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SUMMARY

One question of particular importance in phase III HIV vaccine trials is the choice of efficacy

measure (EM) to validly and precisely estimate the true vaccinal efficacy. Traditional EMs,

based on hazard rate ratio (HRR) or cumulative incidence ratio (CIR) are time-sensitive to

mode of vaccine action and population heterogeneities. Through Monte-Carlo simulation, the

performance of HRR and CIR based EMs are examined across different trial designs and

vaccine and population characteristics. A new EM based on log-spline hazard regression

(HARE) is proposed. Given that vaccinal properties (mode of action, time-lag, waning) are

unknown a priori, appropriate selection of EM is problematic, and HRR and CIR can be

unreliable to estimate the true maximum efficacy of candidate products. Non-random sexual

mixing can exacerbate biases in HRR and CIR. HARE can offer valid estimation across

different modes of vaccine action and in presence of frailty effects, contrary to its traditional

counterparts. Our simulation studies highlight the weaknesses of widely used EMs while

offering guidelines for trial design and suggesting new avenues for statistical analysis.

INTRODUCTION

The planning of clinical trials of candidate HIV-1

vaccines presents many methodological, ethical and

financial problems. Because of the need for vaccines

to slow the spread of HIV-1 in most countries of the

world, governmental and international agencies have

been preparing for phase III trials for candidate

products that are in the phase I (safety) or phase II

(immunogenicity) stages of evaluation [1]. The pur-

pose of a phase III trial is to test the efficacy of the

product under natural conditions of exposure to

infection. In the design of such trials, two key issues

are the choice of a statistical measure of efficacy (EM)

that will estimate in an unbiased manner the true

* Author for correspondence.

efficacy of the vaccine (VE), and the appropriate

sample size to achieve a desired degree of precision

in this measurement. The question of sample size can

only be addressed after making a decision on the

precise form of the EM.

Unfortunately, the method widely used in studies of

vaccine efficacy, namely, the randomized double-blind

treatment and placebo clinical trial, does not guaran-

tee validity and precision in efficacy measurement

because of many heterogeneities that may influence

exposure and infection in a differential manner in the

treated and untreated arms during the course of the

trial. For HIV-1, these include variability in the degree

and duration of immunity post vaccination (due to

genetic heterogeneity in both host and virus popu-

lations), heterogeneity in exposure to infection both
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over time (the stage of the epidemic) and between

patients (e.g. due to different sexual behaviours), and

viral evolution during the conduct of the trial in the

study population.

The validity of traditional EMs, based on hazard

rate ratios (HRR) or cumulative incidence ratios

(CIR), depends whether key assumptions on which

these statistics are based are indeed satisfied in any

given trial. These are independence of infection events,

proportionality of risks and equality in exposure

within the control and treated groups. Studies have

suggested that such key assumptions may present

difficulties in HIV-1 vaccine trials due to a lack of

independence in events [2–4], biases within the study

population arising from heterogeneity in sexual

behaviour [5] and the mode of action of candidate

vaccines [6–8]. These issues are considered in more

detail in the context of HIV-1 in the following section

before examining their effect on reliability of the

traditional EMs in double-blind randomized con-

trolled trial designs.

The measurement of efficacy

A key problem in the measurement of efficacy is that

of dependency between exposure and infection events

within the study population. In populations in which

HIV-1 is transmitting between infected and sus-

ceptible individuals, the rate at which new infections

arise is dependent on the numbers of infected and

susceptible people in previous time intervals. As such,

observations on the rate of infection (number of new

infections in a given time interval) of different

members of the study population will be inter-

dependent. This process often produces a pattern of

spread where the incidence rises rapidly, reaches a

peak and then falls to a stable level if the infection

becomes endemic [9].

Heterogeneity in sexual behaviour is a further

complication [10, 11]. How it acts on EMs in

randomized trials is not immediately clear, but it will

give rise to frailty selection which may undermine the

benefit of the initial randomization. More precisely,

individuals in high sexual activity classes will, on

average, acquire infection earlier in the trial than

individuals with low activity. Thus, as the trial

progresses, the uninfected controls will tend to belong

to the lower sexual activity classes, by comparison

with the uninfected vaccinees (given that the vaccine

provides some protection against infection), eventu-

ally inducing differential exposure between control

and treated groups.

The properties of the vaccine will perhaps have the

greatest effect on the choice of an EM. At one

extreme, a vaccine may act to reduce the susceptibility

of all vaccinees to infection upon exposure (of a

defined type) with an infectious person by a constant

fraction, δ. We refer to this mode of action as Model

1 (α¯ 1, 0% δ% 1). At the other extreme the vaccine

may confer complete protection to only a fixed

proportion of the vaccinees, α. We refer to this case as

Model 2 (0%α% 1, δ¯ 1). Previous studies have

suggested that the hazard based EMs (e.g. HRR) are

more appropriate for Model 1 while proportion based

measures (e.g. CIR) are better for Model 2 [6]. In

practice, the properties of a vaccine may lie between

these extremes and we refer to this situation as the

Mixed Model (0%α% 1, 0% δ% 1). Alternatively,

the reduction in susceptibility in those who respond to

immunization (i.e. it provides some protection) may

vary from one individual to another. We call this the

Distributional Model (0%α% 1, 0% δ
i
% 1, for indi-

vidual i). Further complications are introduced if the

action of the vaccine alters over time due either to a

waning in protection, or to a delay in the generation

of a protective response post immunization (time-lag).

In absence of prior knowledge on the HIV-1 vaccine

and certain population characteristics, all these factors

considered together highlight the need for a robust

statistical EM that is reliable for a diverse array of

circumstances.

Statistical and mathematical studies of vaccine

efficacy

In an early study of vaccine efficacy measurement,

Smith and colleagues [6] noted the time-dependency

both of incidence based EMs under the assumption of

Model 2, and simple proportions under the assump-

tion of Model 1. This problem was also highlighted by

Greenland and colleagues [7] who demonstrated time-

dependence in both measures under a Mixed Model.

More recently, an increasing number of researchers

have used mathematical models of infectious agent

transmission to consider the adequacy of trial designs

and EMs [2, 8, 12–23]. For example, studies by

Svenssen [17] demonstrated that in a stable closed

population with heterogeneity in susceptibility to

infection (either due to behaviour or genetic back-

ground) their Model 1 estimator (a logarithmic
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transformation of CIR or attack rates) will be

negatively biased. On the other hand, positive bias in

the estimator may occur when the mode of vaccine

action is heterogeneous within the trial population.

Haber and colleagues [12] showed in the context of

acute outbreaks in a closed homogeneous randomly

mixing population that validity of vaccinal efficacy

measurement using their Model 1 estimator depended

on the fraction vaccinated even under a Model 1 mode

of vaccine action. However, under a Model 2 vaccine

an EM based on simple proportions of attack rates

behaved adequately. They generalize the results to

consider heterogeneity in transmission rates and

demonstrate that the traditional EMs can have

considerable bias [13]. Extending results to consider

non-random mixing, analyses revealed further that

the EMs that presuppose random mixing can be very

biased [14]. On the basis of these results Haber and

colleagues [14] proposed an EM that takes account of

contact patterns between members of the population.

Although bias improved, use of the proposed new

estimator in HIV vaccine trials would depend on

knowledge of sexual contact patterns between sexual

activity classes which is rarely available in practice.

Halloran and colleagues [8] employed a stochastic

simulation model to examine the effect of hetero-

geneity in vaccinal protection. They showed that their

Model 1 and Model 2 estimators can provide

confidence bounds for the mean vaccinal efficacy

estimate. Halloran and colleagues [15] also examined

the performance of EMs based on transmission

probabilities, hazard ratios and attack rates under

Models 1 and 2 with the assumption that vaccinees

increase exposure by adopting high risk behaviours in

the belief that they are fully protected against

infection. They showed that EMs are very sensitive to

the assumption of increased exposure and may even

adopt negative values interpreted as an immuno-

suppressive effect of vaccination. To palliate for this

difficulty, they proposed a measure based on trans-

mission probabilities. Although less sensitive, this

parameter is difficult to measure in practice. Halloran

and colleagues [16] also use frailty mixing models to

conclude that heterogeneities in susceptibility or

exposure generally lead to underestimations in efficacy

estimates.

Other studies reveal the sensitivity of vaccine

efficacy measures to various forms of heterogeneity

but in the majority of cases the model framework is

not geared specifically for phase III trials for HIV

candidate vaccines [18–20]. Some discuss trials de-

signed to measure aspects of vaccination other than

direct effects on vaccinees, such as measurement of

reduction in infectiousness or population effectiveness

[21, 22]. Others yet do not embark directly on the

question of EMs, but on other questions in the

context of HIV dynamics and control. These include

deterministic studies of eradication criteria in defined

populations [24], the influence of the phase of the

epidemic on biases in the recruitment of patients for

trials [25], the significance of time varying effects on

estimation during the trial [23], as well as others

[26–28].

These studies highlight many problematic sources

of heterogeneity that can act within study populations

exposed to HIV infection. To date most of the

available results have been derived under several

assumptions such as closed or small populations,

observational studies, sexually homogeneous popu-

lations, random mixing, equal exposure to infection

or constant baseline hazard or incidence. To our

knowledge, few or no studies investigating EMs

consider specifics such as sex, cohort type or staggered

entry in a randomized double-blinded controlled

vaccine trials embedded in a much larger population

in which HIV is not at equilibrium. Few (or none)

account for biological specifics of HIV such as

transmission probabilities that vary within the three

phases of HIV infectivity necessary to better represent

HIV dynamics, incidence and prevalence. Further-

more, few (or none) investigate the importance of the

Distributional Model, time-lag or waning properties

of vaccination on EMs.

In an effort to assist in the planning of phase III

trials and in the interpretation of trial results, we

study how different sources of heterogeneity influence

the traditional EMs based on hazard rates (HRR) on

simple proportions (CIR) in large double-blind con-

trolled trials. The aim is to find which measure has the

greatest precision and the least bias, given the complex

nonlinear dynamics of HIV transmission. While we

may not be able to control for all the different

influences, it will be important (for clinicians, public

health specialists, etc.) to know their effects in order to

interpret well the results and to know when to be

confident or reserved with respect to conclusions.

