CLEFT EXTENSIONS FOR A HOPF ALGEBRA $k_q[X, X^{-1}, Y]$ by HUI-XIANG CHEN

(Received 25 June, 1996; revised 5 December, 1996)

The concept of cleft extensions, or equivalently of crossed products, for a Hopf algebra is a generalization of Galois extensions with normal basis and of crossed products for a group. The study of these subjects was founded independently by Blattner-Cohen-Montgomery [1] and by Doi-Takeuchi [4]. In this paper, we determine the isomorphic classes of cleft extensions for a infinite dimensional non-commutative, non-cocommutative Hopf algebra $k_q[X, X^{-1}, Y]$, which is generated by a group-like element X and a (1,X)-primitive element Y. We also consider the quotient algebras of the cleft extensions.

Throughout we work over a field k. Algebra, Hopf algebra, linear and \otimes mean k-algebra, Hopf algebra over k, k-linear and \otimes_k , respectively.

1. Preliminaries. In this section, we recall some fundamental definitions and results on cleft extensions.

Let H be a Hopf algebra with coalgebra structure Δ , ε . Fix an algebra C.

A right *H*-comodule algebra *A* (with *H*-comodule structure $\rho: A \to A \otimes H$) is called an *H*-cleft extension over *C* [2, p. 41], if *A* contains *C* as coinvariant subalgebra; that is, $C = \{a \in A \mid \rho(a) = a \otimes 1\}$, and if there exists a right *H*-comodule map $\phi: H \to A$ which is invertible in the convolution algebra Hom(*H*, *A*) [10, p. 69]. In this case, ϕ can be chosen so as to be unitary ($\phi(1) = 1$) [4, p. 813]. A unitary invertible *H*-comodule map $H \to A$ is called a section [3, p. 3056]. We call a pair (*A*, ϕ) of an *H*-cleft extension *A*/*C* and a section ϕ a cleft system for *H* over *C*.

A morphism (isomorphism) $f: A \to A'$ between H-extensions over C means a morphism (isomorphism) of H-comodule algebras such that f(c) = c for all $c \in C$. Denote by

 $\operatorname{Cleft}(H, C)$

the set of isomorphic classes of H-cleft extensions over C.

LEMMA 1.2. Let $f: A \to A'$ be a morphism of H-extensions over C. If A/C is an H-cleft extension, then A'/C is also an H-cleft extension and f is an isomorphism.

Proof. See the proof of [8, Lemma 1.3]

A cleft system (A, ϕ) can be characterized as a crossed product. Explicitly, if (A, ϕ) is a cleft system, set

$$h \rightarrow c = \sum \phi(h_{(1)})c\phi^{-1}(h_{(2)}), \qquad (c \in C, h \in H)$$

$$\sigma(h,g) = \sum \phi(h_{(1)})\phi(g_{(1)})\phi^{-1}(h_{(2)}g_{(2)}), \qquad (h,g \in H)$$

then (\rightarrow, σ) is a crossed system for *H* over *C*, and one can form a crossed product $C\#_{\sigma}H$ which is an *H*-extension over *C* with structure map $id \otimes \Delta : C\#_{\sigma}H \rightarrow C\#_{\sigma}H \otimes H$ [4], [1].

Glasgow Math. J. 40 (1998) 147-160.

In this case, $C\#_{\sigma}H \to A$, $c\#h \mapsto c\phi(h)$, is an isomorphism of *H*-extensions over *C*. Conversely, if (\to, σ) is a crossed system, $C\#_{\sigma}H$ is the corresponding crossed product, then $id \otimes \Delta : C\#_{\sigma}H \to C\#_{\sigma}H \otimes H$ makes $C\#_{\sigma}H$ into an *H*-cleft extension over *C*, and $\phi : H \to C\#_{\sigma}H, h \mapsto 1\#h$, is a section. See [2] and [3]. These give a 1-1 correspondence between the isomorphic classes of cleft systems and the crossed systems (both for *H* over *C*).

An *H*-cleft extension A/C is said to be *twisted* (respectively, *smashed*), if there exists a section ϕ such that $\phi(H) \subset A^C$ (respectively, ϕ is an algebra map), where A^C is the centralizer of C in A. See [3, p. 3056, p. 3059].

Throughout, the boldface letters N, Z, stand for nonnegative integers, all integers respectively. U(R) denotes the group of units in an algebra R.

2. Cleft Extensions for $k_q[X, X^{-1}, Y]$. Let $k\{X, Y, Z\}$ be the non-commutative free algebra on three variables. Then $k\{X, Y, Z\}$ has a bialgebra structure determined by

$\Delta(X) = X \otimes X,$	$\varepsilon(X) = 1,$
$\Delta(Y) = 1 \otimes Y + Y \otimes X,$	$\varepsilon(Y)=0,$
$\Delta(Z) = Z \otimes Z,$	$\varepsilon(Z) = 1.$

See [10, p. 89] or [8, p. 4543]. Now let $0 \neq q \in k$, then the two-sided ideal generated by XZ - 1, ZX - 1, YX - qXY, is a bi-ideal, and we have $Z = X^{-1}$ in the quotient bialgebra, denote by $k_q[X, X^{-1}, Y]$ the quotient bialgebra. $k_q[X, X^{-1}, Y]$ has an antipode determined by

$$S(X) = X^{-1}, \quad S(X^{-1}) = X, \quad S(Y) = -YX^{-1}.$$

For convenience, we write H_{∞} for $k_a[X, X^{-1}, Y]$.

LEMMA 2.1.
(1)
$$H_{\infty}$$
 has a k-basis $\{X^n Y^m, n \in \mathbb{Z}, m \in \mathbb{N}\},$
(2) $\Delta(X^n Y^m) = \sum_{i=0}^m \binom{m}{i} X^n Y^i \otimes X^{n+i} Y^{m-i}, n \in \mathbb{Z}, m \in \mathbb{N}, where $\binom{m}{i}_q$ denote the q-binomial coefficients (cf. [7, p. 74]).$

Proof. Easy.

THEOREM 2.2. Let $C \subset A$ be an H_{∞} -extension. Then A is H_{∞} -cleft if and only if there exist elements x and y in A with $x \in U(A)$ such that

$$\rho(x) = x \otimes X$$
 and $\rho(y) = 1 \otimes Y + y \otimes X$.

If this is the case, we have:

(1) The map $\phi: H_{\infty} \to A$, $\phi(X^n Y^m) = x^n y^m (n \in \mathbb{Z}, m \in \mathbb{N})$, is a section. The inverse is given by

$$\phi^{-1}(X^n Y^m) = (-1)^m q^{m(m-1)/2} y^m x^{-(n+m)}, \qquad n \in \mathbb{Z}, m \in \mathbb{N}$$

- (2) A is a free left C-module with a basis $\{x^n y^m, n \in \mathbb{Z}, m \in \mathbb{N}\}$.
- (3) $(yx qxy)x^{-2} \in C$.

