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Abstract

Let M be a reductive algebraic monoid with zero and unit group G. We obtain a description of the
submonoid generated by the idempotents of M. In particular, we find necessary and sufficient conditions
for M\G to be idempotent generated.

2000 Mathematics subject classification: primary 20M99; secondary 20G99.

Introduction

Let S be a semigroup. It has long been recognized that an important tool in un-
derstanding the structure of 5 is to consider the semigroup (E(S)) generated by the
idempotent set E(S) of S, see, for example, [3, 4, 5, 6]. In particular for a regular
semigroup S, Hall [5] constructs from the semigroup (£(5)) a universal fundamental
semigroup TE containing the fundamental image S/fi of S.

Our interest is in linear algebraic monoids M with unit group G. In earlier papers
[8, 10], we have found sufficient conditions for M\G to be idempotent generated.
In this paper we find complete answers. We begin by studying (E(M)) for any
irreducible algebraic monoid M. For each regular ^ -class J of M we associate a
normal subgroup Gj of G so that for any idempotent e in J, J n (E(M)) = GjeGj.
When M is a regular irreducible monoid with zero (equivalently G is reductive),
we find necessary and sufficient conditions for J to be idempotent generated. The
conditions are of a discrete nature, associated with the Weyl group of G.
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1. Preliminaries

Let M be a strongly n -regular monoid. This means that some power of each
element lies in a subgroup. If X c M, let E(X) denote the set of idempotents in X.
Let J? = @, £#., Ji?, j5f denote the usual Green's relations on M. A ^ -class 7 is
regular if E(J) ^ 0. A/ is regular if all ^-c lasses are regular. Let ^ (M) denote the
partially ordered set of regular ^/-classes of M. If 7 e <^(M), then 7° = 7 U {0}
with

I ab if afc 6 7;

0 otherwise

is a completely 0-simple semigroup. We are interested in the products of idempotents.
It has been noted by Hall [5, Lemma 1] that the property of being a product of
idempotents is local.

PROPOSITION 1.1. If J e ^ ( M ) , then J n (E(M)} c (£( / ) ) •

COROLLARY 1.2. (£(M)> is a strongly n-regular monoid.

PROOF. Let a e (E(M)). Then amJfalm for some positive integer m. If J is the
J -class of am, then u ' e i f l <£(M)) c ( £ ( / ) ) . Since 7° is completely 0-simple,
amjealm in {E(J0)) and hence in (£(M)). •

Let 7 € ^ ( A / ) . We will say that J is idempotent generated if 7 c (£(M)). In
such a case 7 is a regular ^ - c l a s s of (E(M)). If e e E(J) and if H is the Jf-class
of e (unit group of eMe), then 7 is idempotent generated if and only if H c (E(M)}
and any two idempotents in 7 are ^-re la ted in (£(M)). The unit group of M, if
non-trivial, is never idempotent generated. Both the full transformation semigroup
of a finite set and the multiplicative monoid of n x n matrices over a field have the
property that the non-units are products of idempotents, see, for example, [3, 6].

2. Algebraic monoids

Let M be an algebraic monoid over an algebraically closed field k. This means that
M is an affine variety with the product map being a morphism. By [9, Theorem 3.18],
M is a strongly n-regular monoid. Let Mc denote the irreducible component of 1. We
will assume that M is an irreducible monoid, that is, M = Mc. By [9, Theorem 5.10],
$/ (M) is a finite lattice. Let G denote the unit group of M. For e e £(M),

Gr
e = {x e G | xe = e], G'e = [x e G | ex = e],

Ge = {x e G | ex = e = xe}, CG(e) — {x e G \ ex — xe}
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are closed subgroups of G and Cc(e) is also connected. For J € fy(M), e € E(J),
let

(2.1) Gj = {xeG\ex€ (E(M))}.

THEOREM 2.1. (i) Gj is a closed normal subgroup of G and is independent of
the choice of the idempotent e.

(ii) Ife 6 E(J), then Gj = (Gr
e, G'e) and is also equal to the normal subgroup of

G generated by Ge.
(iii) J n (E(M)) = J (~l Gj = GjeGj is a closed irreducible subset of J for all

e € £(/).
(iv) J is idempotent generated if and only if G = Gj.
(v) / / / , , J2 e ^ ( M ) with Jx < J2, then Gh c Gh.

PROOF. Lete e E(J),x e Gj. \ie%ex e E(J), then

(2.2) elx=elexeel{E(J))Q(E(J)).

