F_{n+m}+c \delta \alpha^{n}\left(c^{\prime}\right)+\delta(c) \alpha^{n+1}\left(c^{\prime}\right)\right) x^{n+m+1} & & \text { (by Definition of } \bar{\delta} \text {) } \\
= & \left(c \alpha^{n}\left(c^{\prime}\right)\left(F_{n}+q^{n} \alpha^{n}\left(F_{m}\right)\right)+c \delta \alpha^{n}\left(c^{\prime}\right)\right. & & \\
& \left.+\delta(c) \alpha^{n+1}\left(c^{\prime}\right)\right) x^{n+m+1} & & \tag{2}\\
= & \left(c q^{n} \alpha^{n}\left(c^{\prime} F_{m}\right)+c\left(\delta \alpha^{n}\left(c^{\prime}\right)+\alpha^{n}\left(c^{\prime}\right) F_{n}\right)\right. & & \\
& \left.+\delta(c) \alpha^{n+1}\left(c^{\prime}\right)\right) x^{n+m+1} & & \\
= & c q^{n} x^{n} c^{\prime} F_{m} x^{m+1}+c\left(q^{n} \alpha^{n} \delta\left(c^{\prime}\right)+F_{n} \alpha^{n+1}\left(c^{\prime}\right)\right) x^{n+m+1} & \\
& +\delta(c) \alpha^{n+1}\left(c^{\prime}\right) x^{n+m+1} & & \\
= & c q^{n}\left(x^{n} c^{\prime} F_{m}+\alpha^{n} \delta\left(c^{\prime}\right) x^{n}\right) x^{m+1} & \text { (by Lemma 2.6) } \\
& +\left(c F_{n}+\delta(c)\right) \alpha^{n+1}\left(c^{\prime}\right) x^{n+m+1} & \\
= & c q^{n} x^{n}\left(c^{\prime} F_{m}+\delta\left(c^{\prime}\right)\right) x^{m+1}+\left(c F_{n}+\delta(c)\right) x^{n+1} c^{\prime} x^{m} & \\
= & \bar{\alpha}\left(c x^{n}\right) \bar{\delta}\left(c^{\prime} x^{m}\right)+\bar{\delta}\left(c x^{n}\right)\left(c^{\prime} x^{m}\right) . &
\end{array}
$$

Theorem 2.8. Let $A_{\underline{d}}, \rho_{\underline{d}}, \phi_{\underline{d}}$ be as before. Then
(1) ρ_{d} makes A_{d} into an H_{∞}-extension over C.
(2) $\phi_{\underline{d}}$ is a section, the inverse is given by

$$
\phi_{\underline{d}}^{-1}\left(X^{n} Y^{m}\right)=(-1)^{m} q^{m(m-1) / 2} y^{m} x^{-(n+m)}, n \in \mathbf{Z}, m \in \mathbf{N}
$$

consequently, $\left(A_{\underline{d}}, \phi_{\underline{d}}\right)$ is a cleft system for H_{∞} over C.
Proof. (1) Set

$$
\rho: B_{\underline{d}} \rightarrow A_{\underline{d}} \otimes H_{\infty}, c x^{n} \mapsto c x^{n} \otimes X^{n}, c \in C, n \in \mathbf{Z}
$$

then ρ is well-defined. One can easily check that ρ is an algebra map, $\rho(c)=c \otimes 1, \rho\left(\bar{\alpha}\left(c x^{n}\right)\right)=$ $\bar{\alpha}\left(c x^{n}\right) \otimes X^{n}$ and $\rho\left(\bar{\delta}\left(c x^{n}\right)\right)=\bar{\delta}\left(c x^{n}\right) \otimes X^{n+1}$ for all $c \in C, n \in \mathbf{Z}$. Let $\xi=1 \otimes Y+y \otimes X \in A_{\underline{d}} \otimes H_{\infty}$, then

$$
\begin{aligned}
\xi \rho\left(c x^{n}\right) & =(1 \otimes Y+y \otimes X)\left(c x^{n} \otimes X^{n}\right) \\
& =c x^{n} \otimes Y X^{n}+y c x^{n} \otimes X^{n+1} \\
& =c x^{n} \otimes q^{n} X^{n} Y+\left(\bar{\alpha}\left(c x^{n}\right) y+\bar{\delta}\left(c x^{n}\right)\right) \otimes X^{n+1} \\
& =\bar{\alpha}\left(c x^{n}\right) \otimes X^{n} Y+\bar{\alpha}\left(c x^{n}\right) y \otimes X^{n+1}+\bar{\delta}\left(c x^{n}\right) \otimes X^{n+1} \\
& =\left(\bar{\alpha}\left(c x^{n}\right) \otimes X^{n}\right)(1 \otimes Y+y \otimes X)+\bar{\delta}\left(c x^{n}\right) \otimes X^{n+1} \\
& =\rho\left(\bar{\alpha}\left(c x^{n}\right)\right) \xi+\rho\left(\bar{\delta}\left(c x^{n}\right)\right) .
\end{aligned}
$$

