J. Aust. Math. Soc. 80 (2006), 193-203

PRODUCTS OF IDEMPOTENTS IN ALGEBRAIC MONOIDS

MOHAN S. PUTCHA
(Received 19 August 2002; revised 12 January 2005)

Communicated by D. Easdown

Abstract

Let M be a reductive algebraic monoid with zero and unit group G. We obtain a description of the
submonoid generated by the idempotents of M. In particular, we find necessary and sufficient conditions
for M\G to be idempotent generated.
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Introduction

Let S be a semigroup. It has long been recognized that an important tool in un-
derstanding the structure of S is to consider the semigroup (E(S)) generated by the
idempotent set E(S) of S, see, for example, [3, 4, 5, 6]. In particular for a regular
semigroup S, Hall [S] constructs from the semigroup (E(S)) a universal fundamental
semigroup T¢ containing the fundamental image S/u of S.

Our interest is in linear algebraic monoids M with unit group G. In earlier papers
[8, 10], we have found sufficient conditions for M\G to be idempotent generated.
In this paper we find complete answers. We begin by studying (E(M)) for any
irreducible algebraic monoid M. For each regular _¢# -class J of M we associate a
normal subgroup G, of G so that for any idempotent ¢ in J, J N {E(M)) = G ,¢G,.
When M is a regular irreducible monoid with zero (equivalently G is reductive),
we find necessary and sufficient conditions for J to be idempotent generated. The
conditions are of a discrete nature, associated with the Weyl group of G.
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1. Preliminaries

Let M be a strongly m-regular monoid. This means that some power of each
element lies in a subgroup. If X € M, let E(X) denote the set of idempotents in X.
Let # = 2, %, %, 7 denote the usual Green’s relations on M. A _#Z-class J is
regular if E(J) # 0. M isregularif all _# -classes are regular. Let % (M) denote the
partially ordered set of regular ¢ -classes of M. If J € % (M), then JO = Ju{0}
with

ab if abe J;
aob=
0  otherwise
is a completely O-simple semigroup. We are interested in the products of idempotents.
It has been noted by Hall [5, Lemma 1] that the property of being a product of
idempotents is local.

PROPOSITION 1.1. If J € % (M), then J N (E(M)) C (E(J)).
COROLLARY 1.2. (E(M)) is a strongly 7 -regular monoid.

PROOF. Let a € (E(M)). Then a™.#a*" for some positive integer m. If J is the
F -class of a™, thena™ € J N (E(M)) C (E(J)). Since J is completely O-simple,
a™ #a* in (E(J°)) and hence in (E(M)). a

Let J € % (M). We will say that J is idempotent generated if J C (E(M)). In
such a case J is aregular ¢ -class of (E(M)). If e € E(J) and if H is the 5-class
of ¢ (unit group of eMe), then J is idempotent generated if and only if H C (E(M))
and any two idempotents in J are _¢ -related in (E(M)). The unit group of M, if
non-trivial, is never idempotent generated. Both the full transformation semigroup
of a finite set and the multiplicative monoid of n x n matrices over a field have the
property that the non-units are products of idempotents, see, for example, [3, 6].

2. Algebraic monoids

Let M be an algebraic monoid over an algebraically closed field k. This means that
M is an affine variety with the product map being a morphism. By [9, Theorem 3.18],
M is a strongly mr-regular monoid. Let M¢ denote the irreducible component of 1. We
will assume that M is an irreducible monoid, thatis, M = M. By [9, Theorem 5.10],
% (M) is a finite lattice. Let G denote the unit group of M. Fore € E(M),

G, ={x € G |xe=eé), G.={xeG|ex=e¢l,

G.={xeG|ex =e = xe}, Csle) ={x € G| ex = xe}
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are closed subgroups of G and Cg(e) is also connected. For J € % (M), e € E(J),
let

@n G, ={xe€eGlex € (E(M))}.