Ue^ei 6 £(/) , then

(2.3) eiX = eeiX = (ex)(x~lexx) G e,(E{J)){X-xexx) c (E(J)).

UfeE(J), then by [9, Theorem 5.9],

(2.4) e^fe^e2yf for some eu e2 € E(J).

By (2.2)-(2.4), we see that

(2.5) E(J)Gj c

It follows that Gj is independent of the choice of the idempotent e. If g e G, then by
(2.5),

eg~lxg = g-'igeg-1 • x)g c g-l(E(J))g = (E(J)).

Hence g~lxg € Gj. Thus

(2.6) g~]Gjg c Gj for all geG.

Let a, b e Gj. Then ea, eb e (E(J)). So

= (eb)b-\ea)b e {E{J))b~'(E{J))b = (E(J))2 =

https://doi.org/10.1017/S1446788700013070 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013070


196 Mohan S. Putcha [4]

Hence ab € Gj. Thus

(2.7) GJGJ C Gj

Now £(7) is a closed irreducible subset of M by [9, Proposition 5.8]. Hence we have
an ascending chain of closed irreducible sets £(7) c E(J)2 c £(7)3 c . . . . Hence
for some positive integer /,

(2.8) S = (E(J)) = E(JY = £(7)'+'

is an irreducible algebraic semigroup. By (2.4), 7 n S is the ^ -class of e in 5. By
[9, Lemma 3.27], X = {a e M \ e £ MaM) is closed. Hence S(1J = SeS\X is
irreducible. Let H denote the Jff -class of e in 5. Since H is open in eSe, we see that
there exists a non-empty open subset U of H such that £/ c eE(J)'e. Since / / is a
connected group, U2 = H. Hence H c <£(7)). By (2.4), 7 D 5 c {£(/)). Thus

(2.9) y n 5 = yn(£(7 )>

is closed in J. It follows that Gj is closed in G. Hence by (2.6) and (2.7), Gj is a
closed normal subgroup of G, proving (i).

If e € £(7) , then Ge c Gy and hence by [9, Theorem 6.11], e e G, C Gy. Thus
£(7) c Gj . SO by (2.4), 7 D G7 is the ^/-class of Gj. Hence by [7, Theorem 1],

(2.10) jnGj=GjeGj.

If a, be Gj, then by (2.5) aeb € aea~[ • ab e (£(7)>. So,

(2.11)

By (2.9M2.11) we see that (iii) and (iv) are valid.
Clearly Gr

e, G[ c Gj. So (Gr
e, G'e) c Gy. Conversely let x e Gy. Then ex =

e\ • • • em for some e\, • • • , em € £(7) . Then CJC = ee\ • • • em. By [9, Corollary 6.8],
ex = yey~x for some y e G. Since £e( € 7, eyeJfe. By [9, Theorem 6.33],
y € Gl

eCc(e)Gr
e = G'eG

r
eCG(e). Thus we may assume without loss of generality that

y 6 G'eG
r
e. So eye = e. Hence eet = ey~l. Then

ee{e2 = ey~le2 = ey~le2yy~l.

As above, e • y~[e2y = ez~l for some z 6 G^G^. So ee\e2 = ez~'y- l . Continuing
we see that there exists u e (Gr

e, G'e) such that ex = ee\ • • • em = CM. SO exu~x = e
and J « - ' e Gj,. It follows that x € (G^, G^>. Thus G7 = (G'f, G;).

Let N denote the normal subgroup of G generated by Ge. Then N C. Gj. Now
e e Ge c. N. Since all idempotents in 7 are conjugate and N < G, we see that
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E(J) c 7f. By [7], E(J) c AT. Let a € G\. Then ae = e. Let / = ea e £ ( / ) .
Then e^?/. So by [9, Corollary 6.8], / = eb for some fc e Nc with fee = e.
So aZr1 e Ge Q N. S o a e J V . Hence GJ c AT. Similarly G'e c A7. Hence
<G;, Gj.) C A7. Thus N = Gj, proving (ii).

Let /, , 72 6 %{M), Jx < J2. Then there exists ex € £(7,), e2 6 ^C^) with
ex < e2. Leta € Gh. Then e2a e <£(A/)>. So

exa = exe2a e ex(E(M)) c

Hence a 6 GJr Thus Gy2 c Gy,. This proves (v), completing the proof. •

COROLLARY 2.2. If M is a regular irreducible algebraic monoid, then (E(M)) is
closed.