Thus by the following Lemma 2.9, there is a unique algebra map $\bar{\rho}: A_{\underline{d}}=B_{d}[y, \bar{\alpha}, \bar{\delta}] \rightarrow$ $A_{\underline{d}} \otimes H_{\infty}$ such that $\bar{\rho}(y)=1 \otimes Y+y \otimes X$ and the restriction of $\bar{\rho}$ on $B_{\underline{d}}$ is equal to ρ. In this case,

$$
\begin{aligned}
\bar{\rho}\left(c x^{n} y^{m}\right) & =\bar{\rho}\left(c x^{n}\right) \bar{\rho}\left(y^{m}\right)=\rho\left(c x^{n}\right) \bar{\rho}(y)^{m} \\
& =\left(c x^{n} \otimes X^{n}\right)(1 \otimes Y+y \otimes X)^{m} \\
& =\sum_{i=0}^{m}\binom{m}{i}_{q} c x^{n} y^{i} \otimes X^{n+i} Y^{m-i}, c \in C, n \in \mathbf{Z}, m \in \mathbf{N},
\end{aligned}
$$

hence $\bar{\rho}=\rho_{\underline{d}}$, and so $\rho_{\underline{d}}$ is an algebra map.
Next, it is clear that $(i d \otimes \varepsilon) \rho_{\underline{d}}=i d$. So as to prove the equation $\left(\rho_{d} \otimes i d\right) \rho_{\underline{d}}=$ $(i d \otimes \Delta) \rho_{\underline{d}}$, note that each side of it is an algebra map from $A_{\underline{d}}$ to $A_{\underline{d}} \otimes H_{\infty} \otimes H_{\infty}^{-}$, and that A_{d} is generated by C, x, x^{-1} and y as an algebra. Therefore it suffices to prove $\left(\overline{\rho_{d}} \otimes i d\right) \rho_{\underline{d}}(a)=(i d \otimes \Delta) \rho_{\underline{d}}(a)$ for $a=x, a=x^{-1}, a=y$ and for all $a \in C$, but it is an easy verification. Finally, it is clear that the coinvariant subalgebra of $A_{\underline{d}}$ is C.
(2) It follows immediately from Theorem 2.2 since

$$
\rho_{\underline{d}}(x)=x \otimes X \quad \text { and } \quad \rho_{\underline{d}}(y)=1 \otimes Y+y \otimes X .
$$

Lemma 2.9. Let R, E be algebras, $f: R \rightarrow E$ an algebra map, $\alpha, \delta \in \operatorname{End}(R), \xi \in E$. Assume that α is an algebra map, δ is an α-derivation. If the 4 -tuple (f, α, δ, ξ) satisfies:

$$
\xi f(r)=f(\alpha(r)) \xi+f(\delta(r)), \forall r \in R
$$

then there exists a unique algebra map $\bar{f}: R[t, \alpha, \delta] \rightarrow E$ such that $\bar{f}(t)=\xi$ and the restriction of \bar{f} on R is f, where $R[t, \alpha, \delta]$ is the Ore extension attached to the data (R, α, δ).

Proof. Let $\beta_{n, m}$ be the linear endomorphism of R defined as the sum of all $\binom{n}{m}$ possible compositions of m copies of α and of $n-m$ copies of δ, then

$$
t^{n} r=\sum_{m=0}^{n} \beta_{n, m}(r) t^{m}, \quad n \geq 0, r \in R
$$

See [7, Corollary I.7.4(7.9)]. Similarly, one can prove by induction on n that the relation

$$
\xi^{n} f(r)=\sum_{m=0}^{n} f\left(\beta_{n, m}(r)\right) \xi^{m}
$$

holds for all $r \in R, n \geq 0$. Set

$$
\bar{f}: R[t, \alpha, \delta] \rightarrow E, \sum_{i=0}^{n} r_{i} t^{i} \mapsto \sum f\left(r_{i}\right) \xi^{i}
$$

then \bar{f} is a well-defined linear map. Now for any $r, r^{\prime} \in R, n, n^{\prime} \geq 0$,

$$
\begin{aligned}
\bar{f}\left(\left(r t^{n}\right)\left(r^{\prime} t^{n^{\prime}}\right)\right) & =\bar{f}\left(\sum_{m=0}^{n} r \beta_{n, m}\left(r^{\prime}\right) t^{m+n^{\prime}}\right) \\
& =\sum_{m=0}^{n} f\left(r \beta_{n, m}\left(r^{\prime}\right)\right) \xi^{m+n^{\prime}} \\
& =\sum_{m=0}^{n} f(r) f\left(\beta_{n, m}\left(r^{\prime}\right)\right) \xi^{m} \xi^{n^{\prime}} \\
& =f(r) \xi^{n} f\left(r^{\prime}\right) \xi^{\prime^{\prime}}=\bar{f}\left(r t^{n}\right) \bar{f}\left(r^{\prime} t^{n^{\prime}}\right),
\end{aligned}
$$

hence \bar{f} is an algebra map. It is clear that $\bar{f}(t)=\xi$ and $\bar{f}(r)=f(r)$ for all $r \in R$. The uniqueness is trivial.

By Lemma 2.3, for any cleft system (A, ϕ), there is a corresponding cleft datum (α, δ, γ) defined as before Lemma 2.3. In particular, for a given cleft datum $\underline{d}=(\alpha, \delta, \gamma)$ one can easily prove that the cleft datum induced from the cleft system $\left(A_{\underline{d}}, \phi_{\underline{d}}\right)$ is exactly the given cleft datum \underline{d}.

Theorem 2.10. Let (A, ϕ) be a cleft system, $\underline{d}=(\alpha, \delta, \gamma)$ the corresponding cleft datum. Then $A \cong A_{d}$ as H_{∞}-extensions over C.

Proof. Let $x_{1}=\phi(X), y_{1}=\phi(Y)$, then $\alpha(c)=x_{1} c x_{1}^{-1}, \delta(c)=\left[y_{1}, c\right] x_{1}^{-1}, \gamma=\left(y_{1} x_{1}-q x_{1} y_{1}\right) x_{1}^{-2}$ and x_{1}, y_{1} have properties described in Theorem 2.2.

