PRODUCTS OF IDEMPOTENTS IN ALGEBRAIC MONOIDS

MOHAN S. PUTCHA

(Received 19 August 2002; revised 12 January 2005)

Communicated by D. Easdown

Abstract

Let M be a reductive algebraic monoid with zero and unit group G. We obtain a description of the submonoid generated by the idempotents of M. In particular, we find necessary and sufficient conditions for $M \backslash G$ to be idempotent generated.

2000 Mathematics subject classification: primary 20M99; secondary 20 G 99.

Introduction

Let S be a semigroup. It has long been recognized that an important tool in understanding the structure of S is to consider the semigroup $\langle E(S)\rangle$ generated by the idempotent set $E(S)$ of S, see, for example, $[3,4,5,6]$. In particular for a regular semigroup S, Hall [5] constructs from the semigroup $\langle E(S)\rangle$ a universal fundamental semigroup T_{E} containing the fundamental image S / μ of S.

Our interest is in linear algebraic monoids M with unit group G. In earlier papers [8, 10], we have found sufficient conditions for $M \backslash G$ to be idempotent generated. In this paper we find complete answers. We begin by studying $\langle E(M)\rangle$ for any irreducible algebraic monoid M. For each regular \mathscr{J}-class J of M we associate a normal subgroup G_{J} of G so that for any idempotent e in $J, J \cap\langle E(M)\rangle=G_{J} e G_{J}$. When M is a regular irreducible monoid with zero (equivalently G is reductive), we find necessary and sufficient conditions for J to be idempotent generated. The conditions are of a discrete nature, associated with the Weyl group of G.

[^0]
1. Preliminaries

Let M be a strongly π-regular monoid. This means that some power of each element lies in a subgroup. If $X \subseteq M$, let $E(X)$ denote the set of idempotents in X. Let $\mathscr{J}=\mathscr{D}, \mathscr{R}, \mathscr{L}, \mathscr{H}$ denote the usual Green's relations on M. A \mathscr{J}-class J is regular if $E(J) \neq \emptyset . M$ is regular if all \mathscr{J}-classes are regular. Let $\mathscr{U}(M)$ denote the partially ordered set of regular \mathscr{J}-classes of M. If $J \in \mathscr{U}(M)$, then $J^{0}=J \cup\{0\}$ with

$$
a \circ b= \begin{cases}a b & \text { if } a b \in J \\ 0 & \text { otherwise }\end{cases}
$$

is a completely 0 -simple semigroup. We are interested in the products of idempotents. It has been noted by Hall [5, Lemma 1] that the property of being a product of idempotents is local.

PROPOSITION 1.1. If $J \in \mathscr{U}(M)$, then $J \cap\langle E(M)\rangle \subseteq\langle E(J)\rangle$.
COROLLARY 1.2. $\langle E(M)\rangle$ is a strongly π-regular monoid.
Proof. Let $a \in\langle E(M)\rangle$. Then $a^{m} \mathscr{H} a^{2 m}$ for some positive integer m. If J is the \mathscr{J}-class of a^{m}, then $a^{m} \in J \cap\langle E(M)\rangle \subseteq\langle E(J)\rangle$. Since J^{0} is completely 0 -simple, $a^{m} \mathscr{H} a^{2 m}$ in $\left\langle E\left(J^{0}\right)\right\rangle$ and hence in $\langle E(M)\rangle$.

Let $J \in \mathscr{U}(M)$. We will say that J is idempotent generated if $J \subseteq\langle E(M)\rangle$. In such a case J is a regular \mathscr{J}-class of $\langle E(M)\rangle$. If $e \in E(J)$ and if H is the \mathscr{H}-class of e (unit group of $e M e$), then J is idempotent generated if and only if $H \subseteq\langle E(M)\rangle$ and any two idempotents in J are \mathscr{J}-related in $\langle E(M)\rangle$. The unit group of M, if non-trivial, is never idempotent generated. Both the full transformation semigroup of a finite set and the multiplicative monoid of $n \times n$ matrices over a field have the property that the non-units are products of idempotents, see, for example, [3, 6].