PROOF. Let J, J' e <%r(M), J > J'. Then by Theorem 2.1,

(2.12) J'nGj c J'DGj, c (E(M)).

Choose o e £ ( / ) , 7 € ^ ( M ) . Then by (2.12), GyeGy c (£(M)). So by
Theorem 2.1, (E(M)> = L U * ( M >

 GJeJ°J i s closed. •

If M is not irreducible then (E(M)) need not be closed.

EXAMPLE 1. Let J consist of all matrices of the form

(a 0\ (a a\ (a 0\ fa a\
VO Oj' \0 Oj' \a OJ' \a a)'

where a e C, a ^ 0. Let

Then M is a non-irreducible, regular algebraic monoid with J € ^ ( M ) and

« H ( i ID-Co i)-G !)H 01-
So

is not closed (in the Zariski topology).

The following is extracted from the proof of [9, Theorem 6.33].
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LEMMA 2.3. Let x e M and e e E(M). Ifexe = e, then x e G'eG
r
e. IfexeJfe,

thenx € G'eG
r
eCc(e) = G'eCc(e)Gr

e.

PROOF. Suppose exe = e. Then e&.ex e E(M), so ex — ey = y~ley for
some y e G, by [9, Corollary 6.8]. Hence exy~x = e, so xy~l e Gl

e. Also
ye = yexe = yy~leye = eye — exe = e, so y € G£, giving x = (xy~l)y 6 G'eG

r
e.

Now suppose exeJffe. By [9, Theorem 6.16 (iii)], e = exec = exce for some
c e CG(e). By the previous part, xc e G'eG

r
e, so x e G'eG

r
eCG(e), and the lemma is

proved. •

If E(J) is a semigroup, then it is a rectangular band and hence [2] 7 is a direct
product of E(J) and a group. 7 is then called a rectangular group. The following
generalizes a result of Renner [13, Theorem 2] concerning completely regular algebraic
monoids with solvable unit groups.

COROLLARY 2.4. Let e € E(J). Then 7 is a rectangular group if and only if

G'fi\ = G\G'e.

PROOF. Suppose J is a rectangular group. Let a e Gr
e, b e G'e. Let e, = ea, e2 =

be € E{J). So eafce = a{e2 = e. By Lemma 2.3, ab 6 G ^ . So Gr
eG'e c G ^ .

Taking inverses we see that G^G^ = G'eG
r
e.

Conversely suppose that Gr
eG'e = Gl

eG
r
e. Since all idempotents in J are conjugate,

G^G} = Gr
fG'f for all / e £ ( 7 ) . By [9, Theorem 5.9] there exist «,, e2 € E(J)

such that e^e{^fe2^f. By [9, Corollary 6.8] e = etx, e2 = yet for some x € Gr
ei,

y € G'ej. Soxy e G^G'O = G'eG
r
ei. So e{xyex = ex. Hence e2e = yexx € £ ( J ) .

The s a m e a rgumen t shows that ee2 € £ ( . / ) . So ee 2 = e\. Similarly, e\f € E(J). So
ef = ee2f = e\f € f C ^ ) . H e n c e 7 is a rec tangular g roup . •

REMARK. For the monoid of all triangular matrices, Bauer [1] has shown that a
regular J* -class is a rectangular group if and only if the diagonal idempotent in it has
the property that all the 1 's are together.

COROLLARY 2.5. Let Ju J2 e ty(M). If Jx and J2 are rectangular groups, then so
is J\ A J2.

PROOF. Let J = 7, A 72. Let e € £ (7 ) . Then by [9, Theorem 6.7, Corollary 6.10],
there exist ex e E(JX), e2 e E(J2) such that e = exe2 = e2et. Let x e G. Then
etxei e Jx. By Lemma 2.3, x G G'eiCc(ei)G

r
l.i. So x = abc for some a e G'ri,

beCG(e,),ceGr
ei. So

exex~]e = eabcec~]b~'a~le
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Now c~lb-xa-lb e G' b~xG\ b = Gr
t G' = G' Gr . So c^b^a^b = a'c' for some

a'eG'ei,c'€Gr
erSo

exex~le = e2e\be\ezc~xb~la~xele2 = e2exbe\e2d c'b~x

= e2e\be2e\d c e\b~x e2 =

= ele2be2b~iele2 =

Now e2be2c^ e2 and hence by Lemma 2.3, b e Gl
e2Cc(e2)G

r
e2. Sob = vwu for some

v € G'e2, w € Cc(e2), " e G^. So

e2be2b~le2 — e2vwue2u~iw~iv~ie2 = we2u~xw~iv~le2.

some v' € G^2, u' € G^2. So
Now M-'IO-'U-'U) € G^ur'G'^u; = G;G'e2 = G\Gr

ei. So M-'iy-'y-'u; = V'M' for

e2be2b~le2 = we2v'u'w~le2 = we2v'u'e2w~i = we2w~x = e2.