Proof. See [5, Theorem 3.2].

Let (A, ϕ) be a cleft system for H_{∞} over C, $x = \phi(X)$, $y = \phi(Y)$. Then x and y have properties described in Theorem 2.2. Set

$$\alpha(c) = xcx^{-1}, \, \delta(c) = [y, c]x^{-1}, \, c \in C, \text{ and } \gamma = (yx - qxy)x^{-2},$$

then we have the following result.

LEMMA 2.3. (1) $\alpha : C \to C$ is an algebra automorphism. (2) $\delta : C \to C$ is a (1, α)-derivation, that is, a linear endomorphism such that

$$\delta(cc') = \delta(c)\alpha(c') + c\delta(c'), \quad c, c' \in C.$$

(3)
$$\delta \alpha(c) - q \alpha \delta(c) = \gamma \alpha^2(c) - \alpha(c) \gamma$$
.

Proof. It is a straightforward verification. If (\rightarrow, σ) is the crossed system induced from (A, ϕ), then $\alpha(c) = X \rightarrow c$, $\delta(c) = Y \rightarrow c$, and $\gamma = (\sigma(Y, X) - q\sigma(X, Y))\sigma(X, X)^{-1}$. See [5], [8].

DEFINITION 2.4. Let $\alpha, \delta = \in$ End (C), $\gamma \in C$. The 3-tuple (α, δ, γ) is called an H_{∞} -cleft datum over C, if the three conditions in Lemma 2.3 are satisfied. We denote the set of all such data by

$$\mathcal{D} = \mathcal{D}(H_{\infty}, C)$$

Now let $\underline{d} = (\alpha, \delta, \gamma)$ be an H_{∞} -cleft datum over C. Define $F_n, n \in \mathbb{Z}$, as follows:

$$\begin{cases} F_0 = 0, F_n = \gamma + q\alpha(F_{n-1}), n > 0, \\ F_n = -q^n \alpha^n(F_{-n}), n < 0. \end{cases}$$
 (a)

LEMMA 2.5. (1) $F_n = F_{n-1} + q^{n-1}\alpha^{n-1}(\gamma), \forall n \in \mathbb{Z}.$ (2) $F_{n+m} = F_n + q^n\alpha^n(F_m), \forall n, m \in \mathbb{Z}.$

Proof. (1) We first prove it for $n \ge 0$ by induction on n. It is clear that (1) holds for n = 0 and 1. Now suppose that n > 1 and $F_{n-1} = F_{n-2} + q^{n-2}\alpha^{n-2}(\gamma)$, then

$$F_n = \gamma + q\alpha(F_{n-1}) = \gamma + q\alpha(F_{n-2} + q^{n-2}\alpha^{n-2}(\gamma))$$

= $\gamma + q\alpha(F_{n-2}) + q^{n-1}\alpha^{n-1}(\gamma) = F_{n-1} + q^{n-1}\alpha^{n-1}(\gamma).$

Thus (1) holds for all $n \ge 0$.

Next, let n < 0, then

$$F_{n} = -q^{n} \alpha^{n} (F_{-n}) = -q^{n-1} \alpha^{n-1} (q \alpha (F_{-n}))$$

= $-q^{n-1} \alpha^{n-1} (F_{-n+1} - \gamma)$ (by (a))
= $-q^{n-1} \alpha^{n-1} (F_{-(n-1)}) + q^{n-1} \alpha^{n-1} (\gamma)$
= $F_{n-1} + q^{n-1} \alpha^{n-1} (\gamma)$ (by (a)).

(2) If m = 0, it is trivial. If m = 1, this is the case (1). Now let m > 1, and suppose that $F_{n+m-1} = F_n + q^n \alpha^n (F_{m-1})$ holds for all $n \in \mathbb{Z}$. Then

$$F_{n+m} = F_{n+m-1} + q^{n+m-1} \alpha^{n+m-1}(\gamma) \qquad (by (1))$$

= $F_n + q^n \alpha^n (F_{m-1}) + q^{n+m-1} \alpha^{n+m-1}(\gamma) \qquad (by induction hypothesis)$
= $F_n + q^n \alpha^n (F_{m-1} + q^{m-1} \alpha^{m-1}(\gamma))$
= $F_n + q^n \alpha^n (F_m) \qquad (by (1)).$

Next, let m < 0, then

$$F_n = F_{n+m+(-m)}$$

= $F_{n+m} + q^{n+m} \alpha^{n+m} (F_{-m})$ (by the case $m \ge 0$)
= $F_{n+m} - q^n \alpha^n (-q^m \alpha^m (F_{-m}))$
= $F_{n+m} - q^n \alpha^n (F_m)$ (by (a)).

Hence $F_{n+m} = F_n + q^n \alpha^n(F_m)$, and so (2) holds.

Lemma 2.6.

$$\delta \alpha^n(c) = q^n \alpha^n \delta(c) + F_n \alpha^{n+1}(c) - \alpha^n(c) F_n, \forall c \in C, n \in \mathbb{Z}.$$

Proof. One can prove it for $n \ge 0$ by induction on n. If n < 0, then

$$\delta \alpha^{n}(c) = \alpha^{n} (\alpha^{-n} \delta(\alpha^{n}(c))) = q^{n} \alpha^{n} (q^{-n} \alpha^{-n} \delta(\alpha^{n}(c)))$$

$$= q^{n} \alpha^{n} (\delta \alpha^{-n} (\alpha^{n}(c)) - F_{-n} \alpha^{-n+1} (\alpha^{n}(c)) + \alpha^{-n} (\alpha^{n}(c)) F_{-n}) \quad \text{(by the case of } n \ge 0)$$

$$= q^{n} \alpha^{n} \delta(c) - q^{n} \alpha^{n} (F_{-n}) \alpha^{n+1}(c) + q^{n} \alpha^{n} (c) \alpha^{n} (F_{-n})$$

$$= q^{n} \alpha^{n} \delta(c) + F_{n} \alpha^{n+1}(c) - \alpha^{n} (c) F_{n}. \qquad \text{(by (a))}$$

Now we can form an H_{∞} -extension of C for the cleft datum $\underline{d} = (\alpha, \delta, \gamma)$ as follows.

(1) Let $B_{\underline{d}}$ be the skew Laurent polynomial algebra $C[x, x^{-1}, \alpha]$ on one variable x, that is $B_{\underline{d}} = \{\sum_{i=m}^{n} c_i x^i | m, n \in \mathbb{Z}, m \le n, c_i \in C\}$ with the multiplication determined by $xc = \alpha(c)x$ for all $c \in C$.