2. Algebraic monoids

Let M be an algebraic monoid over an algebraically closed field k. This means that M is an affine variety with the product map being a morphism. By [9, Theorem 3.18], M is a strongly π-regular monoid. Let M^{c} denote the irreducible component of 1 . We will assume that M is an irreducible monoid, that is, $M=M^{c}$. By [9, Theorem 5.10], $\mathscr{U}(M)$ is a finite lattice. Let G denote the unit group of M. For $e \in E(M)$,

$$
\begin{aligned}
& G_{e}^{r}=\{x \in G \mid x e=e\}, \\
& G_{e}^{l}=\{x \in G \mid e x=e\}, \\
& G_{e}=\{x \in G \mid e x=e=x e\}, \\
& C_{G}(e)=\{x \in G \mid e x=x e\}
\end{aligned}
$$

are closed subgroups of G and $C_{G}(e)$ is also connected. For $J \in \mathscr{U}(M), e \in E(J)$, let

$$
\begin{equation*}
G_{J}=\{x \in G \mid e x \in\langle E(M)\rangle\} \tag{2.1}
\end{equation*}
$$

THEOREM 2.1. (i) G_{J} is a closed normal subgroup of G and is independent of the choice of the idempotent e.
(ii) If $e \in E(J)$, then $G_{J}=\left\langle G_{e}^{r}, G_{e}^{l}\right\rangle$ and is also equal to the normal subgroup of G generated by G_{e}.
(iii) $J \cap\langle E(M)\rangle=J \cap \bar{G}_{J}=G_{J} e G_{J}$ is a closed irreducible subset of J for all $e \in E(J)$.
(iv) J is idempotent generated if and only if $G=G_{J}$.
(v) If $J_{1}, J_{2} \in \mathscr{U}(M)$ with $J_{1} \leq J_{2}$, then $G_{J_{2}} \subseteq G_{J_{1}}$.

Proof. Let $e \in E(J), x \in G_{J}$. If $e \mathscr{L} e_{1} \in E(J)$, then

$$
\begin{equation*}
e_{1} x=e_{1} e x \in e_{1}\langle E(J)\rangle \subseteq\langle E(J)\rangle \tag{2.2}
\end{equation*}
$$

If $e \mathscr{R} e_{1} \in E(J)$, then

$$
\begin{equation*}
e_{1} x=e e_{1} x=(e x)\left(x^{-1} e_{1} x\right) \in e_{1}\langle E(J)\rangle\left(x^{-1} e_{1} x\right) \subseteq\langle E(J)\rangle \tag{2.3}
\end{equation*}
$$

If $f \in E(J)$, then by [9, Theorem 5.9],

$$
\begin{equation*}
e \mathscr{L} e_{1} \mathscr{R} e_{2} \mathscr{L} f \quad \text { for some } e_{1}, e_{2} \in E(J) \tag{2.4}
\end{equation*}
$$

By (2.2)-(2.4), we see that

$$
\begin{equation*}
E(J) G_{J} \subseteq\langle E(J)\rangle \tag{2.5}
\end{equation*}
$$

It follows that G_{J} is independent of the choice of the idempotent e. If $g \in G$, then by (2.5),

$$
e g^{-1} x g=g^{-1}\left(g e g^{-1} \cdot x\right) g \subseteq g^{-1}\langle E(J)\rangle g=\langle E(J)\rangle
$$

Hence $g^{-1} x g \in G_{J}$. Thus

$$
\begin{equation*}
g^{-1} G_{J} g \subseteq G_{J} \quad \text { for all } g \in G \tag{2.6}
\end{equation*}
$$

Let $a, b \in G_{J}$. Then $e a, e b \in\langle E(J)\rangle$. So

$$
e a b=(e b) b^{-1}(e a) b \in\langle E(J)\rangle b^{-1}\langle E(J)\rangle b=\langle E(J)\rangle^{2}=\langle E(J)\rangle
$$

Hence $a b \in G_{J}$. Thus

$$
\begin{equation*}
G_{J} G_{J} \subseteq G_{J} \tag{2.7}
\end{equation*}
$$

Now $E(J)$ is a closed irreducible subset of M by [9, Proposition 5.8]. Hence we have an ascending chain of closed irreducible sets $E(J) \subseteq \overline{E(J)^{2}} \subseteq \overline{E(J)^{3}} \subseteq \ldots$. Hence for some positive integer i,

$$
\begin{equation*}
S=\overline{\langle E(J)\rangle}=\overline{E(J)^{i}}=\overline{E(J)^{i+1}}=\cdots \tag{2.8}
\end{equation*}
$$

is an irreducible algebraic semigroup. By (2.4), $J \cap S$ is the \mathscr{J}-class of e in S. By [9, Lemma 3.27], $X=\{a \in M \mid e \notin M a M\}$ is closed. Hence $S \cap J=S e S \backslash X$ is irreducible. Let H denote the \mathscr{H}-class of e in S. Since H is open in $e S e$, we see that there exists a non-empty open subset U of H such that $U \subseteq e E(J)^{i} e$. Since H is a connected group, $U^{2}=H$. Hence $H \subseteq\langle E(J)\rangle$. By (2.4), $J \cap S \subseteq\langle E(J)\rangle$. Thus

$$
\begin{equation*}
J \cap S=J \cap\langle E(J)\rangle \tag{2.9}
\end{equation*}
$$

is closed in J. It follows that G_{J} is closed in G. Hence by (2.6) and (2.7), G_{J} is a closed normal subgroup of G, proving (i).

