

Artinianness of Certain Graded Local Cohomology Modules

Amir Mafi and Hero Saremi

Abstract. We show that if $R = \bigoplus_{n \in \mathbb{N}_0} R_n$ is a Noetherian homogeneous ring with local base ring (R_0, \mathfrak{m}_0) , irrelevant ideal R_+ , and M a finitely generated graded R-module, then $H^j_{\mathfrak{m}_0R}(H^t_{R_+}(M))$ is Artinian for j = 0, 1 where $t = \inf\{i \in \mathbb{N}_0 : H^i_{R_+}(M) \text{ is not finitely generated}\}$. Also, we prove that if $cd(R_+, M) = 2$, then for each $i \in \mathbb{N}_0, H^i_{\mathfrak{m}_0R}(H^2_{R_+}(M))$ is Artinian if and only if $H^{i+1}_{\mathfrak{m}_0R}(H^1_{R_+}(M))$ is Artinian, where $cd(R_+, M)$ is the cohomological dimension of M with respect to R_+ . This improves some results of R. Sazeedeh.

1 Introduction

Throughout this note, we assume that $R = \bigoplus_{n \in \mathbb{N}_0} R_n$ is a Noetherian homogeneous ring with local base ring (R_0, \mathfrak{m}_0) . This means that there are finitely many $l_1, \ldots, l_r \in R_1$ such that $R = R_0[l_1, \ldots, l_r]$. We denote $R_+ = \bigoplus_{n \in \mathbb{N}} R_n$, the irrelevant ideal of R, and that $\mathfrak{m} = \mathfrak{m}_0 \oplus R_+$, the graded maximal ideal of R. Assume also that $M = \bigoplus_{n \in \mathbb{Z}} M_n$ is a finitely generated graded R-module. For each $i \in \mathbb{N}_0$, let $H_{R_+}^i(M)$ denote the *i*-th local cohomology module of M with respect to R_+ , furnished with its natural grading [2, Chapter 12]. For the unexplained terminology we refer to [2].

Brodmann, Fumasoli and Tajarod [3] proved that for each $i \in \mathbb{N}_0$ and j = 0, 1, the graded module $H^j_{\mathfrak{m}_0R}(H^i_{R_+}(M))$ is Artinian whenever dim $R_0 \leq 1$. Later Brodmann, Rohrer and Sazeedeh [4] showed that $H^1_{\mathfrak{m}_0R}(H^i_{R_+}(M))$ is Artinian for each $i \in \mathbb{N}$ even if dim $R_0 = 2$. Sazeedeh [8] proved that $\Gamma_{\mathfrak{m}_0R}(H^t_{R_+}(M))$ is Artinian whenever t is the least non-negative integer i such that $H^i_{R_+}(M)$ is not R_+ -cofinite. The aim of this note is to show that $H^j_{\mathfrak{m}_0R}(H^t_{R_+}(M))$ is Artinian, whenever

 $t = \inf\{i \in \mathbb{N}_0 : H^i_{R_+}(M) \text{ is not finitely generated}\}$

and j = 0, 1. This generalizes the corresponding result which is shown in [9, Theorem 2.2] for the special case t = j = 1 and which was already mentioned above. In addition, we show that if $cd(R_+, M) = 1$, then for each $j, t \in \mathbb{N}_0$, $H^j_{\mathfrak{m}_0 R}(H^t_{R_+}(M))$ is Artinian and also if $cd(R_+, M) = 2$, then $H^j_{\mathfrak{m}_0 R}(H^2_{R_+}(M))$ is Artinian if and only if $H^{j+2}_{\mathfrak{m}_0 R}(H^1_{R_+}(M))$ is Artinian. This extends the main result which is shown in [9, Theorem 2.3].

Received by the editors December 26, 2008; revised January 26, 2009.

Published electronically March 15, 2011.

The author was partially supported by a grant from IPM (No. 87130024).

AMS subject classification: 13D45, 13E10.

Keywords: graded local cohomology, Artinian modules.