(2) Define $\overline{\alpha}: B_{\underline{d}} \to B_{\underline{d}}, cx^n \mapsto cq^n x^n, c \in C, n \in \mathbb{Z}$, then $\overline{\alpha}$ is an algebra automorphism.

(3) Define $\overline{\delta}: B_{\underline{d}} \to B_{\underline{d}}, cx^n \mapsto (cF_n + \delta(c))x^{n+1}, c \in C, n \in \mathbb{Z}$, then $\overline{\delta}$ is an $\overline{\alpha}$ -derivation of B_d by the following Lemma 2.7.

(4) Define $A_{\underline{d}}$ to be the Ore extension $B_{\underline{d}}[y, \overline{\alpha}, \overline{\delta}]$ with one variable y attached to the data $(B_{\underline{d}}, \overline{\alpha}, \overline{\delta})$ (cf. [7, Theorem I.7.1]), then $A_{\underline{d}}$ is a free left C-module with a basis $\{x^n y^m, n \in \mathbb{Z}, m \in \mathbb{N}\}$.

(5) Define

CLEFT EXTENSIONS FOR A HOPF ALGEBRA $k_q[X, X^{-1}, Y]$ 151

$$\begin{split} \rho_{\underline{d}} &: A_{\underline{d}} \to A_{\underline{d}} \otimes H_{\infty}, \, cx^{n} y^{m} \mapsto \sum_{i=0}^{m} {m \choose i}_{q} cx^{n} y^{i} \, \otimes X^{n+i} Y^{m-i}, \, c \in C, \, n \in \mathbb{Z}, \, m \in \mathbb{N}, \\ \phi_{\underline{d}} &: H_{\infty} \to A_{\underline{d}}, \, X^{n} Y^{m} \mapsto x^{n} y^{m}, \, n \in \mathbb{Z}, \, m \in \mathbb{N}. \end{split}$$

LEMMA 2.7. Let $B_{\underline{d}}, \overline{\alpha}, \overline{\delta}$ be as above. Then $\overline{\delta}$ is an $\overline{\alpha}$ -derivation of $B_{\underline{d}}$.

Proof. Note that $B_d = \bigoplus_{n \in \mathbb{Z}} Cx^n$ as a k-vector space, hence $\overline{\delta}$ is well-defined. Now for any $c, c' \in C, n, m \in \mathbb{Z}$,

$$\begin{split} \overline{\delta}((cx^{n})(c'x^{m})) &= \overline{\delta}(c\alpha^{n}(c')x^{n+m}) \\ &= (c\alpha^{n}(c')F_{n+m} + \delta(c\alpha^{n}(c')))x^{n+m+1} & \text{(by Definition of } \overline{\delta}) \\ &= (c\alpha^{n}(c')F_{n+m} + c\delta\alpha^{n}(c') + \delta(c)\alpha^{n+1}(c'))x^{n+m+1} & \text{(by Definition 2.4)} \\ &= (c\alpha^{n}(c')(F_{n} + q^{n}\alpha^{n}(F_{m})) + c\delta\alpha^{n}(c') \\ &+ \delta(c)\alpha^{n+1}(c')x^{n+m+1} & \text{(by Lemma 2.5(2))} \\ &= (cq^{n}\alpha^{n}(c'F_{m}) + c(\delta\alpha^{n}(c') + \alpha^{n}(c')F_{n}) \\ &+ \delta(c)\alpha^{n+1}(c')x^{n+m+1} \\ &= cq^{n}x^{n}c'F_{m}x^{m+1} + c(q^{n}\alpha^{n}\delta(c') + F_{n}\alpha^{n+1}(c'))x^{n+m+1} \\ &+ \delta(c)\alpha^{n+1}(c')x^{n+m+1} & \text{(by Lemma 2.6)} \\ &= cq^{n}(x^{n}c'F_{m} + \alpha^{n}\delta(c')x^{n})x^{m+1} \\ &+ (cF_{n} + \delta(c))\alpha^{n+1}(c')x^{n+m+1} \\ &= cq^{n}x^{n}(c'F_{m} + \delta(c'))x^{m+1} + (cF_{n} + \delta(c))x^{n+1}c'x^{m} \\ &= \overline{\alpha}(cx^{n})\overline{\delta}(c'x^{m}) + \overline{\delta}(cx^{n})(c'x^{m}). \end{split}$$

THEOREM 2.8. Let $A_{\underline{d}}$, $\rho_{\underline{d}}$, $\phi_{\underline{d}}$ be as before. Then (1) ρ_d makes A_d into an H_{∞} -extension over C. (2) ϕ_d is a section, the inverse is given by

$$\phi_d^{-1}(X^n Y^m) = (-1)^m q^{m(m-1)/2} y^m x^{-(n+m)}, n \in \mathbb{Z}, m \in \mathbb{N},$$

consequently, $(A_{\underline{d}}, \phi_{\underline{d}})$ is a cleft system for H_{∞} over C.

Proof. (1) Set

_

$$\rho: B_{\underline{d}} \to A_{\underline{d}} \otimes H_{\infty}, cx^{n} \mapsto cx^{n} \otimes X^{n}, c \in C, n \in \mathbb{Z},$$

then ρ is well-defined. One can easily check that ρ is an algebra map, $\rho(c) = c \otimes 1$, $\rho(\overline{\alpha}(cx^n)) =$ $\overline{\alpha}(cx^n) \otimes X^n$ and $\rho(\overline{\delta}(cx^n)) = \overline{\delta}(cx^n) \otimes X^{n+1}$ for all $c \in C, n \in \mathbb{Z}$. Let $\xi = 1 \otimes Y + y \otimes X \in A_{\underline{d}} \otimes H_{\infty}$, then

$$\begin{split} \xi\rho(cx^n) &= (1 \otimes Y + y \otimes X)(cx^n \otimes X^n) \\ &= cx^n \otimes YX^n + ycx^n \otimes X^{n+1} \\ &= cx^n \otimes q^n X^n Y + (\overline{\alpha}(cx^n)y + \overline{\delta}(cx^n)) \otimes X^{n+1} \\ &= \overline{\alpha}(cx^n) \otimes X^n Y + \overline{\alpha}(cx^n)y \otimes X^{n+1} + \overline{\delta}(cx^n) \otimes X^{n+1} \\ &= (\overline{\alpha}(cx^n) \otimes X^n)(1 \otimes Y + y \otimes X) + \overline{\delta}(cx^n) \otimes X^{n+1} \\ &= \rho(\overline{\alpha}(cx^n))\xi + \rho(\overline{\delta}(cx^n)). \end{split}$$