If $e \in E(J)$, then $G_{e} \subseteq G_{J}$ and hence by [9, Theorem 6.11], $e \in \bar{G}_{e} \subseteq \bar{G}_{J}$. Thus $E(J) \subseteq \bar{G}_{J}$. So by (2.4), $J \cap \bar{G}_{J}$ is the \mathscr{J}-class of \bar{G}_{J}. Hence by [7, Theorem 1],

$$
\begin{equation*}
J \cap \bar{G}_{J}=G_{J} e G_{J} \tag{2.10}
\end{equation*}
$$

If $a, b \in G_{J}$, then by (2.5) $a e b \in a e a^{-1} \cdot a b \in\langle E(J)\rangle$. So,

$$
\begin{equation*}
G_{J} e G_{J} \subseteq\langle E(J)\rangle \subseteq \bar{G}_{J} \tag{2.11}
\end{equation*}
$$

By (2.9)-(2.11) we see that (iii) and (iv) are valid.
Clearly $G_{e}^{r}, G_{e}^{l} \subseteq G_{J}$. So $\left\langle G_{e}^{r}, G_{e}^{l}\right\rangle \subseteq G_{J}$. Conversely let $x \in G_{J}$. Then $e x=$ $e_{1} \cdots e_{m}$ for some $e_{1}, \cdots, e_{m} \in E(J)$. Then $e x=e e_{1} \cdots e_{m}$. By [9, Corollary 6.8], $e_{1}=y e y^{-1}$ for some $y \in G$. Since $e e_{1} \in J$, eye $\mathscr{H} e$. By [9, Theorem 6.33], $y \in G_{e}^{l} C_{G}(e) G_{e}^{r}=G_{e}^{l} G_{e}^{r} C_{G}(e)$. Thus we may assume without loss of generality that $y \in G_{e}^{l} G_{e}^{r}$. So eye $=e$. Hence $e e_{1}=e y^{-1}$. Then

$$
e e_{1} e_{2}=e y^{-1} e_{2}=e y^{-1} e_{2} y y^{-1}
$$

As above, $e \cdot y^{-1} e_{2} y=e z^{-1}$ for some $z \in G_{e}^{\prime} G_{e}^{r}$. So $e e_{1} e_{2}=e z^{-1} y^{-1}$. Continuing we see that there exists $u \in\left\langle G_{e}^{r}, G_{e}^{l}\right\rangle$ such that $e x=e e_{1} \cdots e_{m}=e u$. So $e x u^{-1}=e$ and $x u^{-1} \in G_{e}^{l}$. It follows that $x \in\left\langle G_{e}^{l}, G_{e}^{r}\right\rangle$. Thus $G_{J}=\left\langle G_{e}^{l}, G_{e}^{r}\right\rangle$.

Let N denote the normal subgroup of G generated by G_{e}. Then $N \subseteq G_{J}$. Now $e \in \bar{G}_{e} \subseteq \bar{N}$. Since all idempotents in J are conjugate and $N \triangleleft G$, we see that
$E(J) \subseteq \bar{N}$. By [7], $E(J) \subseteq \bar{N}^{c}$. Let $a \in G_{e}^{r}$. Then $a e=e$. Let $f=e a \in E(J)$. Then $e \mathscr{R} f$. So by [9, Corollary 6.8], $f=e b$ for some $b \in N^{c}$ with $b e=e$. So $a b^{-1} \in G_{e} \subseteq N$. So $a \in N$. Hence $G_{e}^{r} \subseteq N$. Similarly $G_{e}^{l} \subseteq N$. Hence $\left\langle G_{e}^{r}, G_{e}^{l}\right\rangle \subseteq N$. Thus $N=G_{J}$, proving (ii).

Let $J_{1}, J_{2} \in \mathscr{U}(M), J_{1} \leq J_{2}$. Then there exists $e_{1} \in E\left(J_{1}\right), e_{2} \in E\left(J_{2}\right)$ with $e_{1} \leq e_{2}$. Let $a \in G_{J_{2}}$. Then $e_{2} a \in\langle E(M)\rangle$. So

$$
e_{1} a=e_{1} e_{2} a \in e_{1}\langle E(M)\rangle \subseteq\langle E(M)\rangle
$$

Hence $a \in G_{J_{1}}$. Thus $G_{J_{2}} \subseteq G_{J_{1}}$. This proves (v), completing the proof.
COROLLARY 2.2. If M is a regular irreducible algebraic monoid, then $\langle E(M)\rangle$ is closed.