Lastly, in an endeavour to improve estimation, EMs

based on hazard estimation (HARE) and hazard

regression (HEFT) [29, 30], an adaptive log-spline

technique for estimation of conditional hazard

functions apt to deal with time dependent data, is

introduced.
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Fig. 1. (a) Stochastic Mathematical Model representing birth, death, HIV infection and passage between the three different

stages of HIV infectivity in a sexually active population before commencement of a clinical trial. (b) Stochastic Mathematical

Model representing the general population, controls, vaccinees in whom the vaccine provides protection (i.e. takes) and

vaccinees who are not protected (i.e. does not take) in an HIV clinical trial. Variables are defined as follows: λ(t) is the force

of HIV infection general population, controls and vaccinees without developed immunity. λ*(t) is the force of infection in

vaccinees with developed immunity. X"
k,i

, Y"
k,i

, Z"
k,i

, Z!
k,i

and Z'
k,i

are HIV susceptibles respectively in the general population,

controls, vaccinees with developed immunity, vaccinees with undeveloped immunity, and vaccinees who do not take (vaccine

failures). Similarly Xj

k,i
, Yj

k,i
, Zj

k,i
, Zj+&

k,i
for j¯ 2, 3, 4 are HIV infecteds. X&

k,i
, Y&

k,i
, Z&

k,i
, Z"!

k,i
are individuals afflicted with full

blown AIDS. Description of other parameters and their values are given in Table 2. Forces of infection λ(t) and λ*(t) are

detailed in Appendix 1.

METHODS

The mathematical model

A compartmental stochastic model serves as the

template to mirror different features of phase III trial

design and HIV transmission. The model consists of

five disease states (h¯ 1,…, 5) representing the

different stages of progression from susceptibility, to

infection, to AIDS (Fig. 1a). Susceptibles are labelled

by the superscript h¯ 1, full blown AIDS patients by

h¯ 5, and three stages of progression from HIV

infection (with different degrees of infectiousness) as

h¯ 2, 3 and 4. The sexually active population is

stratified by sex (k¯ 1 for women, and k¯ 2 for men)

and by sexual activity defined by the rate of sexual

partner acquisition. Six activity classes are defined

(i¯ 1,…, 6) where at one extreme are individuals of

low sexual activity (i¯ 1, 2) and at the other are high

activity individuals such as female commercial sex

workers (CSW) and male clients of sexually trans-

mitted disease clinics (MCSC) (i¯ 3,…, 6). The

number of individuals in disease state h, activity class

i and of sex k, is given by Xh

k, i
(t). Transition between

states occurs by infection, progression to disease,
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Table 1. Events and rates in general population, controls, and vaccinees

(r) Description of event Rate (R
r,k,i

)

General population

1 Recruitment into sexually active population R
",k,i

¯Λ
k,i

(t)†

2 Natural death rate (NDR) of susceptibles R
#,k,i

¯µX"
k,i

(t)

3 NDR of HIV infecteds in first disease state R
$,k,i

¯µX#
k,i

(t)

4 NDR of HIV infecteds in second disease state R
%,k,i

¯µX$
k,i

(t)

5 NDR of HIV infecteds in third disease state R
&,k,i

¯µX%
k,i

(t)

6 Death rate of AIDS patients (from natural causes or AIDS) R
',k,i

¯ (µν)X&
k,i

(t)

7 HIV infection of susceptibles R
(,k,i

¯λ
k,i

(t)X"
k,i

(t)†

8 Progression to second state of HIV infection R
),k,i

¯γ
"
X#

k,i
(t)

9 Progression to third state of HIV infection R
*,k,i

¯γ
#
X$

k,i
(t)

10 Progression to AIDS R
"!,k,i

¯γ
$
X%

k,i
(t)

Control group

11 NDR of susceptibles R
"",k,i

¯µY"
k,i

(t)

12 NDR of HIV infecteds in first disease state R
"#,k,i

¯µY#
k,i

(t)

13 NDR of HIV infecteds in second disease state R
"$,k,i

¯µY$
k,i

(t)

14 NDR of HIV infecteds in third disease state R
"%,k,i

¯µY%
k,i

(t)

15 Death rate of AIDS patients (from natural causes or AIDS) R
"&,k,i

¯ (µν) Y&
k,i

(t)

16 HIV infection of susceptibles R
"',k,i

¯λ
k,i

(t) Y"
k,i

(t)†

17 Progression to second state of HIV infection R
"(,k,i

¯γ
#
Y#

k,i
(t)

18 Progression to third state of HIV infection R
"),k,i

¯γ
#
Y$

k,i
(t)

19 Progression to AIDS R
"*,k,i

¯γ
$
Y%

k,i
(t)

Vaccinees who take

20 NDR of vaccinees before time lag R
#!,k,i

¯µZ!
k,i

(t)

21 NDR of vaccinees after time lag R
#",k,i

¯µZ"
k,i

(t)

22 NDR of HIV infecteds in first disease state R
##,k,i

¯µZ#
k,i

(t)

23 NDR of HIV infecteds in second disease state R
#$,k,i

¯µZ$
k,i

(t)

24 NDR of HIV infecteds in third disease state R
#%,k,i

¯µZ%
k,i

(t)

25 death rate of AIDS patients (from natural causes or AIDS) R
#&,k,i

¯ (µν) Z&
k,i

(t)

26 Development of immunity (time-lag) R
#',k,i

¯ lZ!
k,i

(t)

27 HIV infection of susceptibles not having developed immunity R
#(,k,i

¯λ
k,i

(t) Z!
k,i

(t)†

28 HIV infection of susceptibles with developed immunity R
#),k,i

¯λ$
k,i

(t) Z"
k,i

(t)†

29 Progression to second state of HIV infection R
#*,k,i

¯γ
"
Z#

k,i
(t)

30 Progression to third state of HIV infection R
$!,k,i

¯γ
#
Z#

k,i
(t)

31 Progression to AIDS R
$",k,i

¯γ
$
Z%

k,i
(t)

32 Loss of vaccine protection (waning) R
$#,k,i

¯ωZ"
k,i

(t)

Vaccinees who do not take

33 NDR of susceptibles R
$$,k,i

¯µZ'
k,i

(t)

34 NDR of HIV infecteds in first disease state R
$%,k,i

¯µZ(
k,i

(t)

35 NDR of HIV infecteds in second disease state R
$&,k,i

¯µZ)
k,i

(t)

36 NDR of HIV infecteds in third disease state R
$',k,i

¯µZ*
k,i

(t)

37 Death rate of AIDS patients (from natural causes or AIDS) R
$(,k,i

¯ (µν) Z"!
k,i

(t)

38 HIV infection of susceptibles R
$),k,i

¯λ
k,i

(t) Z'
k,i

(t)†

39 Progression to second state of HIV infection R
$*,k,i

¯γ
"
Z(

k,i
(t)

40 Progression to third state of HIV infection R
%!,k,i

¯γ
#
Z)

k,i
(t)

41 Progression to AIDS R
%",k,i

¯γ
$
Z*

k,i
(t)

† See Appendix 1 for formal definitions of Λ
k,i

(t), λ
k,i

(t) and λ$
k,i

(t).

death or immigration into the population at rates

where the time between events is assumed to be

exponentially distributed. The rate at which any event

occurs, R(t), in a population of size N(t)¯Σ
h,k, i

Xh

k, i
(t), is defined by R(t)¯Σ

R,k, i
R

r,k, i
(t), where r

counts the different events. Given a stratification of

two sexes and six sexual activity classes, 120 mutually

exclusive events can occur (2 sexes¬6 classes¬10

possible events) in the absence of clinical trial, as

defined in Figure 1a and Table 1.

Upon commencement of the clinical trial in the

defined population, a sample of individuals from
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Table 2. Parameters used in simulations

Parameter Value(s)

Population parameters

Duration of sexual active lifetime 1}µ 35 years

Annual rate of partner change (m
k,i

in six activity classes at t¯ 0) under

heterogeneity

Activity classes 1–6

Females 0±8 1±5 100 200 300 400

Males 1±0 2±0 5 10 15 20

Under homogeneity

Females 50 50 50 50 50 50

Males 50 50 50 50 50 50

Proportion of each sex per activity class at t¯ 0 Activity classes 1–6

Females 0±66 0±33 0±0015 0±0015 0±003 0±003

Males 0±53 0±27 0±05 0±05 0±05 0±05

Sexual mixing preferences (φ
k,i,j

(t)) Proportional (W
k,i,i

¯ 1), medium

(W
k,i,i

¯ 5) and strong (W
k,i,i

¯ 10)

assortative. W
k,i,i

¯ 1ci1 j,k¯ 1, 2

Population size at time¯ 0 N¯ 1000000

Trial design parameters

HIV incidence at sampling (λ
c
) in person–years 6% (rising), 15% (rising and falling),

25% (rising and falling)

Sample size 4000

Cohort being sampled Commercial sex workers (females

classes 3–6), male clients of STD

clinics (males classes 3–6)

Duration of follow-up 2 and 5 years

Accrual (recruitment) period 0, 1, 2±5 and 5 years

Biological parameters

Death rate due to AIDS (ν) 1 year−"

Duration of infectivity phases 1 to 3 in years (1}γ
"
, 1}γ

#
, 1}γ

$
) 1}γ

"
¯ 0±5, 1}γ

#
¯ 6±5, 1}γ

$
¯ 1

Per partnership probability of HIV transmission (β
kij

) homogeneity heterogeneity

Stage I

Female class 1–2 to male class 1–2 0±05 0±16

Female class 1–2 to male class 3–6 0±05 0±087

Female class 3–6 to male class 1–6 0±05 0±05

Stage II

Female class 1–2 to male class 1–2 0±001 0±0032

Female class 1–2 to male class 3–6 0±001 0±0017

Female class 3–6 to male class 1–6 0±001 0±001

Stage III

Female class 1–2 to male class 1–2 0±0071 0±051

Female class 1–2 to male class 3–6 0±0071 0±026

Female class 3–6 to male class 1–6 0±0071 0±0071

Values are doubled for male to female transmission

Vaccine parameters

Waning of vaccine (half life in years) 2, 5, 10 and lifelong

Mean reduction in susceptibility δ (Models 1, 2, Mixed), µδ (Distributional

Model)

25%, 50%, 75%, 100%

Standard Deviation in reduction in susceptibility (σδ (Distributional Model

only))

0%, 8%, 16±7%, 25%

Take (α) 25%, 50%, 75%, 100%

Time-lag before development of immunity (1}l) 0, 0±5, 1 year

Mode of vaccine action Models 1, 2, Mixed, distributional
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Fig. 2. (a) HIV prevalence curves in absence of vaccination for CSW, MCSC, total male and total female population in five

repetitions of the mathematical model under parameter values characteristic of a sub-Saharan population (scenario 2). Black

squares indicate HIV prevalence in prostitutes in Nairobi from field studies. Similarly, the squares indicate prevalence in male

clients of STD clinics and the circles prevalence in women in general [43]. Introduction of HIV is assumed to occur in 1980.