Thus by the following Lemma 2.9, there is a unique algebra map $\overline{\rho} : A_{\underline{d}} = B_{\underline{d}}[y, \overline{\alpha}, \overline{\delta}] \to A_{\underline{d}} \otimes H_{\infty}$ such that $\overline{\rho}(y) = 1 \otimes Y + y \otimes X$ and the restriction of $\overline{\rho}$ on $B_{\underline{d}}$ is equal to ρ . In this case,

$$\overline{\rho}(cx^{n}y^{m}) = \overline{\rho}(cx^{n})\overline{\rho}(y^{m}) = \rho(cx^{n})\overline{\rho}(y)^{m}$$
$$= (cx^{n} \otimes X^{n})(1 \otimes Y + y \otimes X)^{m}$$
$$= \sum_{i=0}^{m} {m \choose i}_{q} cx^{n}y^{i} \otimes X^{n+i}Y^{m-i}, c \in C, n \in \mathbb{Z}, m \in \mathbb{N}.$$

hence $\overline{\rho} = \rho_d$, and so ρ_d is an algebra map.

Next, it is clear that $(id \otimes \varepsilon)\rho_d = id$. So as to prove the equation $(\rho_d \otimes id)\rho_d = (id \otimes \Delta)\rho_d$, note that each side of it is an algebra map from A_d to $A_d \otimes H_\infty \otimes H_\infty$, and that A_d is generated by C, x, x^{-1} and y as an algebra. Therefore it suffices to prove $(\rho_d \otimes id)\rho_d(a) = (id \otimes \Delta)\rho_d(a)$ for $a = x, a = x^{-1}, a = y$ and for all $a \in C$, but it is an easy verification. Finally, it is clear that the coinvariant subalgebra of A_d is C.

(2) It follows immediately from Theorem 2.2 since

$$\rho_d(x) = x \otimes X$$
 and $\rho_d(y) = 1 \otimes Y + y \otimes X$.

LEMMA 2.9. Let R, E be algebras, $f: R \to E$ an algebra map, $\alpha, \delta \in \text{End}(R), \xi \in E$. Assume that α is an algebra map, δ is an α -derivation. If the 4-tuple (f, α, δ, ξ) satisfies:

$$\xi f(r) = f(\alpha(r))\xi + f(\delta(r)), \forall r \in R,$$

then there exists a unique algebra map \overline{f} : $R[t, \alpha, \delta] \to E$ such that $\overline{f}(t) = \xi$ and the restriction of \overline{f} on R is f, where $R[t, \alpha, \delta]$ is the Ore extension attached to the data (R, α, δ) .

Proof. Let $\beta_{n,m}$ be the linear endomorphism of R defined as the sum of all $\binom{n}{m}$ possible compositions of m copies of α and of n - m copies of δ , then

$$t^n r = \sum_{m=0}^n \beta_{n,m}(r) t^m, \quad n \ge 0, r \in \mathbb{R}.$$

See [7, Corollary I.7.4(7.9)]. Similarly, one can prove by induction on n that the relation

$$\xi^n f(r) = \sum_{m=0}^n f(\beta_{n,m}(r))\xi^m$$

153

holds for all $r \in R$, $n \ge 0$. Set

$$\overline{f}: R[t, \alpha, \delta] \to E, \sum_{i=0}^{n} r_i t^i \mapsto \sum f(r_i) \xi^i,$$

then \overline{f} is a well-defined linear map. Now for any $r, r' \in R, n, n' \ge 0$,

$$\bar{f}((rt^{n})(r't^{n'})) = \bar{f}\left(\sum_{m=0}^{n} r\beta_{n,m}(r')t^{m+n'}\right)$$

= $\sum_{m=0}^{n} f(r\beta_{n,m}(r'))\xi^{m+n'}$
= $\sum_{m=0}^{n} f(r)f(\beta_{n,m}(r'))\xi^{m}\xi^{n'}$
= $f(r)\xi^{n}f(r')\xi^{n'} = \bar{f}(rt^{n})\bar{f}(r't^{n'}),$

hence \overline{f} is an algebra map. It is clear that $\overline{f}(t) = \xi$ and $\overline{f}(r) = f(r)$ for all $r \in R$. The uniqueness is trivial.

By Lemma 2.3, for any cleft system (A, ϕ) , there is a corresponding cleft datum (α, δ, γ) defined as before Lemma 2.3. In particular, for a given cleft datum $\underline{d} = (\alpha, \delta, \gamma)$ one can easily prove that the cleft datum induced from the cleft system $(A_{\underline{d}}, \phi_{\underline{d}})$ is exactly the given cleft datum \underline{d} .

THEOREM 2.10. Let (A, ϕ) be a cleft system, $\underline{d} = (\alpha, \delta, \gamma)$ the corresponding cleft datum. Then $A \cong A_d$ as H_{∞} -extensions over C.

Proof. Let $x_1 = \phi(X)$, $y_1 = \phi(Y)$, then $\alpha(c) = x_1 c x_1^{-1}$, $\delta(c) = [y_1, c] x_1^{-1}$, $\gamma = (y_1 x_1 - q x_1 y_1) x_1^{-2}$ and x_1, y_1 have properties described in Theorem 2.2.

Note that the Larent polynomial algebra $k[X, X^{-1}]$ is a Hopf subalgebra of H_{∞} . Set

$$B = \rho^{-1}(A \otimes k[X, X^{-1}]),$$

where ρ is the structure map of the comodule algebra A, then B is a subalgebra of A and $\rho(B) \subset B \otimes k[X, X^{-1}]$. It follows that B is a Z-graded algebra and $B_n = \{b \in B | \rho(b) = b \otimes X^n\} = \{a \in A | \rho(a) = a \otimes X^n\}, n \in \mathbb{Z}$. One can easily check that $B_n = Cx_1^n, n \in \mathbb{Z}$. Since $\alpha(c) = x_1cx_1^{-1}, x_1c = \alpha(c)x_1$ in B, hence the linear map

$$B_d \to B, \quad cx^n \mapsto cx_1^n, c \in C, n \in \mathbb{Z},$$

is an algebra isomorphism which induces an algebra injection from $B_{\underline{d}}$ to A by the composition

$$f: B_d \to B \hookrightarrow A$$

Now one can prove in A that (cf. [8, Lemma 2.11])

$$y_1 x_1^n = q^n x_1^n y_1 + F_n x_1^{n+1}, n \in \mathbb{Z},$$

where F_n is defined as in (a) by α , γ . Hence in A we have

$$y_1 f(cx^n) = y_1 cx_1^n = [y_1, c]x_1^n + cy_1 x_1^n$$

= $\delta(c)x_1^{n+1} + c(q^n x_1^n y_1 + F_n x_1^{n+1})$
= $cq^n x_1^n y_1 + (cF_n + \delta(c))x_1^{n+1}$
= $f(cq^n x^n)y_1 + f((cF_n + \delta(c))x^{n+1})$
= $f(\overline{\alpha}(cx^n))y_1 + f(\overline{\delta}(cx^n)), c \in C, n \in \mathbb{Z}, n \in$

it follows from Lemma 2.9 that f can be uniquely extended to A_d , that is,

$$\overline{f}: A_{\underline{d}} \to A, cx^n \mapsto cx_1^n, y \mapsto y_1, c \in C, n \in \mathbb{Z},$$

is an algebra map. Clearly, \overline{f} is a morphism of H_{∞} -extension over C, and is bijective by Lemma 1.1 or Theorem 2.2(2).