Proof. Let $J, J^{\prime} \in \mathscr{U}(M), J \geq J^{\prime}$. Then by Theorem 2.1,

$$
\begin{equation*}
J^{\prime} \cap \bar{G}_{J} \subseteq J^{\prime} \cap \bar{G}_{J^{\prime}} \subseteq\langle E(M)\rangle \tag{2.12}
\end{equation*}
$$

Choose $e_{J} \in E(J), J \in \mathscr{U}(M)$. Then by (2.12), $\overline{G_{J} e G_{J}} \subseteq\langle E(M)\rangle$. So by Theorem 2.1, $\langle E(M)\rangle=\bigcup_{J \in \mathscr{U}(M)} \overline{G_{J} e_{J} G_{J}}$ is closed.

If M is not irreducible then $\langle E(M)\rangle$ need not be closed.
Example 1. Let J consist of all matrices of the form

$$
\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
a & a \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
a & 0 \\
a & 0
\end{array}\right), \quad\left(\begin{array}{ll}
a & a \\
a & a
\end{array}\right)
$$

where $a \in \mathcal{C}, a \neq 0$. Let

$$
M=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right\} \cup J \cup\left\{\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)\right\}
$$

Then M is a non-irreducible, regular algebraic monoid with $J \in \mathscr{U}(M)$ and

$$
E(J)=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right), 1 / 2\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\right\} .
$$

So

$$
\langle E(M)\rangle=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)\right\} \cup \bigcup_{n \in \mathbb{Z}} 2^{n} E(J)
$$

is not closed (in the Zariski topology).
The following is extracted from the proof of [9, Theorem 6.33].

Lemma 2.3. Let $x \in M$ and $e \in E(M)$. If exe $=e$, then $x \in G_{e}^{l} G_{e}^{r}$. If exe $\mathscr{H} e$, then $x \in G_{e}^{l} G_{e}^{r} C_{G}(e)=G_{e}^{l} C_{G}(e) G_{e}^{r}$.

Proof. Suppose exe $=e$. Then e Rex $\in E(M)$, so $e x=e y=y^{-1}$ ey for some $y \in G$, by [9, Corollary 6.8]. Hence exy ${ }^{-1}=e$, so $x y^{-1} \in G_{e}^{l}$. Also ye $=$ yexe $=y y^{-1}$ eye $=$ eye $=$ exe $=e$, so $y \in G_{e}^{r}$, giving $x=\left(x y^{-1}\right) y \in G_{e}^{l} G_{e}^{r}$. Now suppose exe $\mathscr{H} e$. By [9, Theorem 6.16 (iii)], $e=$ exec $=$ exce for some $c \in C_{G}(e)$. By the previous part, $x c \in G_{e}^{l} G_{e}^{r}$, so $x \in G_{e}^{l} G_{e}^{r} C_{G}(e)$, and the lemma is proved.

If $E(J)$ is a semigroup, then it is a rectangular band and hence [2] J is a direct product of $E(J)$ and a group. J is then called a rectangular group. The following generalizes a result of Renner [13, Theorem 2] concerning completely regular algebraic monoids with solvable unit groups.

COROLLARY 2.4. Let $e \in E(J)$. Then J is a rectangular group if and only if $G_{e}^{r} G_{e}^{l}=G_{e}^{l} G_{e}^{r}$.

PROOF. Suppose J is a rectangular group. Let $a \in G_{e}^{r}, b \in G_{e}^{l}$. Let $e_{1}=e a, e_{2}=$ $b e \in E(J)$. So eabe $=a_{1} e_{2}=e$. By Lemma 2.3, $a b \in G_{e}^{l} G_{e}^{r}$. So $G_{e}^{r} G_{e}^{l} \subseteq G_{e}^{l} G_{e}^{r}$. Taking inverses we see that $G_{e}^{r} G_{e}^{l}=G_{e}^{l} G_{e}^{r}$.

Conversely suppose that $G_{e}^{r} G_{e}^{l}=G_{e}^{l} G_{e}^{r}$. Since all idempotents in J are conjugate, $G_{f}^{l} G_{f}^{r}=G_{f}^{r} G_{f}^{\prime}$ for all $f \in E(J)$. By [9, Theorem 5.9] there exist $e_{1}, e_{2} \in E(J)$ such that $e \mathscr{R} e_{1} \mathscr{L} e_{2} \mathscr{R} f$. By [9, Corollary 6.8] $e=e_{1} x, e_{2}=y e_{1}$ for some $x \in G_{e_{1}}^{r}$, $y \in G_{e_{1}}^{l}$. So $x y \in G_{e_{1}}^{r} G_{e_{1}}^{l}=G_{e_{1}}^{l} G_{e_{1}}^{r}$. So $e_{1} x y e_{1}=e_{1}$. Hence $e_{2} e=y e_{1} x \in E(J)$. The same argument shows that $e e_{2} \in E(J)$. So $e e_{2}=e_{1}$. Similarly, $e_{1} f \in E(J)$. So $e f=e e_{2} f=e_{1} f \in E(J)$. Hence J is a rectangular group.