Note that the Larent polynomial algebra $k\left[X, X^{-1}\right]$ is a Hopf subalgebra of H_{∞}. Set

$$
B=\rho^{-1}\left(A \otimes k\left[X, X^{-1}\right]\right)
$$

where ρ is the structure map of the comodule algebra A, then B is a subalgebra of A and $\rho(B) \subset B \otimes k\left[X, X^{-1}\right]$. It follows that B is a \mathbf{Z}-graded algebra and $B_{n}=\{b \in B \mid \rho(b)=$ $\left.b \otimes X^{n}\right\}=\left\{a \in A \mid \rho(a)=a \otimes X^{n}\right\}, n \in \mathbf{Z}$. One can easily check that $B_{n}=C x_{1}^{n}, n \in \mathbf{Z}$. Since $\alpha(c)=x_{1} c x_{1}^{-1}, x_{1} c=\alpha(c) x_{1}$ in B, hence the linear map

$$
B_{\underline{d}} \rightarrow B, \quad c x^{n} \mapsto c x_{1}^{n}, c \in C, n \in \mathbf{Z}
$$

is an algebra isomorphism which induces an algebra injection from $B_{\underline{d}}$ to A by the composition

$$
f: B_{\underline{d}} \rightarrow B \hookrightarrow A
$$

Now one can prove in A that (cf. [8, Lemma 2.11])

$$
y_{1} x_{1}^{n}=q^{n} x_{1}^{n} y_{1}+F_{n} x_{1}^{n+1}, n \in \mathbf{Z}
$$

where F_{n} is defined as in (a) by α, γ. Hence in A we have

$$
\begin{aligned}
y_{1} f\left(c x^{n}\right) & =y_{1} c x_{1}^{n}=\left[y_{1}, c\right] x_{1}^{n}+c y_{1} x_{1}^{n} \\
& =\delta(c) x_{1}^{n+1}+c\left(q^{n} x_{1}^{n} y_{1}+F_{n} x_{1}^{n+1}\right) \\
& =c q^{n} x_{1}^{n} y_{1}+\left(c F_{n}+\delta(c)\right) x_{1}^{n+1} \\
& =f\left(c q^{n} x^{n}\right) y_{1}+f\left(\left(c F_{n}+\delta(c)\right) x^{n+1}\right) \\
& =f\left(\bar{\alpha}\left(c x^{n}\right)\right) y_{1}+f\left(\bar{\delta}\left(c x^{n}\right)\right), c \in C, n \in \mathbf{Z}
\end{aligned}
$$

it follows from Lemma 2.9 that f can be uniquely extended to $A_{\underline{d}}$, that is,

$$
\bar{f}: A_{\underline{d}} \rightarrow A, c x^{n} \mapsto c x_{1}^{n}, y \mapsto y_{1}, c \in C, n \in \mathbf{Z}
$$

is an algebra map. Clearly, \bar{f} is a morphism of H_{∞}-extension over C, and is bijective by Lemma 1.1 or Theorem 2.2(2).

Theorem 2.11. Let A be an algebra containing C as a subalgebra. Then $C \subset A$ is an H_{∞}-cleft extension if and only if there exists a cleft datum \underline{d} such that $A / C \cong A_{d} / C$, that is, there is an algebra isomorphism $f: A \rightarrow A_{\underline{d}}$ with $f(c)=c$ for all $c \in C$.

Proof. It follows from Theorem 2.8 and 2.10.
Theorem 2.12. Let $\underline{d}=(\alpha, \delta, \gamma)$ and $\underline{d}^{\prime}=\left(\alpha^{\prime}, \delta^{\prime}, \gamma^{\prime}\right)$ be $H_{\infty}-$ cleft data over C. Then $A_{\underline{d}} \cong A_{\underline{d}^{\prime}}$ as H_{∞} - extensions over C if and only if there exist $a \in U(C)$ and $b \in C$ such that

$$
\begin{cases}(1) & \alpha^{\prime}(c)=a \alpha(c) a^{-1}, \tag{b}\\ (2) & \delta^{\prime}(c)=(\delta(c)+b \alpha(c)-c b) a^{-1}, \\ (3) & \gamma^{\prime}=(a \gamma+b \alpha(a)+\delta(a)-q a \alpha(b))(a \alpha(a))^{-1} .\end{cases}
$$

Proof. Assume that $f: A_{\underline{d^{\prime}}} \rightarrow A_{\underline{d}}$ is an isomorphism of H_{∞}-extensions over C. Set

$$
a=f\left(x^{\prime}\right) x^{-1}, \quad b=\left(f\left(y^{\prime}\right)-y\right) x^{-1}
$$

then one can prove that $a \in U(C), b \in C$, and the conditions (1)-(3) hold.
Conversely, suppose that there exist $a \in U(C)$ and $b \in C$ such that the conditions (1)-(3) hold. Set

$$
f: B_{d^{\prime}}=C\left[x^{\prime}, x^{\prime-1}, \alpha^{\prime}\right] \rightarrow A_{\underline{d}}, c x^{\prime n} \mapsto c(a x)^{n}, c \in C, n \in \mathbf{Z}
$$

one can easily prove that f is an algebra map with $f(c)=c, f\left(x^{\prime}\right)=a x, c \in C$. We claim that

$$
\begin{equation*}
(y+b x) f(r)=f\left(\overline{\alpha^{\prime}}(r)\right)(y+b x)+f\left(\overline{\delta^{\prime}}(r)\right) \tag{c}
\end{equation*}
$$