2 The Results

Theorem 2.1 Let t be a non-negative integer and let $H_{R_+}^i(M)$ be a finitely generated *R*-module for all i < t. Then $H_{\mathfrak{m}_0R}^j(H_{R_+}^t(M))$ is Artinian for j = 0, 1.

Proof By [6, Theorem 11.38], there is the Grothendieck spectral sequence

$$E_2^{p,q} := H^p_{\mathfrak{m}_0 R}(H^q_{R_+}(M)) \Longrightarrow_p H^{p+q}_{\mathfrak{m}}(M).$$

Since $E_r^{p,q}$ is a subquotient of $E_2^{p,q}$ for all $r \ge 2$, by [2, Exercise 2.1.9; Theorem 7.1.3] and our hypotheses we have that $E_r^{p,q}$ is Artinian for all $r \ge 2$, $p \ge 0$, and q < t. For each $r \ge 2$ and $p, q \ge 0$, let $Z_r^{p,q} = \ker(E_r^{p,q} \to E_r^{p+r,q-r+1})$ and $B_r^{p,q} = \operatorname{im}(E_r^{p-r,q+r-1} \to E_r^{p,q})$. For each $r \ge 2$ and p = 0, 1 we have the exact sequences

$$0 \longrightarrow B_r^{p,q} \longrightarrow Z_r^{p,q} \longrightarrow E_{r+1}^{p,q} \longrightarrow 0$$

and

$$(2.1) 0 \longrightarrow Z_r^{p,q} \longrightarrow E_r^{p,q} \longrightarrow B_r^{p+r,q-r+1} \longrightarrow 0.$$

Notice that $B_r^{p,t} = 0$ and $B_r^{p+r,t-r+1}$ is Artinian for all $r \ge 2$ and p = 0, 1. Hence we have that

for all $r \ge 2$ and p = 0, 1.

Now $E_{\infty}^{p,t}$ is isomorphic to a subquotient of $H_{\mathfrak{m}}^{p+t}(M)$ and thus is Artinian for all $p \ge 0$. Since $E_{\infty}^{p,t} \cong E_r^{p,t}$ for r sufficiently large, we have that $E_r^{p,t}$ is Artinian for all $p \ge 0$ and all large r. Fix r and suppose $E_{r+1}^{p,t}$ is Artinian for p = 0, 1. From the isomorphism (2.2) we have that $Z_r^{p,t}$ is Artinian for p = 0, 1. From the exact sequence (2.1) we get that $E_r^{p,t}$ is Artinian. Continuing in this fashion we see that $E_r^{p,t}$ is Artinian for p = 0, 1. In particular, $E_2^{p,t} = H_{\mathfrak{m}_0R}^p(H_{R_+}^t(M))$ is Artinian for p = 0, 1.

The following corollaries immediately follow by Theorem 2.1.

Corollary 2.2 ([9, Theorem 2.2]) The graded module $H^{j}_{\mathfrak{m}_0R}(H^1_{R_+}(M))$ is Artinian for j = 0, 1.

Corollary 2.3 Let t be a non-negative integer such that $grade(R_+, M) = t$. Then $H^j_{mnR}(H^t_{R_+}(M))$ is Artinian for j = 0, 1.

Proposition 2.4 Let t be a non-negative integer and let $H^i_{\mathfrak{m}_0R}(H^j_{R_+}(M))$ be Artinian for all $j \neq t$ and for all i. Then $H^i_{\mathfrak{m}_0R}(H^t_{R_+}(M))$ is Artinian for all i.