REMARK. For the monoid of all triangular matrices, Bauer [1] has shown that a regular \mathscr{J}-class is a rectangular group if and only if the diagonal idempotent in it has the property that all the 1 's are together.

COROLLARY 2.5. Let $J_{1}, J_{2} \in \mathscr{U}(M)$. If J_{1} and J_{2} are rectangular groups, then so is $J_{1} \wedge J_{2}$.

Proof. Let $J=J_{1} \wedge J_{2}$. Let $e \in E(J)$. Then by [9, Theorem 6.7, Corollary 6.10], there exist $e_{1} \in E\left(J_{1}\right), e_{2} \in E\left(J_{2}\right)$ such that $e=e_{1} e_{2}=e_{2} e_{1}$. Let $x \in G$. Then $e_{1} x e_{1} \in J_{1}$. By Lemma 2.3, $x \in G_{e_{1}}^{l} C_{G}\left(e_{1}\right) G_{e_{1}}^{r}$. So $x=a b c$ for some $a \in G_{e_{1}}^{l}$, $b \in C_{G}\left(e_{1}\right), c \in G_{e_{1}}^{r}$. So

$$
\begin{aligned}
e x e x^{-1} e & =e a b c e c^{-1} b^{-1} a^{-1} e \\
& =e_{2} e_{1} a b c e_{1} e_{2} c^{-1} b^{-1} a^{-1} e=e_{2} e_{1} b e_{1} e_{2} c^{-1} b^{-1} a^{-1} e
\end{aligned}
$$

Now $c^{-1} b^{-1} a^{-1} b \in G_{e_{1}}^{r} b^{-1} G_{e_{1}}^{l} b=G_{e_{1}}^{r} G_{e_{1}}^{l}=G_{e_{1}}^{l} G_{e_{1}}^{r}$. So $c^{-1} b^{-1} a^{-1} b=a^{\prime} c^{\prime}$ for some $a^{\prime} \in G_{e_{1}}^{l}, c^{\prime} \in G_{e_{1}}^{r}$. So

$$
\begin{aligned}
\text { exex }^{-1} e & =e_{2} e_{1} b e_{1} e_{2} c^{-1} b^{-1} a^{-1} e_{1} e_{2}=e_{2} e_{1} b e_{1} e_{2} a^{\prime} c^{\prime} b^{-1} e_{1} e_{2} \\
& =e_{2} e_{1} b e_{2} e_{1} a^{\prime} c^{\prime} e_{1} b^{-1} e_{2}=e_{1} e_{2} b e_{2} e_{1} b^{-1} e_{2} \\
& =e_{1} e_{2} b e_{2} b^{-1} e_{1} e_{2}=e_{1} e_{2} b e_{2} b^{-1} e_{2} e_{1}
\end{aligned}
$$

Now $e_{2} b e_{2} \mathscr{J} e_{2}$ and hence by Lemma 2.3, $b \in G_{e_{2}}^{l} C_{G}\left(e_{2}\right) G_{e_{2}}^{r}$. So $b=v w u$ for some $v \in G_{e_{2}}^{l}, w \in C_{G}\left(e_{2}\right), u \in G_{e_{2}}^{r}$. So

$$
e_{2} b e_{2} b^{-1} e_{2}=e_{2} v w u e_{2} u^{-1} w^{-1} v^{-1} e_{2}=w e_{2} u^{-1} w^{-1} v^{-1} e_{2}
$$

Now $u^{-1} w^{-1} v^{-1} w \in G_{e_{2}}^{r} w^{-1} G_{e_{2}}^{l} w=G_{e_{2}}^{r} G_{e_{2}}^{l}=G_{e_{2}}^{l} G_{e_{2}}^{r}$. So $u^{-1} w^{-1} v^{-1} w=v^{\prime} u^{\prime}$ for some $v^{\prime} \in G_{e_{2}}^{l}, u^{\prime} \in G_{e_{2}}^{r}$. So

$$
e_{2} b e_{2} b^{-1} e_{2}=w e_{2} v^{\prime} u^{\prime} w^{-1} e_{2}=w e_{2} v^{\prime} u^{\prime} e_{2} w^{-1}=w e_{2} w^{-1}=e_{2}
$$

Hence exex ${ }^{-1} e=e_{1} e_{2} b e_{2} b^{-1} e_{2} e_{1}=e_{1} e_{2} e_{1}=e$. Since all idempotents in J are conjugate, we see that $E(J)$ is a semigroup. Hence J is a rectangular group.