(b) Corresponding HIV incidence curves for the same five repetitions. HIV incidence for female-total and male-total are

omitted for clarity.
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designated risk groups (i.e. sexual activity classes of

given sex) are randomized into controls and vaccinees.

As defined in Figure 1b, the number of controls of

disease state h, sex k in the activity class i is denoted

Yh

k, i
(t) (h¯ 1,…, 5). The number of vaccinees at time

t of disease state h, sex k and activity class i is defined

as Zh

k, i
(t) (h¯ 0,…, 5). Vaccinees in state h¯ 0 rep-

resent those in whom protective immunity has not as

yet developed post immunization. All vaccinees start

in state h¯ 0 and then pass to state h¯ 1 once

protective immunity has developed after a defined

average time delay. The number of vaccinees in whom

immunization does not produce any protection (i.e.

does not ‘ take’) is defined as Zh

k, i
(t) (h¯ 6,…, 10).

Parameter assignments for vaccine characteristics

including the mode of vaccine action, vaccine efficacy

and the average time-lag (1}l) are specified in each

simulation. Table 2 lists the parameter assignments.

The time-lag in the development of protection is

mirrored by the movement of individuals between two

states at the average rate of l. In the first state (h¯ 0)

individuals are fully susceptible to infection, while in

the second state (h¯ 1) susceptibility is reduced to the

maximum level induced by the vaccination. Note

those who have been vaccinated, but acquire infection

due to imperfect vaccine efficacy, are assumed to be as

equally infectious as unvaccinated infecteds. Waning

of vaccine protection over time post immunization, is

represented by individuals totally losing their pro-

tection at a rate of ω (i.e. they move directly to Z'
k, i

(t)).

The half life of immunization is taken to be the period

from the receipt of vaccination (maximal protection)

to when 50% of individuals lose protection. The

adaptation of the basic model to mirror a phase III

vaccine trial requires the specification of an additional

31 rates (r¯ 11,…, 41). These are detailed in Table 1.

Appendix 2 provides details on the Monte-Carlo

procedure.

Simulation procedures

The mathematical model is used to generate infection

and vaccination events within a simulated phase III

trial of a candidate HIV vaccine to investigate the

performance of different measures of vaccine efficacy.

A variety of simulations are performed with different

parameter assignments (see Table 2) for true vaccine

efficacy (25, 50, 75%), the mode of vaccine action

(Models 1 and 2, plus Mixed and Distributional

Models), the waning of vaccine induced immunity

(half-lives of 2, 5 and 10 years and lifelong protection)

and the time-lag (0, 6 and 12 months). Different

behavioural characteristics are examined including

heterogeneity in sexual activity (compared with

homogeneous activity) and various mixing patterns

(proportional, moderate and strong assortativeness).

The trial designs considered are cohort based (e.g.

CSW, MCSC) with patient follow-up of 2 or 5 years

and different periods of recruitment of patients to the

trial (all enter at the same time, or over 1, 2±5 and 5

years). Different HIV incidence levels at the start of

the trial (0±06, 0±15 and 0±25 person years) and under

conditions of rising and falling incidence over the

duration of the trial are examined. All simulation

trials are assumed to be longitudinal, randomized and

double-blind with two arms and that there is no loss

to follow-up. Unless otherwise stated, the study

population is 4000 in size with an initial incidence of

0±06 per annum in CSW. This type of design is

appropriate for the evaluation of the direct effects of

vaccination on the individual (efficacy). Total, indirect

(i.e. herd immunity) and reduced infectiousness effects

can be studied with different types of design [2, 21, 22].

Values for the epidemiological, behavioural and

demographic parameters (Table 2) are chosen to

represent CSW and MCSW, as well as the general

population in a sub-Saharan city such as Nairobi. In

the simulated trials, cohorts of CSW have been used

primarily because of their high HIV incidence;

however, the model has been adapted to represent

cohorts of MCSC as well. The chosen parameter

values give rise to the prevalence and incidence curves

plotted in Figure 2 (in absence of a clinical trial).

The validation scenario considered is that of

homogeneity in sexual activity within a group of

CSWs, with three levels of vaccine efficacy under the

mode of action defined by Models 1 and 2, plus the

Mixed model, with 2 or 5 years of follow-up. However,

the second scenario, incorporating heterogeneity in

sexual activity (i.e. six sexual activity classes), provides

the basic set of parameter assignments for further,

more elaborate, trials and assumptions. The different

simulations for various parameter assignments and

trial designs are grouped into the nine scenarios as

listed in Table 3.

Statistical analyses

For each parameter set 50 repetitions were performed.

Except for the chance effects introduced into the
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Table 3. Trial scenarios studied

Scenario Factors studied The details examined

1 Homogeneity Models 1, 2 and Mixed of vaccine action. Cohort of female CSW, no

accrual, waning, or time-lag. Initial incidence¯ 0±06 and rising. Annual

rate of partner change¯ 50 for entire population. Other parameter values

are as in scenario 2

2 Heterogeneity Parameters as indicated in Table 2 with proportional mixing, cohort of

prostitutes and Models 1, 2 and Mixed for vaccine action. No accrual,

waning or time-lag

3 Mixing Individuals are 5 times (medium assortative) or 10 times (strong

assortative) more likely to choose a partner within the same sexual

activity class. Other parameters are as in scenario 2

4 Vaccine waning Waning half-life of 2, 5 and 10 years and lifelong immunity (i.e. no

waning). Other parameters are as in scenario 2

5 Time-lag Time-lags of 6 months and 1 year before development of immune response.

Other parameters are as in scenario 2

6 Distributional mode of

vaccine action

Vaccinees have individually varying reduction in susceptibilities (δ) taken

from a Normal (µδ, σ#
δ) distribution with µδ ¯ 0±5 and σδ ¯ 8%, 16±7%

and 25%, truncated at µδ³0±5. Other parameters are as in scenario 2

7 Cohort-male clients of STD

clinics

Cohort formed from males of classes i¯ 3,…, 6. Other parameters are as

in scenario 2

8 Accrual (staggered entry) Individuals assumed to enter uniformly at one month intervals over a

period of 1, 2, 2±5 and 5 years. Sample size is 1000. Other parameter

values are as in scenario 2

9 Incidence Clinical trials begins at different incidence levels (0±15, 0±25) and at rising

and falling incidence. Sample size¯ 300. Other parameter values are as in

scenario 2

Monte-Carlo simulations (i.e. the sequences of ran-

dom numbers drawn to decide which type of event

occurs and when), the conditions of each repetition

were identical. The number of repetitions was

sufficient to assess precision and accuracy between

scenarios. Here, accuracy measures the degree of

systematic (non-random error) bias in the measure-

ment of vaccine efficacy, given knowledge of true

efficacy (i.e. that defined in the parameter assignments

of the model). Precision defines the degree of

dispersion (random error) around the expected value

of the measure. The term validity implies a high

degree of accuracy. For each simulation repetition the

CIR is calculated by the Cochran–Mantel χ# statistic

[31] and the HRR is determined by fitting a Cox

proportional hazard model [32, 33] using exact in-

fection times as endpoints at 2 and 5 years of follow-

up. Both CIR and HRR were also calculated

adjusting for sexual activity class according to

standard procedures [31, 32]. Vaccine efficacy

measurement based on adjusted or unadjusted HRR

and CIR are denoted, respectively, VEadj

HRR
, VEunadj

HRR
,

VEadj

CIR
and VEunadj

CIR
. Writing VE

HRR
or VE

CIR
refers to

both the adjusted or unadjusted measure.

A new EM based on HARE and HEFT log-spline

hazard estimation [29, 30] was applied to a limited

number of scenarios. Basically, this approach consists

of constructing the hazard curves for vaccinees and

controls based on follow-up data. The hazard curves

will be functions of time t. Estimation of VE then

consists of taking the hazard ratio at a certain t.

Brunet and colleagues [23] suggest choosing t¯ 0

which theoretically should provide valid estimation

across different modes of action and in presence of

frailty effects. We consider t¯ 6 months instead to

gain precision while striving for validity. The HARE

and HEFT methodology is described further in

Appendix 3.

Upon calculation of HRR, CIR, HARE or HEFT,

vaccine efficacy was then estimated by the relationship

VE
CIR

¯ 1®CIR, VE
HRR

¯ 1®HRR. In the case of

HARE (or HEFT)

VE
HARE

(t)¯ 1®
h
v
(t)

h
c
(t)

,

where t¯ 6 months and h
v
(t) and h

c
(t) are the hazard

functions of vaccinees and controls estimated by

HARE (or HEFT).

Assessment of the validity and variability of the

EMs was performed by the graphical examination of
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VE
CIR

, VE
HRR

, VE
HARE

and VE
HEFT

utilizing bar

plots of the relative bias

0RB¯
VE

OBS
®VE

TRUE

VE
TRUE

1
of the EMs calculated from the 50 repetitions. True

vaccine efficacy is defined as VE
TRUE

¯ δ\α under

Models 1, 2 and Mixed, and VE
TRUE

¯µδ\α under

the Distributional Model, where µδ is the mean

vaccinal efficacy. In the case of time-varying efficacy,

as under time-lag and waning, VE
TRUE

is defined as

the maximum protection conferred by the vaccine (i.e.

after development of full immunity and before any

waning).

Computational details

Numerical results were generated by a program

written in FORTRAN and simulations were per-

formed on a SUN Sparc4, 5 and Ultra workstations.

HRR and CIR were calculated using SAS Version

6.11, and HARE and HEFT were calculated using

S-PLUS Version 3.4. HARE and HEFT software

was obtained from StatLib [34].

RESULTS

Homogeneous sexual behaviour (Scenario 1)

The first scenario examined is that of a vaccine trial

with 2 and 5 years of follow-up in a population with

homogeneous sexual behaviour. Parameter values for

this and subsequent scenarios are documented in

Table 3, and summary statistics are listed in Table 4.

As expected from previous studies [6, 7, 12, 15], under

the Model 1 assumptions on the mode of vaccine

action, the VEunadj

HRR
is the most appropriate measure to

use in terms of its accuracy and precision, while the

VEunadj

CIR
systematically underestimates true efficacy

and its bias increases with longer periods of follow-up.

Conversely, under Model 2 the VEunadj

CIR
demonstrates

its validity, while VEunadj

HRR
overestimates particularly

with longer follow-up. Under the Mixed Model both

measures exhibit bias, the degree of which depending

on follow-up duration. The VEunadj

HRR
under the Mixed

Model is somewhat more precise at low and medium

vaccine efficacies, while the VEunadj

CIR
performs better at

high efficacy. At 5 years of follow-up both measures

will be considerably biased.