holds for any $r \in B_{\underline{d}^{\prime}}$. First, if the relation (c) holds for $r_{1}, r_{2} \in B_{\underline{d}^{\prime}}$ then

$$
\begin{aligned}
(y+b x) f\left(r_{1} r_{2}\right) & =(y+b x) f\left(r_{1}\right) f\left(r_{2}\right) \\
& =\left(f\left(\overline{\alpha^{\prime}}\left(r_{1}\right)\right)(y+b x)+f\left(\overline{\delta^{\prime}}\left(r_{1}\right)\right)\right) f\left(r_{2}\right) \\
& =f\left(\overline{\alpha^{\prime}}\left(r_{1}\right)\right)(y+b x) f\left(r_{2}\right)+f\left(\overline{\delta^{\prime}}\left(r_{1}\right) r_{2}\right) \\
& =f\left(\overline{\alpha^{\prime}}\left(r_{1}\right)\right)\left(f\left(\overline{\alpha^{\prime}}\left(r_{2}\right)\right)(y+b x)+f\left(\overline{\delta^{\prime}}\left(r_{2}\right)\right)\right)+f\left(\overline{\delta^{\prime}}\left(r_{1}\right) r_{2}\right) \\
& \left.=f\left(\overline{\alpha^{\prime}}\left(r_{1}\right) \overline{\alpha^{\prime}}\left(r_{2}\right)\right)(y+b x)+f\left(\overline{\alpha^{\prime}}\left(r_{1}\right)\right)\left(r_{2}\right)+\overline{\delta^{\prime}}\left(r_{1}\right) r_{2}\right) \\
& =f\left(\overline{\alpha^{\prime}}\left(r_{1} r_{2}\right)\right)(y+b x)+f\left(\overline{\delta^{\prime}}\left(r_{1} r_{2}\right)\right),
\end{aligned}
$$

that is, the relation (c) holds for $r_{1} r_{2}$. Next, a straightforward verification shows that the relation (c) holds for $r=x^{\prime}, r=x^{\prime-1}$, and for all $r \in C$. Finally, since $B_{d^{\prime}}$ is generated by $C, x^{\prime}, x^{\prime-1}$ as an algebra, the relation (c) holds for all $r \in \underline{B}_{d^{\prime}}$. It follows from Lemma 2.9 that there is a unique algebra map $\bar{f}: A_{\underline{d^{\prime}}} \rightarrow A_{\underline{d}}$ such that $\bar{f}(c)=c, c \in C, \bar{f}\left(x^{\prime}\right)=a x$, and $\bar{f}\left(y^{\prime}\right)=y+b x$. One can easily check that \bar{f} is a morphism of H_{∞}-extensions over C. By Lemma 1.1, \bar{f} must be bijective.

Lemma 2.13. Let $\underline{d}=(\alpha, \delta, \gamma)$ be a cleft datum for H_{∞} over $C, a \in U(C), b \in C$. Define $\alpha^{\prime}, \delta^{\prime}, \gamma^{\prime}$ by (b) in Theorem 2.12. The $\underline{d^{\prime}}=\left(\alpha^{\prime}, \delta^{\prime}, \gamma^{\prime}\right)$ is also a cleft datum for H_{∞} over C.

Proof. Consider $A_{\underline{d}}$, set $x_{1}=a x, y_{1}=y+b x$, then $x_{1} \in U\left(A_{\underline{d}}\right), y_{1} \in A_{\underline{d}}$, and $\rho_{\underline{d}}\left(x_{1}\right)=$ $x_{1} \otimes X, \rho_{d}\left(y_{1}\right)=1 \otimes Y+y_{1} \otimes X$. Define

$$
\phi: H_{\infty} \rightarrow A_{\underline{d}}, X^{n} Y^{m} \mapsto x_{1}^{n} y_{1}^{m}, n \in \mathbf{Z}, m \in \mathbf{N}
$$

then by Theorem 2.2, ϕ is also a section for A_{d}. A straightforward computation shows that $\alpha^{\prime}(c)=x_{1} c x_{1}^{-1}, \delta^{\prime}(c)=\left[y_{1}, c\right] x_{1}^{-1}$ and $\gamma^{\prime}=\left(\bar{y}_{1} x_{1}-q x_{1} y_{1}\right) x_{1}^{-2}$. Hence $\underline{d^{\prime}}=\left(\alpha^{\prime}, \delta^{\prime}, \gamma^{\prime}\right)$ is exactly the cleft datum induced from the left system $\left(A_{\underline{d}}, \phi\right)$.

By the proof of Theorem 2.12, we know that if $f: A_{d^{\prime}} \rightarrow A_{\underline{d}}$ is an isomorphism of H_{∞}-extensions over C, where $\underline{d}=(\alpha, \delta, \gamma)$ and $\underline{d^{\prime}}=\left(\alpha^{\prime}, \delta^{\prime}, \gamma^{\prime}\right)$ are cleft data, then there exist $a \in U(C)$ and $b \in C$ such that

$$
f\left(x^{\prime}\right)=a x, \quad f\left(y^{\prime}\right)=y+b x
$$

and $\underline{d}, \underline{d^{\prime}}, a$ and b satisfy the three relations in (b). Now let $\underline{d^{\prime \prime}}=\left(\alpha^{\prime \prime}, \delta^{\prime \prime}, \gamma^{\prime \prime}\right)$ be another cleft datum, if $g: A_{d^{\prime \prime}} \rightarrow A_{d^{\prime}}$ is also an isomorphism of H_{∞}-extensions determined by a pair $(s, t) \in U(C) \times \bar{C}$, that is

$$
g\left(x^{\prime \prime}\right)=s x^{\prime}, \quad g\left(y^{\prime \prime}\right)=y^{\prime}+t x^{\prime}
$$

then the composition $f g: A_{\underline{d^{\prime \prime}}} \rightarrow A_{\underline{d}}$ is determined by the pair ($s a, t a+b$), that is,

$$
(f g)\left(x^{\prime \prime}\right)=\operatorname{sax}, \quad(f g)\left(y^{\prime \prime}\right)=y+(t a+b) x
$$