3. Reductive monoids

We will assume in this section that M is a regular, irreducible algebraic monoid with zero. Equivalently the unit group G of M is reductive. Then the commutator subgroup (G, G) is semisimple and $G=(G, G) Z$, where $Z=Z(G)$ is the center of G. If $\operatorname{dim} Z=1$, we say that M is a semisimple monoid. Now by [9 , Theorem 6.20], all maximal chains in $\mathscr{U}(M)$ have the same length. This gives rise to a rank function in $\mathscr{U}(M)$ and hence on M. By [9, Theorem 7.9], the fundamental image M / μ is obtained by factoring the maximal subgroups of M by their centers. By [9, Chapter 9], there is an idempotent cross-section $e_{J}(J \in \mathscr{U}(M))$ such that for $J_{1}, J_{2} \in \mathscr{U}(M)$,

$$
J_{1} \leq J_{2} \quad \text { if and only if } \quad e_{J_{1}} \leq e_{J_{2}}
$$

Then $\Lambda=\left\{e_{J} \mid J \in \mathscr{U}(M)\right\}$ is called a cross-section lattice of M and is unique up to conjugacy. By [9, Chapter 9] $B=\{g \in G \mid g e=e g e$ for all $e \in \Lambda\}$ is a Borel subgroup of G containing the maximal torus

$$
T=\{g \in G \mid g e=e g \text { for all } e \in \Lambda\}
$$

Let $W=N_{G}(T) / T$ denote the Weyl group of G with generating set S of simple reflections. The subgroups containing B are called parabolic subgroups and are of the
form $P_{l}=B W_{l} B, I \subseteq S$. Here W_{I} is the subgroup W generated by I. Let U, U_{I} denote respectively the unipotent radicals of B and $P_{I}, I \subseteq S$. If $s \in S, I=\{s\}$, then denote U_{l} by X_{s}. Then $X_{s} \cong k$ and is called a root subgroup. Let $J \in \mathscr{U}(M)$. As in [12], the type of J is defined as $\lambda(J)=\left\{s \in S \mid s e_{J}=e_{J} s\right\}$. Let

$$
\lambda^{*}(J)=\bigcap_{J^{\prime} \geq J} \lambda\left(J^{\prime}\right) \quad \text { and } \quad \lambda_{*}(J)=\bigcap_{J^{\prime} \leq J} \lambda\left(J^{\prime}\right)
$$

Then $W_{\lambda(J)}=W_{\lambda^{*}(J)} \times W_{\lambda_{\bullet}(J)}$. Now S has the structure of a Coxeter graph where for $s, t \in S, s$ and t are adjacent if $s t \neq t s$. Let S_{J} denote the union of components of S not contained in $\lambda^{*}(J)$.

Theorem 3.1. If $J \in \mathscr{U}(M)$, then $W\left(G_{J}^{c}\right)=W_{S}$.

Proof. Let $e=e_{J}, I=\lambda(J)$. Let S^{\prime} be a component of S. First suppose that $S^{\prime} \subseteq S_{J}$. Then $S^{\prime} \nsubseteq \lambda^{*}(J)$. So there exists $s \in S^{\prime}$ such that $s \notin \lambda^{*}(J)$. Suppose $s \notin I$. Then $X_{s} \subseteq U_{l}$ and hence $X_{s} e=\{e\}$. So $X_{s} \subseteq G_{e}^{r} \subseteq G_{J}$. Thus $X_{s} \subseteq G_{J}^{c}$. Since $G_{J}^{c} \triangleleft G$, it is a reductive group. So $s \in W\left(G_{J}^{c}\right)$. Since $G_{J}^{c} \triangleleft G, S^{\prime} \subseteq W\left(G_{J}^{c}\right)$. Next suppose that $s \in \lambda(J)$. Since $s \notin \lambda^{*}(J), s \in \lambda_{*}(J)$. So $s e=e=e s$. Since G_{e}^{c} is a reductive group, $X_{s} \subseteq G_{e}^{c} \subseteq G_{j}^{c}$. So again $s \in W\left(G_{J}^{c}\right)$ and $S^{\prime} \subseteq W\left(G_{J}^{c}\right)$.

Assume conversely that $S^{\prime} \subseteq W\left(G_{J}^{c}\right)$. We claim that $S^{\prime} \subseteq S_{J}$. Otherwise, $S^{\prime} \subseteq \lambda^{*}(J)$. There exists a closed connected normal subgroup G_{1} of G contained in G_{J}^{c} such that $W\left(G_{1}\right)=W_{s^{\prime}}$. Since G is a reductive group, there exists a closed connected normal subgroup G_{2} of G such that $G=G_{1} G_{2}$ and G_{2} centralizes G_{1}. Since $S^{\prime} \subseteq \lambda(J)$ and $W\left(G_{1}\right)=W_{S^{\prime}}$, we see that $G_{1} \subseteq C_{G}(e)$. So if $f \in E(J)$, then $f=x e x^{-1}$ for some $x \in G_{2}$. So G_{1} centralizes f. Hence G_{1} centralizes $\langle E(J)\rangle$. Since $G_{1} \subseteq G_{J}, e G_{1} \subseteq\langle E(J)\rangle$. So $e G_{1}$ is commutative and $W\left(e G_{1}\right)=1$. So $S^{\prime} \subseteq \lambda_{*}(J)$, a contradiction. Thus $S^{\prime} \subseteq S_{J}$, completing the proof.