Heterogeneous sexual behaviour (Scenario 2)

Heterogeneity in sexual behaviour introduces several

new effects into the picture. Both VEunadj

HRR
and VEunadj

CIR

exhibit a negative bias under Model 1, which increases

as the follow-up period lengthens. However, this can

be rectified in the case of the VEunadj

HRR
measure by

adjusting for sexual activity classes. For example, at 5

years of follow-up the VEunadj

HRR
had ®0±3% and

®10±8% relative bias under the homogeneous and

heterogeneous assumptions, respectively for a vaccine

of 50% efficacy while the VEadj

HRR
demonstrates

respectively ®0±3% and 0±6% relative bias. The

picture is similar for all vaccine efficacies and follow-

up periods. Use of adjusted measures, however,

implies that the trial must incorporate measurement

of sexual activity via the administration of behavioural

questionnaires to trial subjects.

Heterogeneity in sexual behaviour also acts to

increase variability in the measures. For example,

comparing the homogeneous case with the hetero-

geneous one for a Model 1 vaccine of 50% efficacy

and with 2 years of follow-up, the standard deviations

of the VEunadj

HRR
and VEunadj

CIR
increase from 1±8 to 2±7%,

and from 1±8 to 2±6%, respectively. The pattern is

similar for other models of action, efficacies and

different periods of follow-up.

Under Model 2, the VE
CIR

gives the best per-

formance, although adjusting for sexual behaviour

seems to contribute nothing to the precision or

accuracy.

The measure that performs least well (i.e. VE
CIR

under Model 1 and VE
HRR

under Model 2) is typically

more biased under heterogeneity is behaviour than

homogeneity.

Under the Mixed Model the VEunadj

HRR
is subject to

two competing time-dependent biases. First, is the

same negative bias present in Model 1 under het-

erogeneous sexual activity and second, is the positive

bias under the Mixed Model. We observe (see Table 4)

that at low or moderate efficacy (25% or 50%), the

VEunadj

HRR
increasingly underestimates with longer

follow-up (the negative bias due to heterogeneity

predominates), whereas at high efficacy (75%) it

increasingly overestimates (the bias due to the Mixed

Model is more important). However, the VEadj

HRR
,

which is not subject to the negative bias under

heterogeneous sexual activity, incurs only a positive

bias due to the Mixed Model, and therefore over-

estimates at all vaccinal efficacies.

In general, under heterogeneity in sexual activity,

the VEadj

HRR
is better at low and medium vaccine

efficacy, and the VE
CIR

is better at high efficacy. With

respect to direction of bias, our results are consistent

with those of other studies [6, 7, 12, 15], particularly

with Svenssen [17], who used a somewhat simpler
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Table 4. Selected simulation results. Vaccinal efficacy estimates and standard deviations (in parentheses) for

adjusted and unadjusted VE
HRR

and VE
CIR

calculated at 2 and 5 years of follow-up in the nine scenarios

investigated

Scenario Selected results

(1) Homogeneity 25% efficacy 50% efficacy 75% efficacy

2 years 5 years 2 years 5 years 2 years 5 years

Model 1 HRR 25 (2±4) 25 (1±6) 50 (1±8) 50 (1±4) 75 (1±3) 75 (0±8)

CIR 20 (2±2) 10 (1±0) 43 (1±8) 27 (1±1) 70 (1±4) 55 (1±0)

Model 2 HRR 30 (3±2) 42 (2±0) 56 (2±3) 68 (1±2) 79 (1±3) 86 (0±7)

CIR 25 (2±7) 25 (1±4) 50 (2±3) 50 (1±3) 75 (1±4) 75 (1±0)

Mixed Model HRR 25 (2±5) 26 (1±8) 52 (2±5) 55 (1±6) 79 (1±3) 86 (0±7)

CIR 20 (2±1) 11 (1±1) 45 (2±4) 33 (1±3) 75 (1±4) 75 (1±0)

(2) Heterogeneity 25% efficacy 50% efficacy 75% efficacy

2 years 5 years 2 years 5 years 2 years 5 years

Model 1 HRR 23 (3±2) 20 (2±1) 50 (2±7) 44 (1±6) 74 (1±9) 70 (1±1)

HRR
adj

25 (3±3) 25 (2±1) 51 (2±7) 50 (1±4) 75 (1±7) 75 (1±0)

CIR 16 (2±6) 2 (1±0) 42 (2±6) 10 (1±0) 70 (2±3) 39 (2±1)

CIR
adj

16 (2±7) 2 (1±0) 42 (2±6) 10 (1±1) 70 (2±2) 39 (2±0)

Model 2 HRR 30 (4±0) 42 (1±9) 55 (3±9) 67 (1±7) 79 (2±3) 85 (1±0)

HRR
adj

31 (4±0) 45 (2±1) 56 (3±9) 69 (1±5) 79 (2±3) 86 (1±0)

CIR 25 (3±4) 25 (1±2) 50 (3±8) 50 (1±7) 76 (2±3) 75 (1±3)

CIR
adj

25 (3±3) 25 (1±2) 50 (3±8) 50 (1±6) 76 (2±4) 75 (1±3)

Mixed Model HRR 24 (3±3) 23 (2±3) 52 (3±9) 51 (1±7) 79 (2±3) 85 (1±0)

HRR
adj

25 (3±4) 27 (2±3) 53 (3±8) 56 (1±5) 79 (2±3) 86 (1±0)

CIR 18 (2±8) 3 (1±0) 45 (3±9) 20 (1±5) 76 (2±3) 75 (1±3)

CIR
adj

18 (2±7) 4 (1±0) 45 (3±8) 20 (1±3) 76 (2±4) 75 (1±3)

(3) Mixing 25% efficacy 50% efficacy 75% efficacy

medium assortative 2 years 5 years 2 years 5 years 2 years 5 years

Model 1 HRR 21 (3±2) 19 (2±6) 45 (2±6) 39 (1±9) 72 (1±4) 65 (1±1)

HRR
adj

25 (3±0) 25 (2±6) 50 (2±6) 50 (1±7) 75 (1±3) 75 (1±0)

CIR 11 (2±2) 2 (0±9) 31 (2±4) 8 (1±1) 63 (1±8) 27 (1±3)

CIR
adj

11 (1±9) 2 (0±8) 31 (2±2) 8 (1±1) 63 (1±9) 27 (1±3)

Model 2 HRR 33 (2±8) 43 (2±1) 58 (2±5) 68 (1±4) 80 (1±7) 86 (1±0)

HRR
adj

37 (2±6) 47 (1±8) 62 (2±5) 71 (1±2) 82 (1±6) 88 (0±9)

CIR 25 (2±4) 24 (1±5) 50 (2±4) 50 (1±3) 75 (1±8) 75 (1±3)

CIR
adj

25 (2±2) 25 (1±5) 50 (2±4) 50 (1±3) 75 (1±7) 75 (1±3)

Mixed Model HRR 22 (3±0) 20 (2±7) 50 (2±7) 46 (1±8) 80 (1±7) 86 (1±0)

HRR
adj

26 (3±0) 27 (2±3) 54 (2±2) 56 (1±4) 82 (1±6) 88 (0±9)

CIR 12 (2±1) 3 (0±9) 38 (2±9) 14 (1±3) 75 (1±8) 75 (1±3)

CIR
adj

13 (1±9) 3 (0±9) 38 (2±6) 14 (1±2) 75 (1±7) 75 (1±3)

(3) Mixing 25% efficacy 50% efficacy 75% efficacy

strong assortative 2 years 5 years 2 years 5 years 2 years 5 years

Model 1 HRR 19 (2±6) 17 (2±4) 43 (2±6) 37 (1±9) 70 (1±8) 64 (1±5)

HRR
adj

25 (2±2) 25 (2±1) 50 (2±5) 50 (1±4) 75 (1±5) 75 (1±0)

CIR 11 (2±2) 5 (1±3) 31 (2±4) 14 (1±8) 61 (2±3) 38 (1±5)

CIR
adj

11 (1±8) 5 (1±1) 31 (2±3) 14 (1±6) 61 (2±2) 38 (1±3)

Model 2 HRR 34 (2±8) 43 (1±8) 60 (2±3) 68 (1±3) 81 (1±6) 86 (0±9)

HRR
adj

40 (2±6) 47 (1±8) 65 (2±1) 72 (1±2) 84 (1±3) 89 (0±7)

CIR 25 (2±2) 25 (1±4) 50 (2±1) 50 (1±4) 75 (1±8) 75 (1±2)

CIR
adj

25 (1±9) 25 (1±3) 50 (2±0) 50 (1±4) 75 (1±6) 75 (1±2)

[continued overleaf
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Table 4 (cont.)

Scenario Selected results

Mixed Model HRR 21 (2±8) 19 (2±4) 48 (2±9) 44 (2±0) 81 (1±6) 86 (0±9)

HRR
adj

26 (2±5) 26 (2±3) 55 (2±4) 56 (1±6) 84 (1±3) 89 (0±7)

CIR 13 (2±0) 6 (1±2) 36 (2±8) 20 (1±5) 75 (1±8) 75 (1±2)

CIR
adj

13 (1±7) 5 (1±1) 36 (2±5) 20 (1±4) 75 (1±6) 75 (1±2)

(4) Waning 50% efficacy

10 year half life

50% efficacy

5 year half life

50% efficacy

2 year half life

2 years 5 years 2 years 5 years 2 years 5 years

Model 1 HRR 44 (3±3) 39 (1±9) 41 (3±3) 35 (1±8) 37 (3±5) 35 (2±0)

HRR
adj

46 (3±2) 45 (1±8) 42 (3±2) 41 (1±8) 38 (3±4) 39 (1±8)

CIR 36 (3±1) 8 (1±0) 33 (3±2) 7 (1±2) 26 (2±8) 4 (1±1)

CIR
adj

36 (3±0) 8 (1±1) 33 (3±1) 7 (1±1) 26 (2±6) 4 (1±0)

Model 2 HRR 52 (3±2) 59 (1±7) 48 (3±6) 52 (1±7) 36 (3±9) 32 (3±6)

HRR
adj

52 (3±2) 61 (1±4) 49 (3±6) 55 (1±7) 37 (3±8) 36 (3±6)

CIR 46 (3±0) 39 (1±2) 42 (3±6) 30 (1±4) 31 (3±0) 15 (1±0)

CIR
adj

46 (3±0) 39 (1±2) 42 (3±5) 30 (1±3) 31 (2±8) 15 (0±9)