Hence exex~xe = e\e2be2b~~xe2e\ = exe2e\ = e. Since all idempotents in J are
conjugate, we see that E(J) is a semigroup. Hence 7 is a rectangular group. D

3. Reductive monoids

We will assume in this section that M is a regular, irreducible algebraic monoid
with zero. Equivalently the unit group G of M is reductive. Then the commutator
subgroup (G, G) is semisimple and G = (G, G)Z, where Z = Z(G) is the center of
G. If dim Z = 1, we say that M is a semisimple monoid. Now by [9, Theorem 6.20],
all maximal chains in %f(M) have the same length. This gives rise to a rank function
in fy(M) and hence on M. By [9, Theorem 7.9], the fundamental image M//x is
obtained by factoring the maximal subgroups of M by their centers. By [9, Chapter 9],
there is an idempotent cross-section ej(J e fy(M)) such that for Ju J2 e <%f(M),

J\ < Ji if and only if eJ[ < ej2.

Then A = \e3 \ J e ^ (M)} is called a cross-section lattice of M and is unique up
to conjugacy. By [9, Chapter 9] B — {g € G | ge = ege for all e e A) is a Borel
subgroup of G containing the maximal torus

T = {g e G\ge - eg for all e € A).

Let W = NG(T)/T denote the Weyl group of G with generating set 5 of simple
reflections. The subgroups containing B are called parabolic subgroups and are of the
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form P, = BW,B, I c. S. Here W, is the subgroup W generated by /. Let U, U,
denote respectively the unipotent radicals of B and Pt, I C 5. If s e S, I = [s], then
denote U, by Xs. Then Xs=k and is called a root subgroup. Let J e ty(M). As in
[12], the type of J is defined as k(J) = [s e S \ sej = ejs}. Let

XV) = p | k(J') and MJ)

Then WW) = Wk.{J) x W^(J). Now 5 has the structure of a Coxeter graph where for
s,t e S,s and t are adjacent if st ^ ts. Let Sj denote the union of components of 5
not contained in k*(J).

THEOREM 3.1. IfJ e %(M), then W(Gcj) = WSj.

PROOF. Let e = ej, I = X(7). Let 5' be a component of 5. First suppose that
S' c S7. Then 5' g k*(J). So there exists 5 € 5' such that s i k*(J). Suppose
s £ I. Then Xs c (// and hence X ^ = {e}. So Xs C Ĝ  C Gv. Thus X, c G^.
Since G^ < G, it is a reductive group. So s e W(Gcj). Since Gcj <G,S' c W(G^).
Next suppose that s € A(7). Since 5 £ >.*(/), 5 € K{J). Sose = e = es. Since Gc

e

is a reductive group, Xs ^ Gc
e £ Gc

}. So again s e W(G^) and 5' c IV(G^).
Assume conversely that S' c W(Gy). We claim that 5' c Sj. Otherwise,

S' c A.*(7). There exists a closed connected normal subgroup G{ of G contained
in Gcj such that W(Gi) = Wy. Since G is a reductive group, there exists a closed
connected normal subgroup G2 of G such that G = GiG2 and G2 centralizes d .
Since S' c X(7) and W(G,) = Wy, we see that G{ c Cc(e). So if / € £(7), then
/ = .re*"1 for some x € G2. So G\ centralizes / . Hence G\ centralizes (E(J)).
Since G\ c Gy, eG! c (£(/)) . So <?Gi is commutative and W(eGi) = 1. So
5' C X»(7), a contradiction. Thus S' c. Sj, completing the proof. •

COROLLARY 3.2. Let J € ^(M). Then the image of J in M//x is idempotent
generated if and only if no component of S is contained in X*(J).

COROLLARY 3.3. Let J e ty(M),e = ej. Then J is idempotent generated if and
only if

(i) no component of S is contained in k*(J); and
(ii) G = (G,G)Te.

