Artinianness of Certain Graded Local Cohomology Modules

Amir Mafi and Hero Saremi

Abstract

We show that if $R=\bigoplus_{n \in \mathbb{N}_{0}} R_{n}$ is a Noetherian homogeneous ring with local base ring $\left(R_{0}, \mathfrak{m}_{0}\right)$, irrelevant ideal R_{+}, and M a finitely generated graded R-module, then $H_{\mathrm{m}_{0} R}^{j}\left(H_{R_{+}}^{t}(M)\right)$ is Artinian for $j=0,1$ where $t=\inf \left\{i \in \mathbb{N}_{0}: H_{R_{+}}^{i}(M)\right.$ is not finitely generated $\}$. Also, we prove that if $\operatorname{cd}\left(R_{+}, M\right)=2$, then for each $i \in \mathbb{N}_{0}, H_{\mathrm{m}_{0} R}^{i}\left(H_{R_{+}}^{2}(M)\right)$ is Artinian if and only if $H_{\mathrm{m}_{0} R}^{i+2}\left(H_{R_{+}}^{1}(M)\right)$ is Artinian, where $\mathrm{cd}\left(R_{+}, M\right)$ is the cohomological dimension of M with respect to R_{+}. This improves some results of R. Sazeedeh.

1 Introduction

Throughout this note, we assume that $R=\bigoplus_{n \in \mathbb{N}_{0}} R_{n}$ is a Noetherian homogeneous ring with local base ring $\left(R_{0}, \mathrm{~m}_{0}\right)$. This means that there are finitely many $l_{1}, \ldots, l_{r} \in R_{1}$ such that $R=R_{0}\left[l_{1}, \ldots, l_{r}\right]$. We denote $R_{+}=\bigoplus_{n \in \mathbb{N}} R_{n}$, the irrelevant ideal of R, and that $\mathfrak{m}=\mathfrak{m}_{0} \oplus R_{+}$, the graded maximal ideal of R. Assume also that $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$ is a finitely generated graded R-module. For each $i \in \mathbb{N}_{0}$, let $H_{R_{+}}^{i}(M)$ denote the i-th local cohomology module of M with respect to R_{+}, furnished with its natural grading [2, Chapter 12]. For the unexplained terminology we refer to [2].

Brodmann, Fumasoli and Tajarod [3] proved that for each $i \in \mathbb{N}_{0}$ and $j=0,1$, the graded module $H_{\mathrm{m}_{0} R}^{j}\left(H_{R_{+}}^{i}(M)\right)$ is Artinian whenever $\operatorname{dim} R_{0} \leq 1$. Later Brodmann, Rohrer and Sazeedeh [4]showed that $H_{\mathfrak{m}_{0} R}^{1}\left(H_{R_{+}}^{i}(M)\right)$ is Artinian for each $i \in \mathbb{N}$ even if $\operatorname{dim} R_{0}=2$. Sazeedeh [8] proved that $\Gamma_{\mathfrak{m}_{0} R}\left(H_{R_{+}}^{t}(M)\right)$ is Artinian whenever t is the least non-negative integer i such that $H_{R_{+}}^{i}(M)$ is not R_{+}-cofinite. The aim of this note is to show that $H_{\mathrm{m}_{0} R}^{j}\left(H_{R_{+}}^{t}(M)\right)$ is Artinian, whenever

$$
t=\inf \left\{i \in \mathbb{N}_{0}: H_{R_{+}}^{i}(M) \text { is not finitely generated }\right\}
$$

and $j=0,1$. This generalizes the corresponding result which is shown in [9, Theorem 2.2] for the special case $t=j=1$ and which was already mentioned above. In addition, we show that if $\operatorname{cd}\left(R_{+}, M\right)=1$, then for each $j, t \in \mathbb{N}_{0}, H_{\mathfrak{m}_{0} R}^{j}\left(H_{R_{+}}^{t}(M)\right)$ is Artinian and also if $\operatorname{cd}\left(R_{+}, M\right)=2$, then $H_{\mathrm{m}_{0} R}^{j}\left(H_{R_{+}}^{2}(M)\right)$ is Artinian if and only if $H_{\mathrm{m}_{0} R}^{j+2}\left(H_{R_{+}}^{1}(M)\right)$ is Artinian. This extends the main result which is shown in [9, Theorem 2.3].

[^0]
2 The Results

Theorem 2.1 Let t be a non-negative integer and let $H_{R_{+}}^{i}(M)$ be a finitely generated R-module for all $i<t$. Then $H_{m_{0} R}^{j}\left(H_{R_{+}}^{t}(M)\right)$ is Artinian for $j=0,1$.