Mixed Model HRR 47 (3±8) 46 (2±2) 43 (3±6) 40 (2±0) 34 (2±9) 28 (2±1)

HRR
adj

48 (3±7) 51 (1±8) 44 (3±3) 45 (1±6) 35 (2±9) 33 (2±0)

CIR 40 (3±7) 16 (1±8) 36 (3±4) 13 (1±4) 27 (2±7) 7 (1±1)

CIR
adj

40 (3±5) 16 (1±6) 36 (3±1) 13 (1±4) 27 (2±6) 7 (1±1)

(5) Time-lag 50% efficacy

No time-lag

50% efficacy

6 months time-lag

50% efficacy

1 year time-lag

2 years 5 years 2 years 5 years 2 years 5 years

Model 1 HRR 50 (2±7) 44 (1±6) 43 (2±9) 43 (1±9) 34 (3±3) 38 (1±8)

HRR
adj

51 (2±7) 50 (1±4) 44 (2±9) 47 (1±6) 35 (3±2) 42 (1±7)

CIR 42 (2±6) 10 (1±0) 37 (2±6) 20 (1±7) 29 (2±7) 18 (1±3)

CIR
adj

42 (2±6) 10 (1±1) 37 (2±5) 20 (1±6) 29 (2±6) 18 (1±3)

Model 2 HRR 55 (3±9) 67 (1±7) 48 (3±1) 63 (1±5) 39 (3±1) 57 (1±5)

HRR
adj

56 (3±9) 69 (1±5) 49 (3±0) 65 (1±4) 40 (2±7) 59 (1±2)

CIR 50 (3±8) 50 (1±7) 43 (2±8) 46 (1±2) 34 (2±7) 40 (1±3)

CIR
adj

50 (3±8) 50 (1±6) 43 (2±8) 46 (1±3) 34 (2±3) 40 (1±2)

Mixed Model HRR 52 (3±9) 51 (1±7) 43 (2±7) 48 (1±9) 35 (3±0) 43 (1±8)

HRR
adj

53 (3±8) 56 (1±5) 44 (2±6) 52 (1±6) 36 (3±0) 47 (1±6)

CIR 45 (3±9) 20 (1±5) 38 (2±6) 27 (1±6) 30 (2±8) 23 (1±5)

CIR
adj

45 (3±8) 20 (1±3) 38 (2±5) 26 (1±5) 30 (2±7) 23 (1±5)

(6) Distribution

Take¯ 100%

µδ ¯ 50%

σδ ¯ 8%

µδ ¯ 50%

σδ ¯ 16±7%

µδ ¯ 50%

σδ ¯ 25%

2 years 5 years 2 years 5 years 2 years 5 years

HRR 50 (3±4) 47 (1±9) 50 (3±2) 48 (1±9) 51 (3±5) 51 (2±0)

HRR
adj

51 (3±5) 51 (1±9) 51 (3±1) 52 (1±7) 52 (3±4) 54 (1±8)

CIR 44 (3±4) 23 (1±6) 44 (3±3) 25 (1±8) 45 (3±5) 28 (1±6)

CIR
adj

44 (3±4) 23 (1±6) 44 (3±3) 25 (1±8) 45 (3±4) 28 (1±5)

Distribution

Take¯ 75%

µδ ¯ 67%

σδ ¯ 8%

µδ ¯ 67%

σδ ¯ 16±7%

µδ ¯ 67%

σδ ¯ 25%

2 years 5 years 2 years 5 years 2 years 5 years

HRR 51 (3±1) 52 (1±6) 52 (3±5) 54 (1±6) 52 (2±9) 55 (1±6)

HRR
adj

52 (3±1) 56 (1±5) 53 (3±6) 58 (1±7) 53 (3±0) 58 (1±5)

CIR 46 (3±0) 30 (1±5) 46 (3±4) 32 (1±8) 46 (2±9) 33 (1±7)

CIR
adj

46 (3±0) 30 (1±5) 46 (3±4) 32 (1±7) 46 (3±0) 33 (1±7)
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Table 4 (cont.)

Scenario Selected results

(7) Male clients 25% efficacy 50% efficacy 75% efficacy

2 years 5 years 2 years 5 years 2 years 5 years

Model 1 HRR 24 (5±8) 24 (4±8) 49 (4±5) 49 (3±3) 75 (3±0) 75 (2±3)

HRR
adj

25 (5±8) 24 (4±8) 50 (4±5) 49 (3±2) 75 (2±9) 75 (2±2)

CIR 23 (5±6) 22 (4±5) 48 (4±5) 46 (3±3) 73 (3±1) 72 (2±4)

CIR
adj

23 (5±6) 22 (4±5) 48 (4±4) 46 (3±1) 73 (3±0) 72 (2±4)

Model 2 HRR 26 (6±0) 27 (4±8) 51 (4±7) 52 (4±1) 77 (3±3) 78 (2±8)

HRR
adj

27 (5±9) 27 (4±5) 52 (4±5) 54 (4±0) 77 (3±3) 78 (2±7)

CIR 25 (5±8) 25 (4±5) 49 (4±7) 50 (4±1) 76 (3±4) 76 (2±9)

CIR
adj

25 (5±7) 25 (4±2) 50 (4±5) 50 (4±0) 76 (3±4) 76 (2±9)

Model Mixed HRR 27 (5±0) 26 (4±1) 50 (4±6) 50 (3±9) 77 (3±3) 78 (2±8)

HRR
adj

27 (4±7) 26 (3±7) 50 (4±6) 51 (3±9) 77 (3±3) 78 (2±7)

CIR 25 (4±8) 24 (3±9) 48 (4±6) 48 (4±0) 76 (3±4) 76 (2±9)

CIR
adj

25 (4±6) 24 (3±6) 48 (4±6) 48 (3±9) 76 (3±4) 76 (2±9)

(8) Accrual 50% efficacy

1 year recruitment

50% efficacy

2±5 years recruitment

50% efficacy

5 years recruitment

2 years 5 years 2 years 5 years 2 years 5 years

Model 1 HRR 48 (4±2) 44 (3±6) 47 (4±4) 45 (3±6) 47 (3±9) 44 (3±6)

HRR
adj

50 (4±2) 50 (3±5) 49 (4±3) 49 (3±4) 50 (4±3) 49 (3±4)

CIR 37 (4±1) 19 (2±6) 34 (3±8) 20 (2±7) 36 (3±5) 24 (3±1)

CIR
adj

38 (4±0) 19 (2±5) 33 (3±5) 20 (2±5) 36 (3±5) 24 (2±8)

Model 2 HRR 59 (3±8) 69 (2±5) 62 (3±3) 69 (2±5) 59 (3±8) 65 (3±0)

HRR
adj

61 (3±7) 71 (2±4) 64 (3±1) 71 (2±3) 62 (3±7) 68 (2±9)

CIR 50 (3±7) 50 (2±6) 50 (3±4) 50 (2±6) 50 (3±7) 50 (3±0)

CIR
adj

50 (3±6) 50 (2±7) 50 (3±3) 50 (2±6) 50 (3±7) 50 (3±0)

Model Mixed HRR 51 (4±4) 51 (3±3) 51 (3±6) 51 (2±9) 50 (3±8) 49 (3±2)

HRR
adj

52 (4±3) 55 (2±8) 53 (3±5) 55 (2±7) 53 (3±7) 55 (3±0)

CIR 40 (4±2) 25 (2±5) 38 (3±5) 26 (2±6) 39 (3±5) 30 (2±7)

CIR
adj

40 (3±9) 25 (2±2) 38 (3±5) 26 (2±6) 40 (3±3) 30 (2±6)

(9) Incidence 50% efficacy

0±15 person-years

and rising

50% efficacy

0±25 person-years

and rising

50% efficacy

0±25 person-years

and falling

2 years 5 years 2 years 5 years 2 years 5 years

Model 1 HRR 49 50 47 45 47 45

HRR
adj

49 51 50 50 48 49

CIR 46 44 33 19 32 19

CIR
adj

46 43 33 19 32 19

Model 2 HRR 51 54 62 69 62 69

HRR
adj

52 56 64 71 64 71

CIR 48 49 49 49 50 50

CIR
adj

49 49 50 49 50 50

Model Mixed HRR 46 48 52 52 51 50

HRR
adj

46 49 54 56 55 57

CIR 43 41 38 26 37 24

CIR
adj

43 41 37 25 38 25

model framework, and Halloran and colleagues [16],

who used frailty mixing models.

Patterns of mixing between sexual activity classes

(Scenario 3)

Non-random mixing between different sexual activity

classes adds a further source of heterogeneity. We

examine the effects on EMs under the assumption of

proportional mixing (all individuals have equal prefer-

ence where couple formation is only restricted by

supply and demand [11]), of moderate assortative

mixing (individuals have a five times greater prefer-
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ence for forming sexual partnerships with people in

their own sexual activity class) and strong assortative

mixing (preference is ten times). Mixing details are

given in Appendix 1.

As summarized in Table 4, under Model 1 all EMs

with the exception of VEadj

HRR
incur a further negative

bias compared to scenario 2 in presence of assortative

mixing. The negative bias associated with the VEunadj

HRR

increases with the degree of assortativity, while that of

VEunadj

CIR
increases dramatically when passing from

proportional to medium assortative but not signi-

ficantly from medium to strong assortative mixing.

Interestingly, the validity of VEunadj

CIR
improves slightly

at 5 years follow-up under strong assortative mixing

when compared to 5 years under medium assortative

mixing. This is because under strong assortativity the

sampled sexual activity classes tend towards being a

homogeneous group as they mix less and less with

other classes.

As expected, under Model 2 the VE
CIR

is preferred,

while an increasing positive bias is incurred for both

VEadj

HRR
and VEunadj

HRR
with the degree of assortativity. In

this case, the VEadj

HRR
is considerably less accurate than

VEunadj

HRR
. Adjusting the VE

CIR
once again improves

nothing with respect to bias.

Under the Mixed Model, it is difficult to claim the

best measure; however, the VEadj

HRR
is probably

preferable for weak, moderate and strong vaccines

and throughout mixing types, even though it will

likely overestimate the true vaccinal efficacy. The

performance of other EMs is more variable on mixing

type and vaccinal efficacy under the Mixed Model.

In general, non-random mixing exacerbates any

biases, whether the direction is positive or negative,

that may already be present in other scenarios. In

some instances under assortative mixing, precision

may increase compared with proportional mixing.

This is because the epidemic is more concentrated

within the highest sexual activity classes of the

population and of the cohort of CSW sampled under

assortative mixing, producing a greater proportion of

realized endpoints during the clinical trial. These

results are in broad agreement with Haber and

colleagues [13, 14] who concur that biases for their

estimators are more pronounced under non-random

than random mixing.