The group $U(C)$ acts on the additive group C by the right multiplication. So we have the group $U(C) \propto C$ of semi-direct product with the multiplication (cf. [8, p. 4553])

$$
(s \propto t)(a \propto b)=s a \propto(t a+b) .
$$

Thus from the above discussion and Theorem 2.12 we have
Corollary 2.14 .
(1) $U(C) \propto C$ acts on the set \mathcal{D} from the left with the action

$$
\underline{d^{\prime}}=(a \propto b) \underline{d}
$$

defined by (b).
(2) Suppose $d, \underline{d^{\prime}} \in \mathcal{D}$. Then $A_{\underline{d}} \cong A_{\underline{d^{\prime}}}$, if and only if \underline{d} and \underline{d}^{\prime} are $U(C) \propto C$-equivalent.

Theorem 2.15. $\underline{d} \mapsto A_{d}$ gives a 1-1 correspondence between the set $U(C) \propto C \backslash \mathcal{D}\left(H_{\infty}, C\right)$ of $U(C) \propto C$-orbits in $\mathcal{D}\left(\bar{H}_{\infty}, C\right)$ and the set Cleft $\left(H_{\infty}, C\right)$ of isomorphic classes of H_{∞}-cleft extensions over C.

Proof. It follows by Theorem 2.10 and corollary 2.14(2).
Note that for any $\gamma \in C,(1,0, \gamma)$ is a cleft datum if and only if $\gamma \in Z(C)$, the center of C. Let α be an algebra automorphism of C, δ a $(1, \alpha)$-derivation of C, then $(\alpha, \delta, 0)$ is a cleft datum if and only if $\delta \alpha=q \alpha \delta$.

Let $\underline{d}=(\alpha, \delta, \gamma) \in \mathcal{D}$, then $\phi_{\underline{d}}\left(H_{\infty}\right) \subset A_{d}^{C}$ if and only if $\alpha=1$ and $\delta=0 ; \phi_{\underline{d}}$ is an algebra map if and only if $\gamma=0$. Thus by a method similar to [8, Prop. 2.24], we have

Proposition 2.16. Let $\underline{d}=(\alpha, \delta, \gamma) \in \mathcal{D}$. Then
(1) $A_{\underline{d}}$ is twisted if and only if there exist $a \in U(C), b \in C$ such that

$$
\alpha(c)=a c a^{-1}, \quad \delta(c)=[b, c] a^{-1}, \quad c \in C .
$$

(2) A_{d} is smashed, if and only if there exist $a \in U(C), b \in C$ such that $\gamma=q \alpha(b)+$ $(\delta(a)-a b) \alpha(a)^{-1}$.
3. Quotient Algebra of $A_{\underline{d}}$. In this section, we write $A(\underline{d}, C)$ for $A_{\underline{d}}, \underline{d} \in \mathcal{D}\left(H_{\infty}, C\right)$.

Let s be a multiplicative set in C. Then s satisfies the right Ore condition $c s \bigcap d C$ is nonempty for all $c \in C$ and $d \in s$, while s is right reversible if $d c=0, c \in C, d \in s$ implies $c d^{\prime}=0$ for some $d^{\prime} \in s$. A right Ore set is any multiplicative set satisfying the right Ore condition, while a right denominator set is any right reversible right Ore set [6, p. 144].

Let s be a right Ore set in C, set

$$
t_{s}(C)=\{c \in C \mid c d=0 \text { for some } d \in s\}
$$

then $t_{s}(C)$ is an ideal of C.
Let s be a right denominator set of C, then there exists a right quotient algebra $C s^{-1}$ of C with respect to s [6, Theorem 9.7], that is, there is an algebra map $\theta: C \rightarrow C s^{-1}$ such that:
(a) $\theta(d)$ is a unit of $C s^{-1}$ for all $d \in s$.
(b) Each element of $C s^{-1}$ has the form $\theta(c) \theta(d)^{-1}$ for some $c \in C, d \in s$.
(c) $\operatorname{ker} \theta=t_{s}(C)$.

If s consists of regular elements of C, then $\operatorname{ker} \theta=t_{s}(C)=0$. In this case, C is a subalgebra of $C s^{-1}$ regarding θ as embedding, and each element of $C s^{-1}$ takes the form $c d^{-1}$ for some $c \in C$ and $d \in s$.

Throughout the following, assume that s is a right denominator set in C, and that $\theta: C \rightarrow C s^{-1}$ is a right quotient algebra of C with respect to s.

Lemma 3.1. Assume $\alpha: C \rightarrow C$ is an algebra automorphism. If $\alpha(s)=s$, then there exists a unique algebra automorphism α_{0} of $C s^{-1}$ such that $\alpha_{0} \theta=\theta \alpha$. Furthermore, if $\delta: C \rightarrow C$ is a $(1, \alpha)-$ derivation then there exists a unique $\left(1, \alpha_{0}\right)-$ derivation δ_{0} of $C s^{-1}$ such that $\delta_{0} \theta=\theta \delta$.