Proof By [6, Theorem 11.38], there is the Grothendieck spectral sequence

$$
E_{2}^{p, q}:=H_{\mathfrak{m}_{0} R}^{p}\left(H_{R_{+}}^{q}(M)\right) \Longrightarrow \underset{p}{\Longrightarrow} H_{\mathrm{m}}^{p+q}(M)
$$

Since $E_{r}^{p, q}$ is a subquotient of $E_{2}^{p, q}$ for all $r \geq 2$, by [2, Exercise 2.1.9; Theorem 7.1.3] and our hypotheses we have that $E_{r}^{p, q}$ is Artinian for all $r \geq 2, p \geq 0$, and $q<t$. For each $r \geq 2$ and $p, q \geq 0$, let $Z_{r}^{p, q}=\operatorname{ker}\left(E_{r}^{p, q} \rightarrow E_{r}^{p+r, q-r+1}\right)$ and $B_{r}^{p, q}=$ $\operatorname{im}\left(E_{r}^{p-r, q+r-1} \rightarrow E_{r}^{p, q}\right)$. For each $r \geq 2$ and $p=0,1$ we have the exact sequences

$$
0 \rightarrow B_{r}^{p, q} \longrightarrow Z_{r}^{p, q} \longrightarrow E_{r+1}^{p, q} \longrightarrow 0
$$

and

$$
\begin{equation*}
0 \longrightarrow Z_{r}^{p, q} \longrightarrow E_{r}^{p, q} \longrightarrow B_{r}^{p+r, q-r+1} \longrightarrow 0 \tag{2.1}
\end{equation*}
$$

Notice that $B_{r}^{p, t}=0$ and $B_{r}^{p+r, t-r+1}$ is Artinian for all $r \geq 2$ and $p=0,1$. Hence we have that

$$
\begin{equation*}
Z_{r}^{p, t} \cong E_{r+1}^{p, t} \tag{2.2}
\end{equation*}
$$

for all $r \geq 2$ and $p=0,1$.
Now $E_{\infty}^{p, t}$ is isomorphic to a subquotient of $H_{m}^{p+t}(M)$ and thus is Artinian for all $p \geq 0$. Since $E_{\infty}^{p, t} \cong E_{r}^{p, t}$ for r sufficiently large, we have that $E_{r}^{p, t}$ is Artinian for all $p \geq 0$ and all large r. Fix r and suppose $E_{r+1}^{p, t}$ is Artinian for $p=0,1$. From the isomorphism (2.2) we have that $Z_{r}^{p, t}$ is Artinian for $p=0,1$. From the exact sequence (2.1) we get that $E_{r}^{p, t}$ is Artinian. Continuing in this fashion we see that $E_{r}^{p, t}$ is Artinian for all $r \geq 2$ and $p=0$, 1. In particular, $E_{2}^{p, t}=H_{\mathfrak{m}_{0} R}^{p}\left(H_{R_{+}}^{t}(M)\right)$ is Artinian for $p=0,1$.

The following corollaries immediately follow by Theorem 2.1
Corollary $2.2\left(\left[9\right.\right.$, Theorem 2.2]) The graded module $H_{m_{0} R}^{j}\left(H_{R_{+}}^{1}(M)\right)$ is Artinian for $j=0,1$.

Corollary 2.3 Let t be a non-negative integer such that $\operatorname{grade}\left(R_{+}, M\right)=t$. Then $H_{\mathrm{m}_{0} R}^{j}\left(H_{R_{+}}^{t}(M)\right)$ is Artinian for $j=0,1$.

Proposition 2.4 Let t be a non-negative integer and let $H_{m_{0} R}^{i}\left(H_{R_{+}}^{j}(M)\right)$ be Artinian for all $j \neq t$ and for all i. Then $H_{m_{0} R}^{i}\left(H_{R_{+}}^{t}(M)\right)$ is Artinian for all i.