THEOREM 2.11. Let A be an algebra containing C as a subalgebra. Then $C \subset A$ is an H_{∞} -cleft extension if and only if there exists a cleft datum \underline{d} such that $A/C \cong A_{\underline{d}}/C$, that is, there is an algebra isomorphism $f: A \to A_{\underline{d}}$ with f(c) = c for all $c \in C$.

Proof. It follows from Theorem 2.8 and 2.10.

THEOREM 2.12. Let $\underline{d} = (\alpha, \delta, \gamma)$ and $\underline{d}' = (\alpha', \delta', \gamma')$ be H_{∞} - cleft data over C. Then $A_d \cong A_{d'}$ as H_{∞} - extensions over C if and only if there exist $a \in U(C)$ and $b \in C$ such that

$$\begin{cases} (1) & \alpha'(c) = a\alpha(c)a^{-1}, \\ (2) & \delta'(c) = (\delta(c) + b\alpha(c) - cb)a^{-1}, \\ (3) & \gamma' &= (a\gamma + b\alpha(a) + \delta(a) - qa\alpha(b))(a\alpha(a))^{-1}. \end{cases}$$
(b)

Proof. Assume that $f: A_{d'} \to A_d$ is an isomorphism of H_{∞} -extensions over C. Set

$$a = f(x')x^{-1}, \quad b = (f(y') - y)x^{-1},$$

then one can prove that $a \in U(C)$, $b \in C$, and the conditions (1)–(3) hold.

Conversely, suppose that there exist $a \in U(C)$ and $b \in C$ such that the conditions (1)–(3) hold. Set

$$f: B_{\underline{d}'} = C[x', x'^{-1}, \alpha'] \to A_{\underline{d}}, cx'^n \mapsto c(ax)^n, c \in C, n \in \mathbb{Z},$$

one can easily prove that f is an algebra map with $f(c) = c, f(x') = ax, c \in C$. We claim that

$$(y+bx)f(r) = f(\overline{\alpha'}(r))(y+bx) + f(\overline{\delta'}(r))$$
(c)

holds for any $r \in B_{\underline{d}'}$. First, if the relation (c) holds for $r_1, r_2 \in B_{\underline{d}'}$ then

155

$$(y+bx)f(r_1r_2) = (y+bx)f(r_1)f(r_2)$$

= $(f(\overline{\alpha'}(r_1))(y+bx) + f(\overline{\delta'}(r_1)))f(r_2)$
= $f(\overline{\alpha'}(r_1))(y+bx)f(r_2) + f(\overline{\delta'}(r_1)r_2)$
= $f(\overline{\alpha'}(r_1))(f(\overline{\alpha'}(r_2))(y+bx) + f(\overline{\delta'}(r_2))) + f(\overline{\delta'}(r_1)r_2)$
= $f(\overline{\alpha'}(r_1)\overline{\alpha'}(r_2))(y+bx) + f(\overline{\alpha'}(r_1)\overline{\delta'}(r_2) + \overline{\delta'}(r_1)r_2)$
= $f(\overline{\alpha'}(r_1r_2))(y+bx) + f(\overline{\delta'}(r_1r_2)),$

that is, the relation (c) holds for r_1r_2 . Next, a straightforward verification shows that the relation (c) holds for $r = x', r = x'^{-1}$, and for all $r \in C$. Finally, since $B_{\underline{d}'}$ is generated by C, x', x'^{-1} as an algebra, the relation (c) holds for all $r \in B_{\underline{d}'}$. It follows from Lemma 2.9 that there is a unique algebra map $\overline{f}: A_{\underline{d}'} \to A_{\underline{d}}$ such that $\overline{f}(c) = c, c \in C, \overline{f}(x') = ax$, and $\overline{f}(y') = y + bx$. One can easily check that \overline{f} is a morphism of H_{∞} -extensions over C. By Lemma 1.1, \overline{f} must be bijective.

LEMMA 2.13. Let $\underline{d} = (\alpha, \delta, \gamma)$ be a cleft datum for H_{∞} over $C, a \in U(C), b \in C$. Define $\alpha', \delta', \gamma'$ by (b) in Theorem 2.12. The $\underline{d'} = (\alpha', \delta', \gamma')$ is also a cleft datum for H_{∞} over C.

Proof. Consider $A_{\underline{d}}$, set $x_1 = ax$, $y_1 = y + bx$, then $x_1 \in U(A_{\underline{d}})$, $y_1 \in A_{\underline{d}}$, and $\rho_{\underline{d}}(x_1) = x_1 \otimes X$, $\rho_d(y_1) = 1 \otimes Y + y_1 \otimes X$. Define

$$\phi: H_{\infty} \to A_d, X^n Y^m \mapsto x_1^n y_1^m, n \in \mathbb{Z}, m \in \mathbb{N},$$

then by Theorem 2.2, ϕ is also a section for $A_{\underline{d}}$. A straightforward computation shows that $\alpha'(c) = x_1 c x_1^{-1}, \delta'(c) = [y_1, c] x_1^{-1}$ and $\gamma' = (y_1 x_1 - q x_1 y_1) x_1^{-2}$. Hence $\underline{d'} = (\alpha', \delta', \gamma')$ is exactly the cleft datum induced from the left system (A_d, ϕ) .