Proof. Assume α is an algebra automorphism of C with $\alpha(s)=s$. One can easily check that the composition $C \xrightarrow{\alpha} C \xrightarrow{\theta} C s^{-1}$ also makes $C s^{-1}$ into a right quotient algebra of C with respect to s . It follows by [6, Corollary 9.5] that there exists a unique algebra isomorphism $\alpha_{0}: C s^{-1} \rightarrow C s^{-1}$ such that $\alpha_{0} \theta=\theta \alpha$. Furthermore, assume δ is a $(1, \alpha)-$ derivation of C. We claim that $t_{s}(C)$ is δ-stable, i.e. $\delta\left(t_{s}(C)\right) \subset t_{s}(C)$. In fact, let $c \in t_{s}(C)$ then $c d=0$ for some $d \in s$. Therefore

$$
0=\delta(c d)=\delta(c) \alpha(d)+c \delta(d)
$$

However $c \delta(d) \in t_{s}(C)$ since $t_{s}(C)$ is an ideal of C , so $c \delta(d) d^{\prime}=0$ for some $d^{\prime} \in s$, and hence $\delta(c) \alpha(d) d^{\prime}=0$. But $\alpha(d) d^{\prime} \in s$, so $\delta(c) \in t_{s}(C)$, and then it follows that $t_{s}(C)$ is δ - stable. Now if δ_{0} is a $\left(1, \alpha_{0}\right)$ - derivation of $C s^{-1}$ with $\delta_{0} \theta=\theta \delta$, then for any $c \in C, d \in s$, we have

$$
\begin{aligned}
0 & =\delta_{0}(1)=\delta_{0}\left(\theta(d) \theta(d)^{-1}\right)=\delta_{0}(\theta(d)) \alpha_{0}\left(\theta(d)^{-1}\right)+\theta(d) \delta_{0}\left(\theta(d)^{-1}\right) \\
& =\theta(\delta(d))\left(\alpha_{0} \theta(d)\right)^{-1}+\theta(d) \delta_{0}\left(\theta(d)^{-1}\right) \\
& =\theta(\delta(d)) \theta(\alpha(d))^{-1}+\theta(d) \delta_{0}\left(\theta(d)^{-1}\right)
\end{aligned}
$$

therefore, $\delta_{0}\left(\theta(d)^{-1}\right)=-\theta(d)^{-1} \theta(\delta(d)) \theta(\alpha(d))^{-1}$, and so

$$
\begin{aligned}
\delta_{0}\left(\theta(c) \theta(d)^{-1}\right) & =\delta_{0}(\theta(c)) \alpha_{0}\left(\theta(d)^{-1}\right)+\theta(c) \delta_{0}\left(\theta(d)^{-1}\right) \\
& =\theta(\delta(c)) \theta(\alpha(d))^{-1}-\theta(c) \theta(d)^{-1} \theta(\delta(d)) \theta(\alpha(d))^{-1}
\end{aligned}
$$

It follows that δ_{0} must be unique. As to existence, let us define $\delta_{0} \in \operatorname{End}\left(C s^{-1}\right)$ by

$$
\delta_{0}\left(\theta(c) \theta(d)^{-1}\right)=\theta(\delta(c)) \theta(\alpha(d))^{-1}-\theta(c) \theta(d)^{-1} \theta(\delta(d)) \theta(\alpha(d))^{-1}, \quad c \in C, d \in s
$$

A tedious and standard verification shows that δ_{0} is well defined, and is a ($1, \alpha_{0}$)-derivation of C_{s}. Clearly, $\delta_{0} \theta=\theta \delta$.

Lemma 3.2. Let $\underline{d}=(\alpha, \delta, \gamma) \in \mathcal{D}\left(H_{\infty}, C\right)$ with $\alpha(s)=s, \alpha_{0}, \delta_{0}$ as in Lemma 3.1, $\gamma_{0}=\theta(\gamma)$ in $C s^{-1}$. Then $\underline{d_{0}}=\left(\alpha_{0}, \delta_{0}, \gamma_{0}\right)$ is a cleft datum for H_{∞} over $C s^{-1}$, i.e. $\underline{d}_{0} \in \mathcal{D}\left(H_{\infty}, C s^{-1}\right)$.

Proof. By Definition 2.4 and Lemma 3.1, we only have to prove that the equation $\delta_{0} \alpha_{0}(p)-q \alpha_{0} \delta_{0}(p)=\gamma_{0} \alpha_{0}^{2}(p)-\alpha_{0}(p) \gamma_{0}$ holds for any $p \in C s^{-1}$. In fact, let $p=\theta(c) \theta(d)^{-1}$, $c \in C, d \in s$, then