Waning of vaccinal protection over time (Scenario 4)

The effect of waning is investigated in order to

determine whether valid estimation of the maximum

efficacy is possible with traditional measures. Ideally,

we would be able to disentangle the maximum efficacy

and the rate of waning in a controlled vaccine trial

since both of these vaccine characteristics are mean-

ingful at the public health level. Limiting ourselves to

the use of VE
HRR

and VE
CIR

without assuming prior

knowledge of the waning process, we examine whether

the EMs reflect the maximum efficacy.

We find under all three models of vaccine action, a

waning in efficacy over time post vaccination induces

a negative bias in all of the EMs compared to the true

maximum efficacy, even for VE
HRR

under Model 1

and VE
CIR

under Model 2. This effect becomes more

severe as the half-life of protection decreases (Fig. 3).

For example, for a vaccine with 50% maximum

efficacy and a half-life of 10 years, an extra 11%

increase in bias (relative to the maximum efficacy) in

the VEadj

HRR
at only 2 years of follow-up is observed

under Model 1, by comparison with lifelong pro-

tection. Under the same conditions an extra 9%

increase in bias occurs in the VEunadj

CIR
under Model 2.

These results could produce a false conclusion that a

moderate to good vaccine, but with a short duration

of protection, has low efficacy. For instance, a vaccine

of 50% maximal efficacy under Model 1 and with a

protection half-life of 2 years, would be recorded as

having a 38% and 39% efficacy by the VEadj

HRR
at,

respectively, 2 and 5 years of follow-up. Under Model

2 the same vaccine would be estimated to have an

efficacy of 31% and 15% at respectively 2 and 5 years

of follow-up. That negative bias is induced upon the

EMs (which assume that vaccinal protection is

instantaneous and constant) by waning is to be

expected since some vaccinees who lose protection

during the study will be infected more quickly than if

protection were lifelong, thereby causing a consider-

able underestimation of efficacy. With respect to the

use of the wrong measure under a given mode of

action, the VE
CIR

, which is already negatively biased

in absence of waning under Model 1, develops a

further negative bias as half-life of waning shortens.

Also, VE
HRR

which begins positively biased in absence

of waning under Model 2 reverses the direction of its

bias with decreasing half-life. Furthermore, note that

the positive bias of the VE
HRR

under Model 2 that is

offset by the roughly equivalent negative bias induced

by a 5 year half-life of waning can deceptively produce

a seemingly accurate estimation. The observed trends

are qualitatively the same at different vaccinal

efficacies (25%, 75%).

The degree of bias observed in some of these results
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Fig. 3. Performance of VEadj

HRR
and VEunadj

CIR
in a proportionally mixing sexually heterogeneous population under the influence

of waning of vaccine protection at 50% maximum efficacy under Models 1, 2 and Mixed. Waning with half-life of 2, 5 and

10 years is compared to lifelong immunity. Follow-up duration is 2 years. Other parameters are as explained in Table 3.

Barplots indicate the 5th, 25th, 50th, 75th and 95th percentile of the efficacy measures calculated over the 50 repetitions.

Performance of VEunadj

HRR
and VEadj

CIR
is qualitatively similar (not shown).

can be explained mathematically. Recalling that our

model of waning is reflected by total individual loss in

protection from the maximum level to zero (rather

than gradual decline), the proportion protected is a

function of time (α¯α(t)), while the reduction in

susceptibility drops from its maximum value to zero

(δ¯maximum value before waning, δ¯ 0 after

waning). To explain the bias, consider a vaccine with

a duration of protection assumed to be exponentially

distributed with a mean of 2 years. Then we calculate

over the course of an n-year long trial that the average

proportion who are protected can be given by

&n

!

exp(®"

#
t) dt}n.

For a 2 year follow-up, this integral gives 63±2%,

which when multiplied by the maximum efficacy of

50% gives 31±6%. By comparison, the VEunadj

CIR
and

VEadj

HRR
estimate 31% and 37% efficacy under a

Model 2 vaccine, and 27% and 35% under the Mixed

model. Thus, while both measures will underestimate

the maximum efficacy under this type of waning, the

VEunadj

CIR
may be expected to accurately reflect the

mean efficacy of only a Model 2 vaccine.

Time-lags in protection post immunization

(Scenario 5)

As under waning, we examine the ability of the

traditional EMs to estimate to maximum vaccinal

efficacy under time-lags in the generation of immunity.

The effect of this temporal change in efficacy over time

is illustrated in Figure 4 for a vaccine of 50% efficacy.

Under Models 1 and 2, plus the Mixed Model, the

underestimation of vaccine efficacy by the VE
HRR

and

VE
CIR

measures increases as the duration of the delay

rises. This is to be expected, since the window of

susceptibility post immunization will give rise to some

cases of infection in vaccinated individuals. Some

suggest that this time-lag could last until the third

booster, after which maximum protection might be

achieved.
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Fig. 4. Performance VEadj

HRR
and VEunadj

CIR
under the influence of 6 and 12 month time-lag of a vaccine of 50% maximum

efficacy under Models 1, 2 and Mixed. Follow-up period is 2 years. Other parameters are as explained in Table 3. Barplots

indicate the 5th, 25th, 50th, 75th and 95th percentile of the efficacy measures calculated over the 50 repetitions. Performance

of VEunadj

HRR
and VEadj

CIR
is qualitatively similar (not shown).

For Model 1 and the Mixed Model the negative

bias in the VE
HRR

may be reduced by long periods of

follow-up. However, the bias is exacerbated

(expectedly so) by long follow-up with the VE
CIR

.

Under the Mixed Model the VE
HRR

performs better

than the VE
CIR

at moderate efficacy. More generally,

neither the VE
HRR

nor the VE
CIR

can offer reliable and

unbiased estimation for any mode of vaccine action

without prior information on time-lag. For instance,

under a 6 month time-lag and 50% efficacy under the

Mixed Model, the VEadj

HRR
would recognize 44%

efficacy at 2 years of follow-up, while the VEunadj

CIR

would detect 38%.

Heterogeneity in the response to vaccination

(Scenario 6)

Heterogeneity in response to vaccination was investi-

gated assuming all vaccinees (100% take) benefited

from some individual level of protection selected from

a Normal distribution with mean of µδ ¯ 50% and a

standard deviation (..) of σδ ¯ 8%, 16±7% or 25%.

An .. of 8% corresponds to a normal distribution

with µδ³3σδ contained within the interval [0±25, 0±75].

Similarly, an .. of 16±7% corresponds to µσ³3σδ

contained within [0, 1] and an .. of 25% to µδ³2σδ

contained within [0, 1]. Also, considered was a normal

distribution with mean µδ ¯ 66% and 75% take. As

illustrated in Figure 5, results at 5 years of follow-up

show the relative bias of the VEadj

HRR
and VEunadj

HRR
to

increase gradually under the Distributional Model at

75% and 100% take. On the other hand, the negative

bias of VE
CIR

under Model 1 is reduced substantially

in passing from Model 1 (..¯ 0) to the Distri-

butional Model, and continues to do so with in-

creasing variance σ#
δ. The VE

CIR
still underestimates

the true vaccinal efficacy, however. The VEadj

HRR
is the

best estimator under this mode of vaccine action with

relative bias increasing gradually with increasing

variance in vaccinal efficacy. Our results concur with

those of Svenssen [17] who also report positive bias

under heterogeneity in vaccinal response.

For a sufficiently long follow-up, it is natural that

bias in estimates rise with increasing σ#
δ since
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Fig. 5. Performance of adjusted and unadjusted VE
HRR

and VE
CIR

in a sexually heterogeneous population under the

Distributional Model for two vaccines each with 50% true efficacy and three different variances (σδ ¯ 8%, 16±7% and 25%).

Take and mean efficacy of first vaccine are set at α¯ 1±0, µδ ¯ 50% and that of the second vaccine are set at α¯ 0±75,

µδ ¯ 67%. Follow-up period is 5 years. Other parameter values are as explained in Table 3. Barplots indicate the 5th, 25th,

50th, 75th and 95th percentile of the efficacy measures calculated over the 50 repetitions.

individuals at the low end of the distribution will

approach a zero reduction in susceptibility almost as

total vaccine failures as in Model 2 non-takers. Thus

the Distributional Model can take on properties of

Model 2. Furthermore, with larger variance in

vaccinal efficacy, greater proportions of vaccinees will

be infected earlier on average leaving the remaining

vaccinees with higher average levels of protection

than under small variances. This is reflected in the

VEadj

HRR
and VEunadj

CIR
which are seen to increase with

increasing variance in vaccinal efficacy when the

follow-up period is sufficiently long.

Understandably, the precision of the measures may

decrease with increasing variance of the distribution

in reduction in susceptibility. For example, at 2 years

of follow-up the .. increases from 2±7% to 3±5% and

2±6% to 3±4% of VEadj

HRR
and VEunadj

CIR
respectively in

going from a distribution with σδ ¯ 0% to one with

σδ ¯ 8%. Thus, potentially the Distributional Model

may have a non-negligible effect on variance of EMs

which may play an important role during sample size

considerations, at least for short follow-up periods.

Study population (Scenario 7)

A comparison was made between two types of study

population, namely, MCSC and female CSW under

identical conditions of sample size, vaccine efficacy,

trial design and baseline incidence. In these settings

the VE
HRR

and VE
CIR

are less prone to biases caused

by the mode of vaccine action, mixing and efficacy

levels in cohorts of MCSC. However, all measures

show a high degree of variability in MCSC than in

CSW, particularly with low efficacy vaccines. This is

due to the faster rate of spread of HIV in the latter

group (i.e. more events occur). Since the precision of

the VE
CIR

is time dependent under Model 1, the

measure develops bias more quickly in a CSW cohort

than in the MCSC cohort due to the more rapid

accumulation of events in the former by comparison
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with the latter. Similarly, the VE
HRR

under Model 2

develops a positive bias more quickly in a CSW cohort

than the equivalent MCSC cohort. The rise in

variability in the MCSC setting is due to the smaller

number of infection endpoints. There thus arises a

conflict between improving the statistical precision or

validity. Validity is enhanced within the MCSC

setting, while precision is greater within the CSW

setting.