Corollary 3.2. Let $J \in \mathscr{U}(M)$. Then the image of J in M / μ is idempotent generated if and only if no component of S is contained in $\lambda^{*}(J)$.

Corollary 3.3. Let $J \in \mathscr{U}(M), e=e_{J}$. Then J is idempotent generated if and only if
(i) no component of S is contained in $\lambda^{*}(J)$; and
(ii) $G=(G, G) T_{e}$.

Proof. Suppose first that J is idempotent generated. Then (i) is true by Theorem 3.1. Let $H=(G, G) T_{e}$. Then $H^{c}=(G, G) T_{e}^{c}$ is a reductive group and $e \in \overline{H^{c}}$. Now $Z \subseteq T$ and $G=(G, G) Z$. Let $f \in E(J)$. Then f is conjugate to e and hence there exists $x \in(G, G)$ such that $f=x^{-1}$ ex. Hence $f \in \overline{H^{c}}$. Thus $E(J) \subseteq \overline{H^{c}}$. Let
$z \in Z$. Then $e z \in J \subseteq\langle E(J)\rangle \subseteq \overline{H^{c}}$. So there exists $t \in H^{c} \cap T$ such that $e z=e t$. So $z t^{-1} \in T_{e} \subseteq H$ and hence $z \in H$. Thus $Z \subseteq H$. Since $G=(G, G) Z$, we see that $G=H$.

Assume conversely that (i), (ii) are valid. Then by Theorem 3.1, W $\left(G_{J}^{c}\right)=W$. Hence $(G, G) \subseteq G_{J}$. Since $T_{e} \subseteq G_{J}, G=G_{J}$. By Theorem 2.1, J is idempotent generated. This completes the proof.

Let $J \in \mathscr{U}(M)$. Then by Theorem 2.1, the \mathscr{J}-class $J \cap \overline{G_{J}^{c}}=J \cap\langle E(M)\rangle$ of $\overline{G_{J}^{c}}$ is idempotent generated. By Theorem 3.1, $\left(G_{J}^{c}, G_{J}^{c}\right)$ is the unique closed connected normal subgroup of (G, G) with Weyl group $W_{S_{j}}$. We have, by Corollary 3.3,

Corollary 3.4. Let $J \in \mathscr{U}(M), e=e_{J}$. Then $J \cap\langle E(M)\rangle=\left(G_{J}^{c}, G_{J}^{c}\right) e\left(G_{J}^{c}, G_{J}^{c}\right)$.

Corollary 3.5. Let $J \in \mathscr{U}(M)$. If J is idempotent generated then the dimension of the center of G is at most equal to the corank of J.

Proof. Let $e=e_{j}$. Then $r k J=\operatorname{dim} e T$ and $\operatorname{dim} T_{e}$ is the corank of J. By Corollary $3.3, G=(G, G) T_{e}$. Since $G=(G, G) Z$, we see that $\operatorname{dim} Z \leq \operatorname{dim} T_{e}$.

Following [11], we will say that a nilpotent element a is standard if $a^{m} \neq 0$, where m is the rank of a. We have shown in [11] that the number of conjugacy classes of regular nilpotent elements is finite. In the monoid of all $n \times n$ matrices, a standard nilpotent element is one with almost one non-zero Jordan block.

Corollary 3.6. Let $J \in \mathscr{U}(M)$. If J has a standard nilpotent element, then it is idempotent generated.

Proof. Let $e=e_{j}$. By [11], there exists $x \in W$ such that $e x$ is a standard nilpotent element. Now $T_{e}^{c} \subseteq G_{J}$ and by Theorem 2.1, $E(J) \subseteq \overline{G_{J}^{c}}$. We also have the following maximal chain of $E\left(\overline{T_{e}^{c}}\right)$ contained in $\overline{G_{J}^{c}}$:

$$
e>e \cdot x e x^{-1}>e x e x^{-1} x^{2} e x^{-2}>\cdots
$$

So $\overline{G_{J}^{c}}$ contains a maximal chain of $E(\bar{T})$. Hence $T \subseteq G_{J}$. Since $G_{J} \triangleleft G, G=G_{J}$. Thus by Theorem 2.1, J is idempotent generated.