$$
\begin{aligned}
& \delta_{0} \alpha_{0}\left(\theta(c) \theta(d)^{-1}\right)-q \alpha_{0} \delta_{0}\left(\theta(c) \theta(d)^{-1}\right) \\
= & \delta_{0}\left(\theta(\alpha(c)) \theta(\alpha(d))^{-1}\right)-q\left[\theta(\alpha \delta(c)) \theta\left(\alpha^{2}(d)\right)^{-1}-\theta(\alpha(c)) \theta(\alpha(d))^{-1} \theta(\alpha \delta(d)) \theta\left(\alpha^{2}(d)\right)^{-1}\right] \\
= & \theta(\delta \alpha(c)) \theta\left(\alpha^{2}(d)\right)^{-1}-\theta(\alpha(c)) \theta(\alpha(d))^{-1} \theta(\delta \alpha(d)) \theta\left(\alpha^{2}(d)\right)^{-1} \\
& -q\left[\theta(\alpha \delta(c)) \theta\left(\alpha^{2}(d)\right)^{-1}-\theta(\alpha(c)) \theta(\alpha(d))^{-1} \theta(\alpha \delta(d)) \theta\left(\alpha^{2}(d)\right)^{-1}\right] \\
= & \theta(\delta \alpha(c)-q \alpha \delta(c)) \theta\left(\alpha^{2}(d)\right)^{-1}-\theta(\alpha(c)) \theta(\alpha(d))^{-1} \theta(\delta \alpha(d)-q \alpha \delta(d)) \theta\left(\alpha^{2}(d)\right)^{-1} \\
= & \theta\left(\gamma \alpha^{2}(c)-\alpha(c) \gamma\right) \theta\left(\alpha^{2}(d)\right)^{-1}-\theta(\alpha(c)) \theta(\alpha(d))^{-1} \theta\left(\gamma \alpha^{2}(d)-\alpha(d) \gamma\right) \theta\left(\alpha^{2}(d)\right)^{-1} \\
= & \gamma_{0} \alpha_{0}^{2}\left(\theta(c) \theta(d)^{-1}\right)-\alpha_{0}\left(\theta(c) \theta(d)^{-1}\right) \gamma_{0} .
\end{aligned}
$$

Theorem 3.3. Let $\underline{d}=(\alpha, \delta, \gamma) \in \mathcal{D}\left(H_{\infty}, C\right)$ with $\alpha(s)=s$ and $d_{0}=\left(\alpha_{0}, \delta_{0}, \gamma_{0}\right) \in$ $\mathcal{D}\left(H_{\infty}, C s^{-1}\right)$ as in Lemma 3.2. Then s is also a right denominator set of $A(\underline{d}, C)$, and $A\left(\underline{d_{0}}, C s^{-1}\right)$ is a right quotient algebra of $A(\underline{d}, C)$ with respect to s; i.e. $A\left(\underline{d_{0}}, C s^{-1}\right) \cong A(\underline{d}, C) s^{-1}$.

Proof. Let $F_{n}(n \in \mathbf{Z})$ be as in (a) for \underline{d} over C, then

$$
\left\{\begin{array}{l}
\theta\left(F_{0}\right)=0, \quad \theta\left(F_{n}\right)=\gamma_{0}+q \alpha_{0}\left(\theta\left(F_{n-1}\right)\right), n>0 \\
\theta\left(F_{n}\right)=-q^{n} \alpha_{0}^{n}\left(\theta\left(F_{-n}\right)\right), n<0
\end{array}\right.
$$

Thus by the structure of $A(\underline{d}, C)$ and $A\left(\underline{d_{0}}, C s^{-1}\right)$ as in $\S 2, \theta$ can be uniquely extended to an algebra map $\bar{\theta}$ from $A(\underline{d}, C)$ to $A\left(\underline{d_{0}}, \bar{C} s^{-1}\right)$ such that $\bar{\theta}(x)=x$ and $\bar{\theta}(y)=y$. Clearly, $\bar{\theta}(d)=\theta(d)$ is a unit of $A\left(\underline{d_{0}}, C s^{-1}\right)$ for all $d \in s$. Note that $A(\underline{d}, C)=B_{\underline{d}}[y, \bar{\alpha}, \bar{\delta}]$ and $B_{\underline{d}}=C\left[x, x^{-1}, \alpha\right], A(\underline{d}, C)$ is also a free right C-module with a basis $\left\{y^{m} x^{n}, n \in \mathbf{Z}, m \in \mathbf{N}\right\}$ since α and $\bar{\alpha}$ are automorphisms. Similarly, $A\left(\underline{d_{0}}, C s^{-1}\right)$ is a free right $C s^{-1}$-module with a basis $\left\{y^{m} x^{n}, n \in \mathbf{Z}, m \in \mathbf{N}\right\}$. It follows that each element of $A\left(d_{0}, C s^{-1}\right)$ has the form $\bar{\theta}(r) \bar{\theta}(d)^{-1}$ for some $r \in A(\underline{d}, C)$ and $d \in s$, and that $\operatorname{ker} \bar{\theta}=t_{s}(A(\underline{d}, C))$ by [6, Lemma 9.2(a)]. Hence $A\left(\underline{d_{0}}, C s^{-1}\right)$ is a right quotient algebra of $A(\underline{d}, C)$ with respect to s , and s is a right denominator set of $A(\underline{d}, C)$. This completes the proof.

Note that the algebra map $\bar{\theta}: A(\underline{d}, C) \rightarrow A\left(\underline{d_{0}}, C s^{-1}\right)$ is also a right H_{∞}-comodule map, i.e. $\rho_{d_{0}} \bar{\theta}=(\bar{\theta} \otimes i d) \rho_{\underline{d}}$. It can be easily seen that $\bar{\theta} \overline{\phi_{\underline{d}}}=\phi_{\underline{d_{0}}}$ and $\phi_{\underline{d_{0}}}^{-1}=\bar{\theta} \phi_{d}^{-1}$. Thus using crossed products, we can present Theorem 3.3 as follows.