THEOREM 2.1. (1) Gy is a closed normal subgroup of G and is independent of
the choice of the idempotent e.
(ii) Ife € E(J), then G; = (G", G') and is also equal to the normal subgroup of
G generated by G,.
(i) JN(EM)) =JNG,; = G,eG, is a closed irreducible subset of J for all
ee E(J).
(iv) J is idempotent generated if and only if G = G .
(V) IfJ], Jz € %(M) with Jl < Jz, then sz - G/l.
PROOF. Lete € E(J), x € G,. If eLe, € E(J), then
2.2) eix =eex € et{E(J)) C(E(J)).
If eZe, € E(J), then
(2.3) ex =eex = (ex)(x7'eyx) € el (E(N))(x eix) C (E(J)).
If f € E(J), then by [9, Theorem 5.9],
2.4) eLeFe, L f forsome e, e, € E(J).
By (2.2)—(2.4), we see that
(2.5) E(J)G, S (E())).

It follows that G is independent of the choice of the idempotent e. If g € G, then by
2.5),

eg”'xg =g7'(geg™" - x)g S gTHUE())g = (E(])).
Hence g~'xg € G,. Thus
(2.6) g'G,g € G, forall geG.
Leta,b € G,. Thenea, eb € (E(J)). So

eab = (eb)b™"(ea)b € (E(J))b"E(J))b = (E(J))* = (E(J)).
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Hence ab € G,. Thus
oN)) G,G,€Gy

Now E(J) is a closed irreducible subset of M by [9, Proposition ﬁ]_._Hence we have
an ascending chain of closed irreducible sets E(J) € E(J)2 C E(J)® C ---. Hence
for some positive integer i,

(2.8) S={EUN=EJY =EW) 1 =-.

is an irreducible algebraic semigroup. By (2.4), J N S is the # -class of e in S. By
[9, Lemma 3.27], X = {a € M | e € MaM} is closed. Hence SN J = SeS\X is
irreducible. Let H denote the ##-class of e in S. Since H is open in eSe, we see that
there exists a non-empty open subset U of H such that U C eE(J)'e. Since H is a
connected group, U? = H. Hence H C (E(J)). By (2.4), J NS C (E(J)). Thus

(2.9) JNS=JN(EW))

is closed in J. It follows that G, is closed in G. Hence by (2.6) and (2.7), G, is a
closed normal subgroup of G, proving (i).

Ife € E(J), then G, C G, and hence by [9, Theorem 6.11], ¢ € G. C G,. Thus
E(J) < G,. So by (2.4),J N G, is the F class of G,. Hence by [7, Theorem 1],

(2.10) JNG, =GueG,.
Ifa,b € G,, thenby (2.5) aeb € aea™ - ab € (E(J)). So,
(2.11) G,eG, S{E(J)) €G,.

By (2.9)2.11) we see that (iii) and (iv) are valid.

Clearly G’, G' € G,. So (G, G!) € G,. Conversely let x € G,. Then ex =
e e, forsomee,---,e, € E(J). Then ex = ee, ---e,. By [9, Corollary 6.8],
e, = yey~! for some y € G. Since ee; € J, eye¥e. By [9, Theorem 6.33],
y € GﬁC 6(e)G, = GG’ Cg(e). Thus we may assume without loss of generality that
y € GLG.. So eye = e. Hence ee; = ey™'. Then

-1 -1 -1
eejey =€y e; =ey  eyy .

'. Continuing

As above, e - y~le;y = ez™! for some z € GLG!. So eeje; = ez”'y”
we see that there exists u € (G, Gi) such that ex = ee,---e,, = eu. Soexu™" =e¢
and xu~! € G.. It follows that x € (G!, G"). Thus G, = (G, G%).

Let N denote the normal subgroup of G generated by G,. Then N € G,. Now

e € G, € N. Since all idempotents in J are conjugate and N <« G, we see that
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E(J) C N. By [7], E(J) C N°. Leta € G.. Thenae = e. Let f = ea € E(J).
Then eZf. So by [9, Corollary 6.8], f = eb for some b € N°¢ with be = e.
Soab™' € G, € N. Soa € N. Hence G5 € N. Similarly G € N. Hence
(Gr, Gy € N. Thus N = G,, proving (ii).

Let J\,J, € (M), J; < J,. Then there exists e; € E(J)), e; € E(J,) with

e; <e. Leta € G,,. Then e;a € (E(M)). So
eja = eeia € el (E(M)) C (E(M)).
Hence a € G,,. Thus G, € G,,. This proves (v), completing the proof. O

COROLLARY 2.2. If M is a regular irreducible algebraic monoid, then (E(M)) is
closed.