We are now able to solve [8, Problem 2.10].

THEOREM 3.7. $M \backslash G$ is idempotent generated if and only if
(i) For any maximal \mathscr{J}-class $J \neq G$, no component of S is contained in $\lambda(J)$; and
(ii) M is semisimple.

Proof. First suppose that $M \backslash G$ is idempotent generated. Then (i) follows by Corollary 3.3 and (ii) follows by Corollary 3.5. Assume conversely that (i) and (ii) are true. Let J be a maximal \mathscr{J}-class in $M \backslash G, e=e_{J}$. By Theorem 3.1, $(G, G) \subseteq G_{J}$. By (ii), $\operatorname{dim} G=1+\operatorname{dim}(G, G)$. Now $T_{e} \subseteq G_{J}$. Since (G, G) is closed in M and $e \in \overline{T_{e}^{c}}$, we see that $T_{e}^{c} \nsubseteq(G, G)$. So $G=(G, G) T_{e}$ and $G=G_{J}$. By Theorem 2.1 (iv), J is idempotent generated. So by Theorem 2.1 (v), $M \backslash G$ is idempotent generated.

Example 2. Let $G=\left\{\alpha A \oplus \beta A \mid A \in S L_{2}(k), \alpha, \beta \in k^{*}\right\}$ and let M denote the Zariski closure of G in $M_{4}(k)$. Then $S=\{(12)\}$. The non-trivial elements of the cross-section lattice Λ are given by

$$
\begin{array}{ll}
e_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \oplus\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \quad e=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \oplus\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad e_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \oplus\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \\
e_{1}^{\prime}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \oplus\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \quad e_{2}^{\prime}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \oplus\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) .
\end{array}
$$

Let the corresponding \mathscr{J}-classes be $J_{1}, J, J_{2}, J_{1}^{\prime}, J_{2}^{\prime}$. Then $S \subseteq \lambda^{*}\left(J_{1}\right), S \subseteq \lambda^{*}\left(J_{2}\right)$. So by Corollary 3.2, the images of J_{1}, J_{2} are not idempotent generated in M / μ. By Corollary $3.6, J_{1}^{\prime}, J_{2}^{\prime}$ are idempotent generated in M. Now $S \nsubseteq \lambda^{*}(J)$ and so by Corollary 3.2, the image of J is idempotent generated in M / μ. However, J is not idempotent generated in M by Corollary 3.5. In fact,

$$
J \cap\langle E(M)\rangle=\{A \oplus A \in M \mid r k A=1\}
$$

while $J=\left\{A \oplus B \in M \mid r k A=1, B=\alpha A\right.$ for some $\left.\alpha \in k^{*}\right\}$.
Finally, the author would like to thank the referee for many useful suggestions.

References

[1] C. Bauer, Triangular monoids (Ph.D. Thesis, North Carolina State University, Raleigh, N.C., 1999).
[2] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. 1, Math. Surveys 7 (Amer. Math. Soc., Providence, R.I., 1961).
[3] J. A. Erdos, 'On products of idempotent matrices', Glasgow Math. J. 8 (1967), 118-122.
[4] D. G. Fitz-Gerald, 'On inverses of products of idempotent in regular semigroups', J. Austral. Math. Soc. 13 (1972), 335-337.
[5] T. E. Hall, 'On regular semigroups', J. Algebra 24 (1973), 1-24.
[6] J. Howie, 'The semigroup generated by idempotents of a full transformation semigroup', J. London Math. Soc. 41 (1996), 707-716.
[7] M. S. Putcha, 'Algebraic monoids with a dense group of units', Semigroup Forum 28 (1984), 365-370.
[8] ——, 'Regular linear algebraic monoids’, Trans. Amer. Math. Soc. 290 (1985), 615-626.
[9] ——, Linear algebraic monoids, London Math. Soc. Lecture Note Series 133 (Cambridge Univ. Press, Cambridge, 1988).
[10] ——'Algebraic monoids whose nonunits are products of idempotents', Proc. Amer. Math. Soc. 103 (1998), 38-40.
[11] -, 'Conjugacy classes and nilpotent variety of a reductive monoid', Canadian J. Math. 50 (1998), 829-844.
[12] M. S. Putcha and L. E. Renner, 'The system of idempotents and the lattice of \mathscr{J}-classes of reductive algebraic monoids', J .Algebra 116 (1988), 385-399.
[13] L. E. Renner, 'Completely regular algebraic monoids', J. Pure Appl. Algebra 59 (1989), 291-298.

Department of Mathematics
Box 8205
North Carolina State University
Raleigh, NC 27695-8205
USA
e-mail: putcha@math.ncsu.edu

[^0]: (C) 2006 Australian Mathematical Society 1446 -7887/06 $\$$ A $2.00+0.00$