Proof Consider the Grothendieck spectral sequence

$$
E_{2}^{p, q}:=H_{\mathrm{m}_{0} R}^{p}\left(H_{R_{+}}^{q}(M)\right) \Longrightarrow \underset{p}{\Longrightarrow} H_{\mathrm{m}}^{p+q}(M)
$$

For each $r \geq 2$, we consider the exact sequence

$$
\begin{equation*}
0 \longrightarrow \operatorname{ker} d_{r}^{p, t} \longrightarrow E_{r}^{p, t} \xrightarrow{d_{r}^{p, t}} E_{r}^{p+r, t-r+1} . \tag{2.3}
\end{equation*}
$$

It follows from our hypotheses that the R-module $E_{r}^{p+r, t-r+1}$ is Artinian. Note that $E_{r}^{p, q}$ is a subquotient of $E_{2}^{p, q}$ for all $p, q \geq 0$. There is an integer s such that $E_{\infty}^{p, q}=E_{r}^{p, q}$ for all p, q and all $r \geq s$. Also, for each $n \geq 0$, there is a finite filtration

$$
0=\phi^{n+1} H^{n} \subseteq \phi^{n} H^{n} \subseteq \cdots \subseteq \phi^{1} H^{n} \subseteq \phi^{0} H^{n}=H^{n}
$$

of the module $H^{n}=H_{\mathfrak{m}}^{n}(M)$ such that $E_{\infty}^{p, n-p} \cong \phi^{p} H^{n} / \phi^{p+1} H^{n}$ for all $0 \leq p \leq n$.
Thus $E_{\infty}^{p, q}$ is Artinian for all $p, q \geq 0$. Since $E_{s}^{p, t} \cong \operatorname{ker} d_{s-1}^{p, t} / \operatorname{im} d_{s-1}^{p-s+1, t+s-2}$, it follows that $\operatorname{ker} d_{s-1}^{p, t}$ is Artinian for all $p \geq 0$. Hence by using the exact sequence (2.3) for $r=s-1$, we deduce that $E_{s-1}^{p, t}$ is Artinian for all $p \geq 0$. By continuing this argument repeatedly for integer $s-1, s-2, \ldots, 3$ instead of s, we obtain that $E_{2}^{p, t}$ is Artinian for $p \geq 0$.

Hellus [5, Example 1.1] showed that there exists an ideal of cohomological dimension 1 which is not principal. Hence the following consequence is a generalization of [9, Proposition 2.6].

Corollary 2.5 Let $\operatorname{cd}\left(R_{+}, M\right)=1$. Then $H_{\mathrm{m}_{0} R}^{i}\left(H_{R_{+}}^{j}(M)\right)$ is Artinian for all i, j.
Proof This is clear by Proposition 2.4
Corollary 2.6 Let $\operatorname{cd}\left(R_{+}, M\right)=2$. Then $H_{\mathrm{m}_{0} R}^{i}\left(H_{R_{+}}^{1}(M)\right)$ is Artinian for all i if and only if $H_{\mathrm{m}_{0} R}^{i}\left(H_{R_{+}}^{2}(M)\right)$ is Artinian for all i.

Proof By Proposition 2.4 and this fact that $H_{m_{0} R}^{i}\left(\Gamma_{R_{+}}(M)\right)$ is Artinian for all i, the result easily follows.

Aghapournahr and Melkersson [1, Theorem 2.18] proved that if \mathfrak{a} and \mathfrak{b} are two ideals of R such that $R / \mathfrak{a}+\mathfrak{b}$ is Artinian and $\operatorname{ara}(\mathfrak{a})=2$, then the module $H_{\mathfrak{b}}^{t}\left(H_{\mathfrak{a}}^{2}(M)\right)$ is Artinian if and only if the module $H_{\mathfrak{b}}^{t+2}\left(H_{\mathfrak{a}}^{1}(M)\right)$ is Artinian for all t. Since the arithmetic rank is less than the cohomological dimension, the following result is an improvement of [1, Theorem 2.18].

Theorem $2.7\left(\left[9\right.\right.$, Theorem 2.3]) Let $\operatorname{cd}\left(R_{+}, M\right)=2$ and let t be a non-negative integer. Then $H_{\mathrm{m}_{0} R}^{t}\left(H_{R_{+}}^{2}(M)\right)$ is Artinian if and only if $H_{\mathrm{m}_{0} R}^{t+2}\left(H_{R_{+}}^{1}(M)\right)$ is Artinian.

Proof By [2, Corollary 2.1.7] and [7, §1], we can assume that $\Gamma_{R_{+}}(M)=0$. Consider the Grothendieck spectral sequence

$$
E_{2}^{p, q}:=H_{\mathrm{m}_{0} R}^{p}\left(H_{R_{+}}^{q}(M)\right) \Longrightarrow \underset{p}{\Longrightarrow} H_{\mathrm{m}}^{p+q}(M)
$$