Proof Consider the Grothendieck spectral sequence

$$E_2^{p,q} := H^p_{\mathfrak{m}_0 R}(H^q_{R_+}(M)) \Longrightarrow_p H^{p+q}_{\mathfrak{m}}(M).$$

For each $r \ge 2$, we consider the exact sequence

(2.3)
$$0 \longrightarrow \ker d_r^{p,t} \longrightarrow E_r^{p,t} \xrightarrow{d_r^{p,t}} E_r^{p+r,t-r+1}$$

It follows from our hypotheses that the *R*-module $E_r^{p+r,t-r+1}$ is Artinian. Note that $E_r^{p,q}$ is a subquotient of $E_2^{p,q}$ for all $p, q \ge 0$. There is an integer *s* such that $E_{\infty}^{p,q} = E_r^{p,q}$ for all p, q and all $r \ge s$. Also, for each $n \ge 0$, there is a finite filtration

$$0 = \phi^{n+1}H^n \subseteq \phi^n H^n \subseteq \dots \subseteq \phi^1 H^n \subseteq \phi^0 H^n = H^n$$

of the module $H^n = H^n_{\mathfrak{m}}(M)$ such that $E^{p,n-p}_{\infty} \cong \phi^p H^n / \phi^{p+1} H^n$ for all $0 \le p \le n$. Thus $E^{p,q}_{\infty}$ is Artinian for all $p, q \ge 0$. Since $E^{p,t}_s \cong \ker d^{p,t}_{s-1} / \operatorname{im} d^{p-s+1,t+s-2}_{s-1}$, it follows that $\ker d^{p,t}_{s-1}$ is Artinian for all $p \ge 0$. Hence by using the exact sequence (2.3) for r = s - 1, we deduce that $E_{s-1}^{p,t}$ is Artinian for all $p \ge 0$. By continuing this argument repeatedly for integer s - 1, s - 2, ..., 3 instead of s, we obtain that $E_2^{p,t}$ is Artinian for $p \ge 0$.

Hellus [5, Example 1.1] showed that there exists an ideal of cohomological dimension 1 which is not principal. Hence the following consequence is a generalization of [9, Proposition 2.6].

Corollary 2.5 Let $cd(R_+, M) = 1$. Then $H^i_{max}(H^j_{R_+}(M))$ is Artinian for all i, j.

Proof This is clear by Proposition 2.4.

Corollary 2.6 Let $cd(R_+, M) = 2$. Then $H^i_{\mathfrak{m}_0 R}(H^1_{R_+}(M))$ is Artinian for all *i* if and only if $H^i_{\mathfrak{m}_0R}(H^2_{R_1}(M))$ is Artinian for all *i*.

Proof By Proposition 2.4 and this fact that $H^i_{\mathfrak{m},R}(\Gamma_{R_+}(M))$ is Artinian for all *i*, the result easily follows.

Aghapournahr and Melkersson [1, Theorem 2.18] proved that if a and b are two ideals of R such that $R/\mathfrak{a} + \mathfrak{b}$ is Artinian and $ara(\mathfrak{a}) = 2$, then the module $H^t_\mathfrak{b}(H^2_\mathfrak{a}(M))$ is Artinian if and only if the module $H_{h}^{t+2}(H_{0}^{1}(M))$ is Artinian for all t. Since the arithmetic rank is less than the cohomological dimension, the following result is an improvement of [1, Theorem 2.18].

Theorem 2.7 ([9, Theorem 2.3]) Let $cd(R_+, M) = 2$ and let t be a non-negative integer. Then $H^t_{\mathfrak{m}_R}(H^2_{R_1}(M))$ is Artinian if and only if $H^{t+2}_{\mathfrak{m}_R}(H^1_{R_1}(M))$ is Artinian.

Proof By [2, Corollary 2.1.7] and [7, §1], we can assume that $\Gamma_{R_{+}}(M) = 0$. Consider the Grothendieck spectral sequence

$$E_2^{p,q} := H^p_{\mathfrak{m}_0R}(H^q_{R_+}(M)) \Longrightarrow H^{p+q}_{\mathfrak{m}}(M).$$