PROOF. Let J, J' € % (M), J = J'. Then by Theorem 2.1,
(2.12) J'NG,; €V NG, S(EM)).

Choose e; € E(J), J € % (M). Then by (2.12), G;eG; < (E(M)). So by
Theorem 2.1, (E(M)) = U, cq ) Gs€sG is closed. O

If M is not irreducible then (£ (M)) need not be closed.

EXAMPLE 1. Let J consist of all matrices of the form

G0 6o Go) (o)

where a € C, a # 0. Let

o[ Dol )

Then M is a non-irreducible, regular algebraic monoid with J € % (M) and

E(J)=l<(1) 8)((1) (1))(1 8)1/2(1 })}

(E(M)) = {((‘) (1)) , (8 8)} U U2”E(J)

nel

So

is not closed (in the Zariski topology).

The following is extracted from the proof of [9, Theorem 6.33].
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LEMMA 2.3. Letx € M and e € E(M). Ifexe = e, then x € G.G". If exe#e,
then x € GLG.Cg(e) = G.Cs(e)G".

PROOF. Suppose exe = e. Then eZex € E(M), so ex = ey = yley for
some y € G, by [9, Corollary 6.8]. Hence exy™ = e, so xy™' € G.. Also
ye = yexe = yy 'eye = eye = exe = e,s0y € G', giving x = (xy~')y € G'G".
Now suppose exes#e. By [9, Theorem 6.16 (iii)], e = exec = exce for some
¢ € Cg(e). By the previous part, xc € GiG;, so x € GLGCgs(e), and the lemma is
proved. g

If E(J) is a semigroup, then it is a rectangular band and hence [2] J is a direct
product of E(J) and a group. J is then called a rectangular group. The following
generalizes aresult of Renner [13, Theorem 2] concerning completely regular algebraic
monoids with solvable unit groups.

COROLLARY 2.4. Let ¢ € E(J). Then J is a rectangular group if and only if
G'G! =G.G".

PROOF. Suppose J is a rectangular group. Leta € G, b € G.. Lete, = ea, e; =
be € E(J). So eabe = a,e; = e. By Lemma 2.3, ab € G.G.. So G.G. C G'G".
Taking inverses we see that G.G! = G.G".

Conversely suppose that G.G. = G.G". Since all idempotents in J are conjugate,
G’fG'f = G’IG’f for all f € E(J). By [9, Theorem 5.9] there exist e;, e, € E(J)
such that eZe . Le;# f. By [9, Corollary 6.8] ¢ = e,x, e, = ye; for some x € G,
y € G.. Soxy € G, G, =G, G.. Soexye =e. Hence ee = yeix € E(J).
The same argument shows that ee; € E(J). So ee; = e,. Similarly, e, f € E(J). So
ef =ee,f =e f € E(J). Hence J is a rectangular group. O

REMARK. For the monoid of all triangular matrices, Bauer [1] has shown that a
regular _# -class is a rectangular group if and only if the diagonal idempotent in it has
the property that all the 1’s are together.

COROLLARY 2.5. Let Jy, J, € % (M). If J, and J, are rectangular groups, then so
is y Ay

PROOF. Let J = J, A J,. Lete € E(J). Thenby [9, Theorem 6.7, Corollary 6.10],
there exist e, € E(Jy), e; € E(J,) such that ¢ = e;e; = e,e;. Let x € G. Then
eixe; € Ji. By Lemma 2.3, x € G, Cs(e))G, . So x = abc for some a € G,
beCsle), ceGy. So

exex 'e = eabcec™'b7'a e

= eye,abce e, b a7 e = eje bejec b a e,
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Nowc™'b~'a"'b € G, b™'G, b = G, G, =G. G..Soc™'b~'a™'b = a'c’ for some
! { ’ r
a'eG,,c €G,.So
exex'e = e;e beesc'bla" e e, = ere,bejea’ b e e,
= e,e,berea’c’e b e; = eerbese b ey

-1 -
= elezbezb e e; = e,ezbezb lezel.