For each $r \geq 2, p \geq 0$, and $q=1,2$ let $Z_{r}^{p, q}=\operatorname{ker}\left(E_{r}^{p, q} \rightarrow E_{r}^{p+r, q-r+1}\right)$ and $B_{r}^{p, q}=\operatorname{im}\left(E_{r}^{p-r, q+r-1} \rightarrow E_{r}^{p, q}\right)$. Notice that $B_{r}^{p, q}=0$ for all $r \geq 2, p \geq 0$, and $q \geq 2$ and $Z_{r}^{p, q} \cong E_{r}^{p, q}$ for all $r \geq 2, p \geq 0$, and $q=1$. For all $r \geq 2$ and $p, q \geq 0$, we consider the exact sequence

$$
\begin{equation*}
0 \longrightarrow Z_{r}^{p, q} \longrightarrow E_{r}^{p, q} \longrightarrow B_{r}^{p+r, q-r+1} \longrightarrow 0 \tag{2.4}
\end{equation*}
$$

Since $E_{r+1}^{p, q}=Z_{r}^{p, q} / B_{r}^{p, q}$ for all $r \geq 2$ and $p, q \geq 0$, it follows that

$$
\begin{equation*}
Z_{r}^{t, 2} \cong E_{r+1}^{t, 2} \tag{2.5}
\end{equation*}
$$

Hence from the exact sequence (2.4) and the isomorphism (2.5) we obtain that $Z_{2}^{t, 2} \cong$ $E_{\infty}^{t, 2}$. On the other hand $E_{2}^{t+2,1} \cong Z_{2}^{t+2,1}$ and $B_{r}^{t+2,1}=0$ for all $r \geq 3$. It therefore follows that $E_{2}^{t+2,1} / B_{2}^{t+2,1} \cong E_{\infty}^{t+2,1}$. Now from the exact sequence

$$
0 \longrightarrow E_{\infty}^{t, 2} \longrightarrow E_{2}^{t, 2} \longrightarrow E_{2}^{t+2,1} \longrightarrow E_{\infty}^{t+2,1} \longrightarrow 0
$$

the result follows.
Remark Let $\operatorname{cd}\left(R_{+}, M\right)=2$. Then $\Gamma_{\mathfrak{m}_{0} R}\left(H_{R_{+}}^{2}(M)\right)$ is Artinian if and only if $H_{\mathrm{m}_{0} R}^{2}\left(H_{R_{+}}^{1}(M)\right)$ is Artinian.

Acknowledgement The authors are deeply grateful to the referee for careful reading of the manuscript and helpful suggestions.

References

[1] M. Aghapournahr and L. Melkersson, Artinianness of local cohomology modules. arXiv:0809.3814v1 [math. AC].
[2] M. Brodmann and R. Y. Sharp, Local cohomology-an algebraic introduction with geometric applications. Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge, 1998.
[3] M. Brodmann, S. Fumasoli, and R. Tajarod, Local cohomology over homogeneous rings with one-dimensional local base ring. Proc. Amer. Math. Soc. 131(2003), no. 10, 2977-2985. doi:10.1090/S0002-9939-03-07009-6
[4] M. Brodmann, F. Rohrer, and R. Sazeedeh, Multiplicities of graded components of local cohomology modules. J. Pure Appl. Alg., 197(2005), nos. 1-4, 249-278. doi:10.1016/j.jpaa.2004.08.034
[5] M. Hellus, Matlis duals of top local cohomology modules and the arithmetic rank of an ideal. Comm. Algebra 35(2007), no. 4, 1421-1432. doi:10.1080/00927870601142348
[6] J. Rotman, An Introduction to Homological Algebra. Pure and Applied Mathematics 85, Academic Press, New, York, 1979.
[7] C. Rotthaus and L. M. Sega, Some properties of graded local cohomology modules. J. Algebra 283(2005), no. 1, 232-247. doi:10.1016/j.jalgebra.2004.07.034
[8] R. Sazeedeh, Artinianness of graded local cohomology modules. Proc. Amer. Math. Soc. 135(2007), no. 8, 2339-2345. doi:10.1090/S0002-9939-07-08794-1
[9] ,Finiteness of graded local cohomology modules. J. Pure Appl. Algebra 212(2008), no. 1, 275-280. doi:10.1016/j.jpaa.2007.05.023
Department of Mathematics, University of Kurdistan, P.O. Box: 416, Sanandaj, Iran and Institute for Research in Fundamental Science (IPM), P.O. Box 19395-5746, Tehran, Iran.
e-mail: a_mafi@ipm.ir
Department of Mathematics, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran e-mail: h_saremi@iausdj.ac.ir herosaremi@yahoo.com

[^0]: Received by the editors December 26, 2008; revised January 26, 2009. Published electronically March 15, 2011.
 The author was partially supported by a grant from IPM (No. 87130024). AMS subject classification: 13D45, 13E10.
 Keywords: graded local cohomology, Artinian modules.