For each $r \ge 2$, $p \ge 0$, and q = 1, 2 let $Z_r^{p,q} = \ker(E_r^{p,q} \to E_r^{p+r,q-r+1})$ and $B_r^{p,q} = \operatorname{im}(E_r^{p-r,q+r-1} \to E_r^{p,q})$. Notice that $B_r^{p,q} = 0$ for all $r \ge 2$, $p \ge 0$, and $q \ge 2$ and $Z_r^{p,q} \cong E_r^{p,q}$ for all $r \ge 2$, $p \ge 0$, and q = 1. For all $r \ge 2$ and $p,q \ge 0$, we consider the exact sequence

$$(2.4) 0 \longrightarrow Z_r^{p,q} \longrightarrow E_r^{p,q} \longrightarrow B_r^{p+r,q-r+1} \longrightarrow 0$$

Since $E_{r+1}^{p,q} = Z_r^{p,q} / B_r^{p,q}$ for all $r \ge 2$ and $p,q \ge 0$, it follows that

(2.5)
$$Z_r^{t,2} \cong E_{r+1}^{t,2}$$

Hence from the exact sequence (2.4) and the isomorphism (2.5) we obtain that $Z_2^{t,2} \cong E_{\infty}^{t,2}$. On the other hand $E_2^{t+2,1} \cong Z_2^{t+2,1}$ and $B_r^{t+2,1} = 0$ for all $r \ge 3$. It therefore follows that $E_2^{t+2,1}/B_2^{t+2,1} \cong E_{\infty}^{t+2,1}$. Now from the exact sequence

$$0 \longrightarrow E_{\infty}^{t,2} \longrightarrow E_{2}^{t,2} \longrightarrow E_{2}^{t+2,1} \longrightarrow E_{\infty}^{t+2,1} \longrightarrow 0$$

the result follows.

Remark Let $cd(R_+, M) = 2$. Then $\Gamma_{\mathfrak{m}_0R}(H^2_{R_+}(M))$ is Artinian if and only if $H^2_{\mathfrak{m}_0R}(H^1_{R_+}(M))$ is Artinian.

Acknowledgement The authors are deeply grateful to the referee for careful reading of the manuscript and helpful suggestions.

References

- M. Aghapournahr and L. Melkersson, Artinianness of local cohomology modules. arXiv:0809.3814v1 [math. AC].
- [2] M. Brodmann and R. Y. Sharp, Local cohomology-an algebraic introduction with geometric applications. Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge, 1998.
- [3] M. Brodmann, S. Fumasoli, and R. Tajarod, Local cohomology over homogeneous rings with one-dimensional local base ring. Proc. Amer. Math. Soc. 131(2003), no. 10, 2977-2985. doi:10.1090/S0002-9939-03-07009-6
- [4] M. Brodmann, F. Rohrer, and R. Sazeedeh, Multiplicities of graded components of local cohomology modules. J. Pure Appl. Alg., 197(2005), nos. 1-4, 249–278. doi:10.1016/j.jpaa.2004.08.034
- [5] M. Hellus, Matlis duals of top local cohomology modules and the arithmetic rank of an ideal. Comm. Algebra **35**(2007), no. 4, 1421–1432. doi:10.1080/00927870601142348
- [6] J. Rotman, An Introduction to Homological Algebra. Pure and Applied Mathematics 85, Academic Press, New, York, 1979.
- [7] C. Rotthaus and L. M. Sega, Some properties of graded local cohomology modules. J. Algebra 283(2005), no. 1, 232–247. doi:10.1016/j.jalgebra.2004.07.034
- [8] R. Sazeedeh, Artinianness of graded local cohomology modules. Proc. Amer. Math. Soc. 135(2007), no. 8, 2339–2345. doi:10.1090/S0002-9939-07-08794-1
- [9] ______, Finiteness of graded local cohomology modules. J. Pure Appl. Algebra 212(2008), no. 1, 275–280. doi:10.1016/j.jpaa.2007.05.023

Department of Mathematics, University of Kurdistan, P.O. Box: 416, Sanandaj, Iran and Institute for Research in Fundamental Science (IPM), P.O. Box 19395-5746, Tehran, Iran. e-mail: a.mafi@ipm.ir

Department of Mathematics, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran e-mail: h_saremi@iausdj.ac.ir herosaremi@yahoo.com