Accrual of patients during the conduct of the trial

(Scenario 8)

The question of interest in this scenario is whether the

strategy of recruiting subjects during the conduct of

the trial can act to counter frailty selection. Re-

cruitment permits replacement of the most vulnerable

trial participants. However, accrual periods of 1, 2±5
and 5 years, in combination with 2 and 5 years of

follow-up of every patient recruited, did not signi-

ficantly improve the performance of the EMs in either

cohorts of CSWs or MCSCs. Although the biases

were reduced for long follow-up periods in the VE
CIR

under Model 1 and the Mixed Model, and in the

VE
HRR

under Model 2, this was largely due to the fact

that the epidemic moved to a more stable endemic

level when both follow-up and recruitment period are

lengthy, rather than due to any special merit of patient

accrual.

Changing HIV incidence over the conduct of the trial

(Scenario 9)

In this scenario we examine varying levels of HIV

incidence at the start of the trial and changes therein

over its conduct. Because at different phases in the

epidemic curve it was not possible to recruit 4000

uninfected prostitutes in our population, sample size

was fixed at 300. Simulation results for incidence of

15% (rising), 25% (rising) and 25% (falling) are

given in Table 4. The .. of the measures are also

excluded because of the small sample size. The VE
HRR

in Model 1 and VE
CIR

in Model 2 do not incur

appreciably any new biases due to the different

incidence levels. However, the bias present for the

VE
CIR

in Model 1 and VE
HRR

in Model 2 is larger with

higher initial incidence in the rising phase. This bias,

however, declines with decreasing initial incidence in

the dropping phase. In fact, at incidence of 15% and

falling, the wrong measures (VE
CIR

under Model 1

and VE
HRR

under Model 2) perform almost as well as

the right measure in terms of bias (not shown in Table

4). Similarly, under the Mixed Model the EMs are

least biased at incidence of 15% and falling compared

to the other three incidence levels.

At incidence of 15% and falling, the change in HIV

incidence is very slow and almost constant, in contrast

with the other three phases of incidence. That the

EMs are less biased at 15% and falling follows the

same reasons given for the reduced bias in EMs under

cohorts of MCSC (scenario 7). In general, these

analyses reveal that biases are generated by rapidly

rising incidence and that there may be practical

problems in recruiting sufficient uninfecteds at certain

times in the epidemic’s development.

Hazard Regression (HARE) and Hazard Estimation

(HEFT)

Given the numerous potential biases in traditional

EMs we explore the use of log-spline models to obtain

valid estimation of vaccinal efficacy across different

modes of vaccine action and possible frailty effects.

This approach is in part motivated by Brunet and

colleagues [23]. To assess the performance of HARE

and HEFT, VE
HARE

and VE
HEFT

were compared with

VEunadj

CIR
and VEadj

HRR
under Models 1, 2 and the Mixed

Model in the setting of scenario 2, a moderate degree

of assortative mixing (scenario 3) and a vaccine with

an average protection duration of 10 years (scenario

4). As demonstrated in Figure 6, VE
HARE

and VE
HEFT

demonstrated accuracy more consistently after 2 years

of follow-up for all modes of vaccine action. In

contrast, VEadj

HRR
and VEunadj

CIR
fluctuated in accuracy

depending on the mode of vaccine action. Both

VE
HARE

and VE
HEFT

are much less influenced by

mixing patterns and waning than are VEadj

HRR
and

VEunadj

CIR
. However, this increased robustness is achi-

eved at the cost of greater variability. VE
HARE

and

VE
HEFT

were obtained using t¯ 6 months after

calculating hazard curves based on 2 years of follow-

up data (see Statistical Analyses in Methods section

regarding need to choose t). This choice of t was

suitable for striking a balance between validity and

precision, contrary to Brunet’s suggestion of t¯ 0,

where precision is low. How VE
HARE

and VE
HEFT

perform under a broader range of conditions is the

subject of another study.

DISCUSSION

At present it seems unlikely that the vaccinal

properties such as mode of action, time-lag post
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Fig. 6. Comparison of VEadj

HRR
and VEunadj

CIR
with VE

HEFT
, VE

HARE
under Models 1, 2 and Mixed of vaccine action and the

basic scenario (scenario 2), assortative mixing (scenario 3) and 10 year vaccinal waning (scenario 4). Parameter values are

as described in Table 3. Barplots indicate the 5th, 25th, 50th, 75th and 95th percentile of the efficacy measures calculated over

the 50 repetitions.

immunization and waning rate of a candidate HIV

vaccine will be known with precision before the

conduct of a phase III trial, given current uncertainty

over which immunological measures correlate best

with protection against infection. It is hoped that the

trials themselves will yield important information on

these correlates. However, trial design raises many

difficult issues which must be addressed if we are to

understand how different candidate vaccines perform

under conditions of natural exposure to infection. The

real dilemma is that the choice of an EM, the design

of the trial and concomitantly sample size deter-

mination, each depend on the precise properties of the

vaccine and its mode of action. Given this somewhat

unhappy state of affairs, the issue in question at

present is what EM performs best both for the

possible range of vaccinal properties, and in the

presence of the many sources of heterogeneity that

influence HIV transmission in sexually active popu-

lations.

Our simulation studies provide a series of important

guidelines, although further research is required to

explore new directions for EMs in a wider variety of

settings. The factors influencing the performance of a

defined EM for the three major possible modes of

vaccine action were explored using a model frame-

work incorporating the biological characteristics of

HIV transmission and infection specifically designed

to mimic the dynamics of HIV-in a population with

heterogeneous sexual activity. The shortcomings of

VE measures are observed despite proper randomi-

zation at the start of the trial. With time, randomi-

zation fails to keep the individual characteristics

balanced between the two groups.

Given the sexual behaviour is highly heterogeneous

in human communities [35], this important facet of

HIV transmission was incorporated in our simu-

lations. Our analyses first suggest that the validity of

VE
CIR

and VE
HRR

measures is most likely unsat-

isfactory for all modes of vaccine action. In both
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heterogeneous and homogenous populations accurate

estimation of vaccinal efficacy will be difficult using

VE
CIR

and VE
HRR

given the mode of vaccine action

may not be known. The problem of maintaining

accuracy is further exacerbated by non-random

mixing, which tends to amplify any biases that already

exist under random mixing. Here again, observational

studies suggest that in many settings the observed

pattern of mixing could be assortative [36]. Of the

traditional measures the VEadj

HRR
appears to be the

most reliable in these circumstances, except under the

Model 2 mode of vaccine action. Adjustment of

measures for sexual activity implies, of course, the

importance of behavioural questionnaires for the

study population. Rida [37] also has suggested that

behavioural data will be essential to assess whether

vaccination itself induces changes in sexual activity

and therefore unequal exposure in control and treated

groups.

The different possible modes of vaccine action

could present yet another hurdle if more than one

vaccine is tried in multi-armed trials. If the same

statistical measure is used to compare two vaccines

with different modes of action, then adequate evalu-

ation of vaccine efficacy may not be achieved. For

example, if the VE
HRR

is used to compare a vaccine of

Model 1 with one of Model 2 of equal efficacy, it is

possible that the latter vaccine may be viewed as more

effective due to the time dependent overestimation of

VE
HRR

under Model 2. In this case, differences in the

survival curves (proportion of uninfected individuals

at time t) between the two candidates will be due to

the different modes of vaccine action since both

vaccines have the same efficacy. Obviously, compar-

ability of such candidates between trials with separate

control groups is even more problematic.

However, the factors that have the greatest influ-

ence on accuracy of the EMs are waning immunity

post immunization and time delays in the development

of protection post vaccination. Unless additional

information is available on these processes, trials will

tend to underestimate true maximum efficacy. Even if

average duration of time-lag and rate of waning were

known, it remains to be seen whether this information

would then permit correction of the traditional EMs

to accurately estimate the maximum vaccine efficacy.

Thus, changing efficacy over time makes trial data

analysis and interpretation of vaccine efficacy esti-

mates even more tenuous. Underestimation of true

efficacy is particularly wearisome since maximum

efficacy is not expected to be high for the early

products that enter phase III trials [28]. Hence, ample

underestimation of true efficacy could lead to the

rejection of a reasonably efficacious product which

may have some public health interest in certain

populations [28]. This could result in a missed chance

to distribute a moderately effective vaccine.

The high bias of the EMs under waning immunity

and time delays in the development of protection

suggest that confidence bounds derived by Halloran

and colleagues [8] are unlikely to be respected. Their

lower bound is based on their Model 2 estimator and

upper bound based on their Model 1 estimator. Our

Model 2 and Model 1 estimators are seen on average

not to encompass the true maximal value under time-

lag and waning influences. One way to elude the

problem of waning immunity could be to administer

boosters during the course of the trial in order to

maintain the level of protection constant.

A distributional mode of vaccine action will also

influence variability and bias. Additional bias can

arise due to this mode of vaccine action, but is likely

to be minor and will probably manifest only if follow-

up is lengthy. The Distributional Model may play a

more important role in variability of measures.

Results from the Cohort of MCSC, accrual and

incidence scenarios share a common thread by

demonstrating the importance of the epidemic shape

on the quality of estimation. Accuracy may be

improved by careful choice of a study setting (i.e.

cohort type). Male attendees at sexually transmitted

disease clinics have many advantages in terms of

striking a sensible balance between the rate at which

infection events more likely to occur and the size of

the potential study population. Female CSW are very

appropriate in terms of their high rates of infection,

but sample size issues may restrict their potential

value (i.e. they are a small proportion of the sexually

active population and many are already likely to be

infected in high transmission areas). A further

consideration with respect to high incidence groups

such as MCSC and CSW, is the high variability in

sexual activity within these population strata. This

can menace validity of the EMs. There is thus a

dilemma between using lower activity groups to gain

validity versus high transmission groups to gain

precision in EMs.

Staggered entry in trial design (accrual) was in

ineffective in limiting frailty or other time dependent

effects. This, however, was because accrual requires

lengthening the study duration in rapidly changing

incidence phases in this particular cohort of CSW.
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Similarly in the incidence scenario, biases were

dependent on the incidence phase of the epidemic.

Higher incidence rates and rising incidence at start of

the study generally produced greater bias than lower

incidence rates and falling incidence rates. Overall,

therefore, it is difficult to eliminate bias in the complex

and heterogeneous settings in which HIV spreads in a

community. Furthermore, our simulations do not

take account of the added complications of loss to

follow-up which will probably act to further decrease

precision. This is of obvious importance in the choice

of a suitable cohort setting. For example, MCSC may

be ideal in terms of incidence and population size, but

they may be less reliable in terms of drop out in

follow-up.

It is worth noting that under all the conditions

investigated (except time-lag), biases of the EM

actually increased with follow-up duration. While

epidemiological principles suggest that the prospective

cohort study involving incident cases and a short

follow-up duration is the best observational design to

test an aetiologic hypothesis [31], our study helps to

delineate what is meant exactly by a short follow-up.