Theorem 3.4. Let (\rightarrow, σ) be a crossed system for H_{∞} over C. If $X \rightarrow s=s$, then \rightarrow can be uniquely extended to a weak action \rightarrow of H_{∞} on Cs^{-1} determined by

$$
\begin{gathered}
X \rightarrow \theta(c) \theta(d)^{-1}=\theta(X \rightharpoonup c) \theta(X \rightharpoonup d)^{-1} \\
Y \rightarrow \theta(c) \theta(d)^{-1}=\theta(Y \rightharpoonup c) \theta(X \rightharpoonup d)^{-1}-\theta(c) \theta(d)^{-1} \theta(Y \rightharpoonup d) \theta(X \rightharpoonup d)^{-1}
\end{gathered}
$$

and $(\rightarrow, \theta \sigma)$ is a crossed system for H_{∞} over $C s^{-1}$. In this case,

$$
\bar{\theta}: C \#_{\sigma} H_{\infty} \rightarrow C s^{-1} \#_{\theta \sigma} H_{\infty} c \# h \mapsto \theta(c) \# h, \quad c \in C, h \in H_{\infty},
$$

is a right H_{∞}-comodule algebra map, and $\bar{\theta}$ makes $\mathrm{Cs}^{-1} \#_{\theta \sigma} H_{\infty}$ into a right quotient algebra of $\mathrm{CH}_{\sigma} H_{\infty}$ with respect to s ; that is,

$$
C s^{-1} \#_{\theta \sigma} H_{\infty} \cong\left(C \#_{\sigma} H_{\infty}\right) s^{-1} .
$$

Recall that C is an integral domain if the product of nonzero elements is always nonzero. An integral domain C is a right Ore domain if the set s of all nonzero elements of C satisfies the right Ore condition. In this case, $C s^{-1}$ exists, which is a division algebra, usually denote it by $Q(C)$. Thus as corollaries we have the following results.

Corollary 3.5. Let $\mathrm{CH}_{\sigma} H_{\infty}$ be a crossed product. If C is a right Ore domain, then there exists a unique crossed product $Q(C) \#_{\sigma} H_{\infty}$ containing $C \#_{\sigma} H_{\infty}$ as a subalgebra, and $Q(C) \#_{o} H_{\infty}=\left(C \#_{o} H_{\infty}\right) s^{-1}$, where $s=C \backslash\{0\}$.

Corollary 3.6. Let A / C be an H_{∞}-cleft extension. If C is a right Ore domain, then $s=C \backslash\{0\}$ is a right denominator set of A, and $A s^{-1}$ is an H_{∞}-cleft extension over $Q(C)$.

Note that the left versions of all above results still hold.

Theorem 3.7. Let A / C be an H_{∞}-cleft extension. Then
(1) If C is prime, then so is A.
(2) A is an integral domain if and only if C is an integral domain.
(3) A is right (respectively left) Noetherian if and only if C is right (respectively left) Noetherian.

Proof. If A is an integral domain, it is clear that C is also an integral domain. By Theorem 2.10, we can regard $A=A(\underline{d}, C)$ for some cleft datum $\underline{d}=(\alpha, \delta, \gamma)$. If follows by the structure of $A(\underline{d}, C)$ or Theorem 2.2 that any element z of A can be uniquely expressed as a finite sum $z=\sum_{n \in \mathbf{Z}, m \in \mathbf{N}} c_{n, m} x^{n} y^{m}$, where $c_{n, m} \in C$ and almost all $c_{n, m}=0$, and that $z \in C$ if and only if $c_{n, m}=0$ for all $n \neq 0$ or $m \neq 0$. Henceby, if I is a right ideal of C, then $I A$ is a right ideal of A and $I A=\oplus_{n \in \mathbf{Z}, m \in \mathbb{N}} I x^{n} y^{m}$. So $I A \cap C=I$. On the other hand, since α and $\bar{\alpha}$ are algebra automorphisms, A is a free right C-module with the basis $\left\{y^{m} x^{n}, n \in \mathbf{Z}, m \in \mathbf{N}\right\}$. Thus a similar argument shows that if I is a left ideal of C then $A I$ is a left ideal of A and $A I \cap C=I$. It follows that if A is right (left) Noetherian then C is also right (left) Noetherian. The rest follows from [9, Theorem 1.2.9 and 1.4.5].

REFERENCES

1. R. Blattner, M. Cohen and S. Montgomery, Crossed products and inner actions of Hopf algebras, Trans. Amer. Math. Soc. 298 (1986), 671-711.
2. R. Blattner and S. Montgomery, Crossed products and Galois extensions of Hopf algebras, Pacific J. Math. 137 (1989), 37-54.
3. Y. Doi, Equivalent crossed products for a Hopf algebra, Comm. Algebra 17 (1989), 3053-3085.
4. Y. Doi and M. Takeuchi, Cleft comodule algebras for a bialgebra, Comm. Algebra 14 (1986), 801-817.
5. Y. Doi and M. Takeuchi, Quaternion algebras and Hopf crossed products, Comm. Algebra 23 (1995), 3291-3325.
6. K. R. Goodearl and R. B. Warfield, Jr., An introduction to noncommutative Noetherian rings, (Cambridge, 1989).
7. C. Kassal, Quantum group (Springer-Verlag, 1995).
8. A. Masuoka, Cleft extensions for a Hopf algebra generated by a nearly primitive element, Comm. Algebra 22 (1994), 4537-4559.
9. J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings (Wiley-Interscience, 1987).
10. M. E. Sweedler, Hopf algebras (Benjamin, 1969).

Department of Mathematics
Teacher's College
Yangzhou University
Yangzhou
Institute of Mathematics
Fudan University
Shanguai 200433
China
Jiangsu 225002
China