Now e be; # e, and hence by Lemma 2.3, b € G’e2 Cg(e2)G,,. So b = vwu for some
ve G ,we Cgle),u e G, So

ey’
b b-l _ -1, -1, -1 _— -1,,.—-1_.-1
e0eé, € = eVWUe U W UV e =weu w v oe;.
Now u™'w™'v"'w € G w™'G. w = G, G,, = G G,,. Sou'w™'v™'w = v'u’ for
some v’ € G, ,u’ € G, . So

e;beyb ey, = wev'w'w e, = we' e, w™! = we,w ! = e
Hence exex™'e = e e;be;b™'e;e) = eje;¢) = e. Since all idempotents in J are
conjugate, we see that E(J) is a semigroup. Hence J is a rectangular group. O

3. Reductive monoids

We will assume in this section that M is a regular, irreducible algebraic monoid
with zero. Equivalently the unit group G of M is reductive. Then the commutator
subgroup (G, G) is semisimple and G = (G, G)Z, where Z = Z(G) is the center of
G. If dim Z = 1, we say that M is a semisimple monoid. Now by [9, Theorem 6.20],
all maximal chains in % (M) have the same length. This gives rise to a rank function
in % (M) and hence on M. By [9, Theorem 7.9], the fundamental image M/u is
obtained by factoring the maximal subgroups of M by their centers. By [9, Chapter 9],
there is an idempotent cross-section e;(J € % (M)) such that for J;, J, € % (M),

Ji<J, ifandonlyif e, <e,,.

Then A = {e; | J € % (M)} is called a cross-section lattice of M and is unique up
to conjugacy. By [9, Chapter 9] B = {g € G | ge = ege forall e € A} is a Borel
subgroup of G containing the maximal torus

T ={geGlge=eg forall e € A}.
Let W = Ng(T)/T denote the Weyl group of G with generating set S of simple

reflections. The subgroups containing B are called parabolic subgroups and are of the
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form P, = BW,;B, I C S. Here W, is the subgroup W generated by I. Let U, U,
denote respectively the unipotent radicals of Band P;, I € S. If s € S, I = {5}, then
denote U; by X,. Then X, = k and is called a root subgroup. Let J € % (M). Asin
[12], the type of J is defined as A(J) = {s € § | se; = e;s}. Let

AN = ﬂ A(J) and A(J) = ﬂ ().

Iz s

Then W,y = Wi.(yy x Wy, ). Now S has the structure of a Coxeter graph where for
s,t € S, s and ¢ are adjacent if st # ts. Let S, denote the union of components of S
not contained in A*(J).

THEOREM 3.1. If J € % (M), then W(G) = Ws,.

PROOF. Let e = ¢;, I = A(J). Let S’ be a component of S. First suppose that
S C S,. Then § € A*(J). So there exists s € §' such that s & A*(J). Suppose
s ¢ I. Then X; C U, and hence X,e = {e}. So X, € G, € G,. Thus X, € G.
Since G < G, it is a reductive group. Sos € W(G9). Since G5 <G, §' € W(G9).
Next suppose that s € A(J). Since s & A*(J), s € A(J). So se = e = es. Since G¢
is a reductive group, X, C G¢ € G. So agains € W(G9) and §' € W(G9).

Assume conversely that S € W(G9). We claim that §' € §,. Otherwise,
S’ € A*(J). There exists a closed connected normal subgroup G, of G contained
in G5 such that W(G,) = Wy. Since G is a reductive group, there exists a closed
connected normal subgroup G, of G such that G = GG, and G, centralizes G,.
Since ' C A(J) and W(G,) = Wy, we see that G|, € Cg(e). Soif f € E(J), then
f = xex~! for some x € G,. So G, centralizes f. Hence G, centralizes (E(J)).
Since G, € Gy, eG, € (E(J)). So eG, is commutative and W(eG,|) = 1. So

S’ € A,.(J), acontradiction. Thus §' C §,, completing the proof. (]

COROLLARY 3.2. Let J € % (M). Then the image of J in M/ is idempotent
generated if and only if no component of S is contained in A*(J).

COROLLARY 3.3. Let J € % (M), e = e;. Then J is idempotent generated if and
only if

(i) no component of S is contained in A*(J); and

(i) G =(G, G)T,.