By the proof of Theorem 2.12, we know that if $f: A_{\underline{d'}} \to A_{\underline{d}}$ is an isomorphism of H_{∞} -extensions over C, where $\underline{d} = (\alpha, \delta, \gamma)$ and $\underline{d'} = (\alpha', \delta', \gamma')$ are cleft data, then there exist $a \in U(C)$ and $b \in C$ such that

$$f(x') = ax, \quad f(y') = y + bx,$$

and $\underline{d}, \underline{d'}, a$ and b satisfy the three relations in (b). Now let $\underline{d''} = (\alpha'', \delta'', \gamma'')$ be another cleft datum, if $g: A_{\underline{d''}} \to A_{\underline{d'}}$ is also an isomorphism of H_{∞} -extensions determined by a pair $(s, t) \in U(C) \times \overline{C}$, that is

$$g(x'') = sx', \quad g(y'') = y' + tx',$$

then the composition $fg: A_{\underline{d''}} \to A_{\underline{d}}$ is determined by the pair (sa, ta + b), that is,

$$(fg)(x'') = sax, \quad (fg)(y'') = y + (ta + b)x.$$

The group U(C) acts on the additive group C by the right multiplication. So we have the group $U(C) \ltimes C$ of semi-direct product with the multiplication (cf. [8, p. 4553])

$$(s \ltimes t)(a \ltimes b) = sa \ltimes (ta + b).$$

Thus from the above discussion and Theorem 2.12 we have

COROLLARY 2.14. (1) $U(C) \ltimes C$ acts on the set \mathcal{D} from the left with the action

$$\underline{d'} = (a \ltimes b)\underline{d}$$

defined by (b).

(2) Suppose $d, \underline{d'} \in \mathcal{D}$. Then $A_{\underline{d}} \cong A_{\underline{d'}}$, if and only if \underline{d} and $\underline{d'}$ are $U(C) \ltimes C$ -equivalent.

THEOREM 2.15. $\underline{d} \mapsto A_{\underline{d}}$ gives a 1-1 correspondence between the set $U(C) \ltimes C \setminus \mathcal{D}(H_{\infty}, C)$ of $U(C) \ltimes C$ -orbits in $\mathcal{D}(H_{\infty}, C)$ and the set $Cleft(H_{\infty}, C)$ of isomorphic classes of H_{∞} -cleft extensions over C.

Proof. It follows by Theorem 2.10 and corollary 2.14(2).

Note that for any $\gamma \in C$, $(1, 0, \gamma)$ is a cleft datum if and only if $\gamma \in Z(C)$, the center of C. Let α be an algebra automorphism of C, δ a $(1, \alpha)$ -derivation of C, then $(\alpha, \delta, 0)$ is a cleft datum if and only if $\delta \alpha = q\alpha \delta$.

Let $\underline{d} = (\alpha, \delta, \gamma) \in \mathcal{D}$, then $\phi_{\underline{d}}(H_{\infty}) \subset A_{\underline{d}}^C$ if and only if $\alpha = 1$ and $\delta = 0$; $\phi_{\underline{d}}$ is an algebra map if and only if $\gamma = 0$. Thus by a method similar to [8, Prop. 2.24], we have

PROPOSITION 2.16. Let $\underline{d} = (\alpha, \delta, \gamma) \in \mathcal{D}$. Then (1) $A_{\underline{d}}$ is twisted if and only if there exist $a \in U(C)$, $b \in C$ such that

 $\alpha(c) = aca^{-1}, \quad \delta(c) = [b, c]a^{-1}, \quad c \in C.$

(2) A_d is smashed, if and only if there exist $a \in U(C)$, $b \in C$ such that $\gamma = q\alpha(b) + (\delta(a) - ab)\alpha(a)^{-1}$.

3. Quotient Algebra of $A_{\underline{d}}$. In this section, we write $A(\underline{d}, C)$ for $A_{\underline{d}}, \underline{d} \in \mathcal{D}(H_{\infty}, C)$.

Let s be a multiplicative set in C. Then s satisfies the right Ore condition $cs \cap dC$ is nonempty for all $c \in C$ and $d \in s$, while s is right reversible if $dc = 0, c \in C, d \in s$ implies cd' = 0 for some $d' \in s$. A right Ore set is any multiplicative set satisfying the right Ore condition, while a right denominator set is any right reversible right Ore set [6, p. 144].

Let s be a right Ore set in C, set

$$t_s(C) = \{c \in C \mid cd = 0 \text{ for some } d \in s\},\$$

then $t_s(C)$ is an ideal of C.

Let s be a right denominator set of C, then there exists a right quotient algebra Cs^{-1} of C with respect to s [6, Theorem 9.7], that is, there is an algebra map $\theta : C \to Cs^{-1}$ such that:

(a) $\theta(d)$ is a unit of Cs^{-1} for all $d \in s$.

- (b) Each element of Cs^{-1} has the form $\theta(c)\theta(d)^{-1}$ for some $c \in C, d \in s$.
- (c) $\ker \theta = t_s(C)$.

If s consists of regular elements of C, then $\ker \theta = t_s(C) = 0$. In this case, C is a subalgebra of Cs^{-1} regarding θ as embedding, and each element of Cs^{-1} takes the form cd^{-1} for some $c \in C$ and $d \in s$.

Throughout the following, assume that s is a right denominator set in C, and that $\theta: C \to Cs^{-1}$ is a right quotient algebra of C with respect to s.

LEMMA 3.1. Assume $\alpha : C \to C$ is an algebra automorphism. If $\alpha(s) = s$, then there exists a unique algebra automorphism α_0 of Cs^{-1} such that $\alpha_0\theta = \theta\alpha$. Furthermore, if $\delta : C \to C$ is a $(1, \alpha)$ -derivation then there exists a unique $(1, \alpha_0)$ -derivation δ_0 of Cs^{-1} such that $\delta_0\theta = \theta\delta$.

Proof. Assume α is an algebra automorphism of C with $\alpha(s) = s$. One can easily check that the composition $C \xrightarrow{\alpha} C \xrightarrow{\theta} Cs^{-1}$ also makes Cs^{-1} into a right quotient algebra of C with respect to s. It follows by [6, Corollary 9.5] that there exists a unique algebra isomorphism $\alpha_0 : Cs^{-1} \rightarrow Cs^{-1}$ such that $\alpha_0 \theta = \theta \alpha$. Furthermore, assume δ is a $(1,\alpha)$ - derivation of C. We claim that $t_s(C)$ is δ -stable, i.e. $\delta(t_s(C)) \subset t_s(C)$. In fact, let $c \in t_s(C)$ then cd = 0 for some $d \in s$. Therefore

$$0 = \delta(cd) = \delta(c)\alpha(d) + c\delta(d).$$

However $c\delta(d) \in t_s(C)$ since $t_s(C)$ is an ideal of C, so $c\delta(d)d' = 0$ for some $d' \in s$, and hence $\delta(c)\alpha(d)d' = 0$. But $\alpha(d)d' \in s$, so $\delta(c) \in t_s(C)$, and then it follows that $t_s(C)$ is δ - stable. Now if δ_0 is a $(1, \alpha_0)$ - derivation of Cs^{-1} with $\delta_0\theta = \theta\delta$, then for any $c \in C$, $d \in s$, we have

$$0 = \delta_0(1) = \delta_0(\theta(d)\theta(d)^{-1}) = \delta_0(\theta(d))\alpha_0(\theta(d)^{-1}) + \theta(d)\delta_0(\theta(d)^{-1})$$