Specifically, clinical trials with follow-up exceeding 2

years in an epidemic condition, such as that considered

in this paper, will vary likely encompass increasingly

important biases.

Playing a role in the steering of HIV clinical trials,

the interim monitoring board will need to consider

many factors such as time-lag post-immunization so

as not to prematurely conclude from interim analyses

that a vaccine is of low-efficacy. Nor should the

monitoring board allow trials to continue too long in

order to minimize effects of different sources of

heterogeneity or waning which would cause under-

estimations of the true potential of a vaccine.

Clearly, it seems reliable estimations will come only

when the mode of action is known a priori to be either

Model 1, 2 or Distributional (with 100% take) and in

absence of any time-lag or waning, prerequisites

which may demand a stretch of imagination. In any

eventuality, we (clinicians, public health experts,

immunologists and others) still want to know whether

a vaccine works and how well. With this goal in mind,

the factors affecting bias and variability of the VE
CIR

and VE
HRR

become important.

The importance of having an unbiased (valid)

summary statistic of vaccine efficacy is not merely

academic. As stated by Kleinbaum [31] : ‘ […] it is

important to recognize that internal validity is the sine

qua non of etiologic research […]’. It has numerous

clinical and public health implications. On the clinical

side, it is important that the statistics used correctly

reflect the size of the effect of vaccine [38, 39].

Moreover, with unbiased estimation of vaccine

efficacy in combination with survival curves and

immunological data, it may be easier to speculate on

the mode of vaccine action. As clearly emphasized in

past years [39], it is not enough to detect a significant

difference between groups. It is also important to

quantify the difference in a meaningful manner

[38–40]. This is well illustrated by the controversy that

followed the results of a malaria vaccine trial in

Tanzania where an efficacy of 31% (VE
IDR

) was

found with a 95% CI ranging from 0% to 52% [41].

Given this level of efficacy and wide confidence

interval, the decision to use the vaccine as a public

health measure is not straightforward [38]. We have to

know what we have on hand to make well-informed

decisions. From a public health perspective it is

therefore important to disentangle the issues on

vaccine efficacy not only to help identify who gets

infected (between vaccinees and controls) and who

doesn’t, but also how many. For example, without

prior information on the mode of vaccine action,

comparisons of survival curves in multi-armed trials

may be difficult to interpret especially if the curves

cross. Finally, the preventive potential of a vaccine at

a population level (the effectiveness), depends not

only on the efficacy of the vaccine but also on the

vaccine mode of action [24]. For a fixed vaccine

efficacy of 31%, McLean and Blower [24], showed

that the equilibrium seroprevalence of infection is

larger under Model 1 and the Mixed Model than

under Model 2. This emphasizes the need for careful

interpretation of vaccine efficacy estimates if we want

to predict the effectiveness of future immunization

programmes. After all, if we cannot deduce the true

potential of a vaccine in a clinical trial, how can we

expect to be able to approve and distribute a vaccine

of public health interest to control the HIV}AIDS

epidemic?

Despite the numerous influences that will be present

in HIV vaccine trials, there is some hope that accurate

efficacy estimation can be afforded by applying

VE
HEFT

and VE
HARE

to the method originally pro-

posed by Brunet and colleagues [23]. Their suggestion

of basing the analysis on the entry point of time (t¯
0) seems sub-optimal, since we find greater precision

using the time of 6 months post entry. This time of

estimation gives more robust estimates and reduces

effects of frailty. In particular, HARE and HEFT
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offer hope for valid estimation of VE across modes of

vaccine action. However, more research is needed in

this area both to examine the robustness of this

conclusion under a wider range of settings and to

derive better estimates of efficacy in heterogeneous

study populations. A more general search for robust

EMs is also needed. While we may not be able to

eliminate bias, it is very important to understand its

direction in a defined study population and with a

vaccine of a given mode of action. Such an under-

standing will be important in the appropriate choice

of sample size and study duration. Much can be learnt

by the sensible use of stochastic simulation models of

HIV transmission that incorporate the details of a

specific trial design. Prior to implementation of phase

III vaccine trials in defined study populations, such

studies will help to save time and money in the

planning stages, aid in the interpretation of results

and in making informed conclusions in HIV vaccine

clinical trials.
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APPENDIX 1

Recruitment

The functional form for recruitment of new suscep-

tibles into the sexual active population leading to a

stable population in absence of AIDS is given for sex

k and activity class i at time t as follows:

Λ
k, i

(t)¯µZ!
k, i

(t)

3
%

h="

µ(Xh

k, i
(t)Yh

k, i
(t)Zh

k, i
(t)Zh+&

k, i
(t)). (1)

Force of infection

The force of HIV infection for sex k and activity class

i at time t in the general population, controls,

vaccinees in whom the vaccine does not take, and

vaccines who take but have not developed immunity is

given by:

λ
k, i

(t)¯m
k, i

(t) 3
'

j="

β
k«,i,j

φ
k, i,j

(t)

¬0Σ%
h=#

(Xh

k«,j
(t)Yh

k«,j
(t)Zh

k«,j
(t)Zh+&

k«,j
(t))

NA
k«,j

(t) 1 . (2)

Here m
k, i

(t) is the annual rate of partner acquisition of

persons of sex k and class i, β
k«,i,j

is the per partnership

HIV transmission probability from sex k« and class j

to sex k class i. The term φ
k, i,j

(t) describes the mixing

matrix elements (described in more detail below), and

NA
k«,j

(t) is the total sexually active population of sex

k« and class j. Thus, λ
k, i

(t) is a function of the rate of

sexual partner change, the HIV transmission prob-

ability and HIV prevalence. Individuals with AIDS

are assumed not to contribute to the sexually active

population due to the severity of their condition.

The force of HIV infection for sex k and activity

class i at time t for successful vaccinees with protective

immunity is given by:

λ$
k, i

(t)¯ (1®δ
k, i

)λ
k, i

(t), (3)

where δ
k, i

is the proportional reduction in suscep-

tibility to HIV infection of sex k class i due to

vaccination. In the case of the Distributional Model,

δ
k, i

is taken as the individual reduction in sus-

ceptibility for each successful vaccinee of sex k and

class i.

Mixing elements

The inclusion of the elements of the mixing matrix

φ
k, i,j

(t) in the model is essential since the manner in

which sexual partner formation occurs is a critical

component in the spread of HIV and STDs [10, 11].

As described in Boily and Anderson (1991) [11], the

mixing elements are defined as:

φ
k, i,j

(t)¯
W

k, i,j
NA

k«,j
(t)m

k«,j
(0)

Σ
j
W

k, i,j
NA

k«,j
(t)m

k«,j
(0)

, (4)

subject to the constraints :

0%φ
k, i,j

(t)% 1, (5)

3
'

j="

φ
k, i,j

(t)¯ 1, (6)

NA
k, i

(t)φ
k, i,j

(t)m
k, i

(t)¯NA
k«,j

(t)φ
k«,j,i

(t)m
k«,j

(t). (7)

Here, W
k, i,j

defines a set of weights corresponding to

the preference of individuals of sex k and activity class

i for partners of the opposite sex in activity class j.
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Thus, the mixing matrix elements φ
k, i,j

(t) are the

probability that a person of sex k class i chooses a

partner of opposite sex k« and class j. The first two

constraints are self-explanatory. The third, balancing

supply with demand, indicates that the number of

partners formed by individuals of sex k and activity

class i who choose a member of the opposite sex k«
and class j must equal the number of partners formed

by sex k« and activity class j who choose a member of

the opposite sex k and class i. In order for the supply

and demand constraint to hold for all i, j and k at all

t, the elements of the preference matrix W
k, i,j

(and

hence the mixing matrix, φ
k«,j,i

(t)) should satisfy for

all i and j the following constraint :

W
",i,j

W
",j,"

W
",i,"

W
",j,j

¯
W

#,j,i
W

#,",j

W
#,",i

W
#,j,j

. (8)

Purely assortative mixing (mixing exclusively within

same activity class) occurs when W
k, i,j

¯ 1 for i¯ j

and W
k, i,j

¯ 0 for i1 j. Random or proportionate

mixing occurs when W
k, i,j

¯ 1 for all values of k, i and

j.

APPENDIX 2

In the stochastic simulations, a random sequence of

individual events is generated where each of the 492

possible events (2 sexes¬6 classes¬41 events) occurs

with probability P
r,k, i

(t) defined by P
r,k, i

(t)¯
R

r,k, i
(t)}S(t), where S(t)¯Σ

r,k, i
R

r,k, i
(t). Using

RAN2 [42], the event chosen at each step of the

sequence is determined by a random number

generated from a uniform distribution according to

the 492 probabilities. The time a person of sex k and

class i spends in a specific state r before making a

transition is assumed to be exponentially distributed

with mean R−"
r,k, i

(t). Furthermore, the time between

any two events is exponentially distributed with mean

S−"(t). Therefore, the time of occurrence s of chosen

event r can be determined by choosing a random

number from a uniform distribution and setting it

equal to F(s) in the equation F(s)¯ 1®exp[®S(t) s].

Thus by an iterative process, a sequence of events and

their time of occurrence is generated.

APPENDIX 3

HARE and HEFT is a general framework developed

by Kooperberg, Stone and Truong [29, 30], to model

the log-hazard function based on survival times. In

the context of HIV clinical trials, we employ HARE

and HEFT to obtain the hazard functions of controls

and vaccinees based on the follow-up data. It involves

an automatic procedure for stepwise addition and

deletion of knots in time as well selection of covariates.

Estimation of model parameters is based on maximum

likelihood methods while model selection is based on

the Bayes Information Criteria.

Given a possibly censored time, t, and a vector of

covariables, x¯ (x
"
,…,x

m
), HARE models the con-

ditional hazard function, h(t rx), α(t rx), via the log-

hazard function, α(t rx)¯ log(h(t rx), according to the

model :

α(t rx)¯ 3
p

j="

β
j
B

j
(t rx). (9)

Here B
"
,…,B

p
are linear spline functions of time and

theβ
"
,…,β

p
are theparameters estimatedbymaximum

likelihood methods. The resulting hazard is a piece-

wise linear continuous function of time. HARE also

tests for interactions and non-proportional hazards in

covariates and time, and accounts for them by

admitting the appropriate product terms. Thus, the

class of HARE models includes the sub-class of

proportional hazard models.

HEFT is a similar to HARE and performs the

estimation of the unconditional log-hazard function

through cubic spline functions. Thus unlike HARE,

HEFT does not admit covariates and employs cubic

splines rather than linear ones.
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