PROOF. Suppose first that J is idempotent generated. Then (i) is true by Theo-
rem 3.1. Let H = (G, G)T,. Then H® = (G, G)T/ is a reductive group and e € He.
Now Z C T and G = (G, G)Z. Let f € E(J). Then f is conjugate to e and hence
there exists x € (G, G) such that f = x~'ex. Hence f € H¢. Thus E(J) C H°. Let
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z€ Z. Thenez € J C (E(J)) C He. So there exists t € H N T such that ez = er.
Sozt™' €T, C Handhence z € H. Thus Z € H. Since G = (G, G)Z, we see that
G=H.

Assume conversely that (i), (ii) are valid. Then by Theorem 3.1, W(G9) = W.
Hence (G, G) € G,. Since T, € G,, G = G;. By Theorem 2.1, J is idempotent
generated. This completes the proof. O

Let J € % (M). Then by Theorem 2.1, the _# -class J 06—3 = JN{EM)) ofG_j
is idempotent generated. By Theorem 3.1, (G, G9) is the unique closed connected
normal subgroup of (G, G) with Weyl group Ws,. We have, by Corollary 3.3,

COROLLARY 3.4. Let J €% (M), e = e;. Then JN(E(M)) = (G, G$)e(GS, G9).

COROLLARY 3.5. Let J € % (M). If J is idempotent generated then the dimension
of the center of G is at most equal to the corank of J.

PROOF. Let ¢ = e;,. Then rkJ = dimeT and dim7, is the corank of J. By
Corollary 3.3, G = (G, G)T,. Since G = (G, G)Z,we see thatdimZ <dim7,. O

Following [11], we will say that a nilpotent element a is standard if a™ # 0, where
m is the rank of a. We have shown in [11] that the number of conjugacy classes of
regular nilpotent elements is finite. In the monoid of all n x n matrices, a standard
nilpotent element is one with almost one non-zero Jordan block.

COROLLARY 3.6. Let J € % (M). If J has a standard nilpotent element, then it is
idempotent generated.

PROOF. Lete = e,;. By [11], there exists x € W such that ex is a standard nilpotent
element. Now 77 C G, and by Theorem 2.1, E(J) € _G_‘, We also have the following
maximal chain of E (T_;) contained in G_”,:

e>e-xex ' >exex 'x%ex? > ..

So _(—}T, contains a maximal chain of E(T). Hence T < G,. Since G, <G, G = G,.
Thus by Theorem 2.1, J is idempotent generated. 0

We are now able to solve [8, Problem 2.10].

THEOREM 3.7. M\G is idempotent generated if and only if

(i) For any maximal # -class J # G, no component of S is contained in A(J);
and
(i) M is semisimple.
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PROOF. First suppose that M\G is idempotent generated. Then (i) follows by
Corollary 3.3 and (ii) follows by Corollary 3.5. Assume conversely that (i) and
(ii) are true. Let J be a maximal _¢-class in M\G, e = e;,. By Theorem 3.1,
(G, G) € G,. By (i), dimG = 1 + dim(G, G). Now T, C G,. Since (G, G) is
closedin M and e € _Tf, wesee that T° £ (G, G). So G = (G,G)T,and G = G,.
By Theorem 2.1 (iv), J is idempotent generated. So by Theorem 2.1 (v), M\G is
idempotent generated. O

EXAMPLE 2. Let G = {dAD BA | A € SLy(k), «, B € k*} and let M denote the
Zariski closure of G in M4(k). Then § = {(12)}. The non-trivial elements of the
cross-section lattice A are given by

=l V)6 o) =6 0)e( o) ==( ool 1)
(o 0)2 (0 o) «=( 0)=(0 o)

Let the corresponding _# -classes be J,, J, J,, J|, J,. Then § C A*(Jy), S € A*(J).
So by Corollary 3.2, the images of J,, J, are not idempotent generated in M/u. By
Corollary 3.6, J;, J, are idempotent generated in M. Now § € A*(J) and so by
Corollary 3.2, the image of J is idempotent generated in M /. However, J is not
idempotent generated in M by Corollary 3.5. In fact,

JNEM)={ADAeM|rkA=1)}
while J ={A®BeM|rkA=1, B=oaA forsome a € k*}.

Finally, the author would like to thank the referee for many useful suggestions.
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