= $\theta(\delta(d))(\alpha_0\theta(d))^{-1} + \theta(d)\delta_0(\theta(d)^{-1})$
= $\theta(\delta(d))\theta(\alpha(d))^{-1} + \theta(d)\delta_0(\theta(d)^{-1}),$

therefore, $\delta_0(\theta(d)^{-1}) = -\theta(d)^{-1}\theta(\delta(d))\theta(\alpha(d))^{-1}$, and so

$$\delta_0(\theta(c)\theta(d)^{-1}) = \delta_0(\theta(c))\alpha_0(\theta(d)^{-1}) + \theta(c)\delta_0(\theta(d)^{-1})$$
$$= \theta(\delta(c))\theta(\alpha(d))^{-1} - \theta(c)\theta(d)^{-1}\theta(\delta(d))\theta(\alpha(d))^{-1}$$

It follows that δ_0 must be unique. As to existence, let us define $\delta_0 \in \text{End}(Cs^{-1})$ by

$$\delta_0(\theta(c)\theta(d)^{-1}) = \theta(\delta(c))\theta(\alpha(d))^{-1} - \theta(c)\theta(d)^{-1}\theta(\delta(d))\theta(\alpha(d))^{-1}, \quad c \in C, d \in S.$$

A tedious and standard verification shows that δ_0 is well defined, and is a $(1, \alpha_0)$ -derivation of C_s . Clearly, $\delta_0 \theta = \theta \delta$.

LEMMA 3.2. Let $\underline{d} = (\alpha, \delta, \gamma) \in \mathcal{D}(H_{\infty}, C)$ with $\alpha(s) = s, \alpha_0, \delta_0$ as in Lemma 3.1, $\gamma_0 = \theta(\gamma)$ in Cs^{-1} . Then $d_0 = (\alpha_0, \delta_0, \gamma_0)$ is a cleft datum for H_{∞} over Cs^{-1} , i.e. $d_0 \in \mathcal{D}(H_{\infty}, Cs^{-1})$.

Proof. By Definition 2.4 and Lemma 3.1, we only have to prove that the equation $\delta_0 \alpha_0(p) - q \alpha_0 \delta_0(p) = \gamma_0 \alpha_0^2(p) - \alpha_0(p) \gamma_0$ holds for any $p \in Cs^{-1}$. In fact, let $p = \theta(c)\theta(d)^{-1}$, $c \in C, d \in s$, then

$$\begin{split} &\delta_{0}\alpha_{0}(\theta(c)\theta(d)^{-1}) - q\alpha_{0}\delta_{0}(\theta(c)\theta(d)^{-1}) \\ &= \delta_{0}(\theta(\alpha(c))\theta(\alpha(d))^{-1}) - q[\theta(\alpha\delta(c))\theta(\alpha^{2}(d))^{-1} - \theta(\alpha(c))\theta(\alpha(d))^{-1}\theta(\alpha\delta(d))\theta(\alpha^{2}(d))^{-1}] \\ &= \theta(\delta\alpha(c))\theta(\alpha^{2}(d))^{-1} - \theta(\alpha(c))\theta(\alpha(d))^{-1}\theta(\delta\alpha(d))\theta(\alpha^{2}(d))^{-1} \\ &- q[\theta(\alpha\delta(c))\theta(\alpha^{2}(d))^{-1} - \theta(\alpha(c))\theta(\alpha(d))^{-1}\theta(\alpha\delta(d))\theta(\alpha^{2}(d))^{-1}] \\ &= \theta(\delta\alpha(c) - q\alpha\delta(c))\theta(\alpha^{2}(d))^{-1} - \theta(\alpha(c))\theta(\alpha(d))^{-1}\theta(\delta\alpha(d) - q\alpha\delta(d))\theta(\alpha^{2}(d))^{-1} \\ &= \theta(\gamma\alpha^{2}(c) - \alpha(c)\gamma)\theta(\alpha^{2}(d))^{-1} - \theta(\alpha(c))\theta(\alpha(d))^{-1}\theta(\gamma\alpha^{2}(d) - \alpha(d)\gamma)\theta(\alpha^{2}(d))^{-1} \\ &= \gamma_{0}\alpha_{0}^{2}(\theta(c)\theta(d)^{-1}) - \alpha_{0}(\theta(c)\theta(d)^{-1})\gamma_{0}. \end{split}$$

THEOREM 3.3. Let $\underline{d} = (\alpha, \delta, \gamma) \in \mathcal{D}(H_{\infty}, C)$ with $\alpha(s) = s$ and $\underline{d_0} = (\alpha_0, \delta_0, \gamma_0) \in \mathcal{D}(H_{\infty}, Cs^{-1})$ as in Lemma 3.2. Then s is also a right denominator set of $A(\underline{d}, C)$, and $A(\underline{d_0}, Cs^{-1})$ is a right quotient algebra of $A(\underline{d}, C)$ with respect to s; i.e. $A(\underline{d_0}, Cs^{-1}) \cong A(\underline{d}, Cs^{-1})$.

Proof. Let $F_n(n \in \mathbb{Z})$ be as in (a) for <u>d</u> over C, then

$$\begin{cases} \theta(F_0) = 0, & \theta(F_n) = \gamma_0 + q\alpha_0(\theta(F_{n-1})), n > 0\\ \theta(F_n) = -q^n \alpha_0^n(\theta(F_{-n})), n < 0. \end{cases}$$

Thus by the structure of $A(\underline{d}, C)$ and $A(\underline{d}_0, Cs^{-1})$ as in §2, θ can be uniquely extended to an algebra map $\overline{\theta}$ from $A(\underline{d}, C)$ to $A(\underline{d}_0, Cs^{-1})$ such that $\overline{\theta}(x) = x$ and $\overline{\theta}(y) = y$. Clearly, $\overline{\theta}(d) = \theta(d)$ is a unit of $A(\underline{d}_0, Cs^{-1})$ for all $d \in s$. Note that $A(\underline{d}, C) = B_{\underline{d}}[y, \overline{\alpha}, \overline{\delta}]$ and $B_{\underline{d}} = C[x, x^{-1}, \alpha], A(\underline{d}, C)$ is also a free right C-module with a basis $\{y^m x^n, n \in \mathbb{Z}, m \in \mathbb{N}\}$ since α and $\overline{\alpha}$ are automorphisms. Similarly, $A(\underline{d}_0, Cs^{-1})$ is a free right Cs^{-1} -module with a basis $\{y^m x^n, n \in \mathbb{Z}, m \in \mathbb{N}\}$. It follows that each element of $A(\underline{d}_0, Cs^{-1})$ has the form $\overline{\theta}(r)\overline{\theta}(d)^{-1}$ for some $r \in A(\underline{d}, C)$ and $d \in s$, and that ker $\overline{\theta} = t_s(A(\underline{d}, C))$ by [6, Lemma 9.2(a)]. Hence $A(\underline{d}_0, Cs^{-1})$ is a right quotient algebra of $A(\underline{d}, C)$ with respect to s, and s is a right denominator set of $A(\underline{d}, C)$. This completes the proof.