PROOF. Suppose first that J is idempotent generated. Then (i) is true by Theo-
rem 3.1. Let H = (G, G)Te. Then Hc = (G, G)Te

c is a reductive group and e e TF.
Now Z c r and G = (G, G)Z. Let / e £(7). Then / is conjugate to e and hence
there exists x € (G, G) such that / = x~lex. Hence / eW. Thus £(7) c W. Let
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z € Z. Then ez e J c (E(J)) c IF. So there exists t e Hl HT such that ez = et.
So z*-' e 7; c // and hence z 6 // . Thus Z c. H. Since G = (G, G)Z, we see that
G = H.

Assume conversely that (i), (ii) are valid. Then by Theorem 3.1, W(Gcj) = W.
Hence (G, G) C Gy. Since 7; c Gy, G = Gy. By Theorem 2.1, 7 is idempotent
generated. This completes the proof. D

Let J €<2f(M). Then by Theorem 2.1, the ,/-class / n G^ = / n (£(M)) of G^
is idempotent generated. By Theorem 3.1, (Gcj, Gcj) is the unique closed connected
normal subgroup of (G, G) with Weyl group WSj. We have, by Corollary 3.3,

COROLLARY3.4. LetJe<fr(M),e = ej. ThenJn{E{M)) = (Gc
J,G

vj)e(Gcj,GLj).

COROLLARY 3.5. Let J € ^ ( M ) . If J is idempotent generated then the dimension
of the center ofG is at most equal to the corank of J.

PROOF. Let e = ej. Then rkJ = dimeT and dimT,, is the corank of J. By
Corollary 3.3, G = (G, G)Te. Since G = (G, G)Z, we see that dim Z < dim Te. •

Following [11], we will say that a nilpotent element a is standard if am ^ 0, where
»2 is the rank of a. We have shown in [11] that the number of conjugacy classes of
regular nilpotent elements is finite. In the monoid of all n x n matrices, a standard
nilpotent element is one with almost one non-zero Jordan block.

COROLLARY 3.6. Let J e 9/(M). If J has a standard nilpotent element, then it is
idempotent generated.

PROOF. Let e = e}. By [11], there exists x e W such that ex is a standard nilpotent
element. Now Te

c c Gj and by Theorem 2.1, E(J) c Wj. We also have the following
maximal chain of E(Tf) contained in G^:

e > e • xex~[ > exex~]x2ex~2 > • • • .

So G'y contains a maximal chain of E(T). Hence T c Gj. Since Gj<G,G = Gj.

Thus by Theorem 2.1, J is idempotent generated. •

We are now able to solve [8, Problem 2.10].

THEOREM 3.7. M\G is idempotent generated if and only if

(i) For any maximal ^ -class J ^ G, no component of S is contained in k(J);
and

(ii) M is semisimple.
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PROOF. First suppose that M\G is idempotent generated. Then (i) follows by
Corollary 3.3 and (ii) follows by Corollary 3.5. Assume conversely that (i) and
(ii) are true. Let 7 be a maximal Jf -class in M\G, e — ej. By Theorem 3.1,
(G, G) C Gj. By (ii), dimG = 1 + dim(G, G). Now Te c Gj. Since (G, G) is
closed in M and e e TJ, we see that Te

c £ (G, G). So G = (G, G)7; and G = Gy.
By Theorem 2.1 (iv), 7 is idempotent generated. So by Theorem 2.1 (v), M\G is
idempotent generated. •

EXAMPLE 2. Let G = {a A 0 £A | A e SL2(k), a, 0 e it*} and let M denote the
Zariski closure of G in A/4(&). Then 5 = {(12)}. The non-trivial elements of the
cross-section lattice A are given by

0

i j ( j [
0\ /I 0

oje(o
Let the corresponding J -classes be 7,, 7, J2, J[, J'2. Then 5 c A.*(7,), 5 c X*(72).
So by Corollary 3.2, the images of Ju 72 are not idempotent generated in M/fx. By
Corollary 3.6, J{, J'2 are idempotent generated in M. Now 5 £ A.*(7) and so by
Corollary 3.2, the image of 7 is idempotent generated in M/fi. However, 7 is not
idempotent generated in M by Corollary 3.5. In fact,

7 n (E(M)) = {A 0 A 6 M | rkA = 1}

while J = {A® B e M \ rkA = 1, fi = aA for some a e k*}.

Finally, the author would like to thank the referee for many useful suggestions.
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