Note that the algebra map $\overline{\theta} : A(\underline{d}, C) \to A(\underline{d}_0, Cs^{-1})$ is also a right H_{∞} -comodule map, i.e. $\rho_{\underline{d}_0}\overline{\theta} = (\overline{\theta} \otimes id)\rho_{\underline{d}}$. It can be easily seen that $\overline{\theta}\phi_{\underline{d}} = \phi_{\underline{d}_0}$ and $\phi_{\underline{d}_0}^{-1} = \overline{\theta}\phi_{\underline{d}}^{-1}$. Thus using crossed products, we can present Theorem 3.3 as follows.

THEOREM 3.4. Let (\rightarrow, σ) be a crossed system for H_{∞} over C. If $X \rightarrow s = s$, then \rightarrow can be uniquely extended to a weak action \rightarrow of H_{∞} on Cs^{-1} determined by

$$X \to \theta(c)\theta(d)^{-1} = \theta(X \to c)\theta(X \to d)^{-1},$$

$$Y \to \theta(c)\theta(d)^{-1} = \theta(Y \to c)\theta(X \to d)^{-1} - \theta(c)\theta(d)^{-1}\theta(Y \to d)\theta(X \to d)^{-1}$$

and $(\rightarrow, \theta\sigma)$ is a crossed system for H_{∞} over Cs^{-1} . In this case,

$$\overline{\theta}: C \#_{\sigma} H_{\infty} \to C s^{-1} \#_{\theta \sigma} H_{\infty} c \# h \mapsto \theta(c) \# h, \quad c \in C, h \in H_{\infty},$$

is a right H_{∞} -comodule algebra map, and $\overline{\theta}$ makes $Cs^{-1}\#_{\theta\sigma}H_{\infty}$ into a right quotient algebra of $C\#_{\sigma}H_{\infty}$ with respect to s; that is,

$$Cs^{-1} #_{\theta\sigma} H_{\infty} \cong (C #_{\sigma} H_{\infty}) s^{-1}.$$

CLEFT EXTENSIONS FOR A HOPF ALGEBRA $k_q[X, X^{-1}, Y]$ 159

Recall that C is an *integral domain* if the product of nonzero elements is always nonzero. An integral domain C is a *right Ore domain* if the set s of all nonzero elements of C satisfies the right Ore condition. In this case, Cs^{-1} exists, which is a division algebra, usually denote it by Q(C). Thus as corollaries we have the following results.

COROLLARY 3.5. Let $C\#_{\sigma}H_{\infty}$ be a crossed product. If C is a right Ore domain, then there exists a unique crossed product $Q(C)\#_{\sigma}H_{\infty}$ containing $C\#_{\sigma}H_{\infty}$ as a subalgebra, and $Q(C)\#_{\sigma}H_{\infty} = (C\#_{\sigma}H_{\infty})s^{-1}$, where $s = C \setminus \{0\}$.

COROLLARY 3.6. Let A/C be an H_{∞} -cleft extension. If C is a right Ore domain, then $s = C \setminus \{0\}$ is a right denominator set of A, and As^{-1} is an H_{∞} -cleft extension over Q(C).

Note that the left versions of all above results still hold.

THEOREM 3.7. Let A/C be an H_{∞} -cleft extension. Then

(1) If C is prime, then so is A.

(2) A is an integral domain if and only if C is an integral domain.

(3) A is right (respectively left) Noetherian if and only if C is right (respectively left) Noetherian.

Proof. If A is an integral domain, it is clear that C is also an integral domain. By Theorem 2.10, we can regard $A = A(\underline{d}, C)$ for some cleft datum $\underline{d} = (\alpha, \delta, \gamma)$. If follows by the structure of $A(\underline{d}, C)$ or Theorem 2.2 that any element z of A can be uniquely expressed as a finite sum $z = \sum_{n \in \mathbb{Z}, m \in \mathbb{N}} c_{n,m} x^n y^m$, where $c_{n,m} \in C$ and almost all $c_{n,m} = 0$, and that $z \in C$ if and only if $c_{n,m} = 0$ for all $n \neq 0$ or $m \neq 0$. Henceby, if I is a right ideal of C, then IA is a right ideal of A and $IA = \bigoplus_{n \in \mathbb{Z}, m \in \mathbb{N}} Ix^n y^m$. So $IA \cap C = I$. On the other hand, since α and $\overline{\alpha}$ are algebra automorphisms, A is a free right C-module with the basis $\{y^m x^n, n \in \mathbb{Z}, m \in \mathbb{N}\}$. Thus a similar argument shows that if I is a left ideal of C then AI is a left ideal of A and $AI \cap C = I$. It follows that if A is right (left) Noetherian then C is also right (left) Noetherian. The rest follows from [9, Theorem 1.2.9 and 1.4.5].

REFERENCES

1. R. Blattner, M. Cohen and S. Montgomery, Crossed products and inner actions of Hopf algebras, *Trans. Amer. Math. Soc.* 298 (1986), 671-711.

2. R. Blattner and S. Montgomery, Crossed products and Galois extensions of Hopf algebras, *Pacific J. Math.* 137 (1989), 37-54.

3. Y. Doi, Equivalent crossed products for a Hopf algebra, Comm. Algebra 17 (1989), 3053-3085.

4. Y. Doi and M. Takeuchi, Cleft comodule algebras for a bialgebra, Comm. Algebra 14 (1986), 801-817.

5. Y. Doi and M. Takeuchi, Quaternion algebras and Hopf crossed products, Comm. Algebra 23 (1995), 3291-3325.

6. K. R. Goodearl and R. B. Warfield, Jr., An introduction to noncommutative Noetherian rings, (Cambridge, 1989).

7. C. Kassal, Quantum group (Springer-Verlag, 1995).

8. A. Masuoka, Cleft extensions for a Hopf algebra generated by a nearly primitive element, Comm. Algebra 22 (1994), 4537–4559. 9. J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings (Wiley-Interscience,

1987).

10. M. E. Sweedler, Hopf algebras (Benjamin, 1969).

DEPARTMENT OF MATHEMATICS **TEACHER'S COLLEGE** YANGZHOU UNIVERSITY Yangzhou JIANGSU 225002 CHINA

INSTITUTE OF MATHEMATICS FUDAN UNIVERSITY Shanguai 200433 China