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When a contaminated liquid evaporates from within a porous material, the impurities or
dirt accumulate and deposit within the pore space. This occurs during the cleaning of
filters and fouling of textiles, and is related to the ‘coffee-ring’ problem. To investigate
how and where dirt is deposited in the pore space, we present a model for the motion of
an evaporation front through a porous material, and the related accumulation, transport,
and deposition of dirt, assuming that the liquid remains stationary. For physically relevant
parameters, vapour transport out of the porous material is quasi-steady and we derive
a single ordinary differential equation describing the motion of the evaporation front in
time. Model solutions exhibit spatially non-uniform profiles of the deposited dirt-layer
thickness through the porous material. The dirt accumulation and evaporation problems
are coupled: deposited dirt hinders vapour transport through the porous material, slowing
the evaporation. We identify two scenarios in which the porous material becomes clogged
with dirt. Accumulation of suspended dirt at the evaporating interface along with slow
dirt diffusion results in the deposited dirt layers clogging the pores at the evaporating
interface, halting the drying and trapping liquid in the porous material. Alternatively, slow
dirt deposition results in the suspended dirt being pushed far into the porous material
by the evaporation, eventually leaving only dirt (with no liquid) in the pore space. We
investigate the dynamics of both clogging scenarios, characterising the parameter regimes
for which each occurs. Both clogging scenarios must be avoided in practice since they may
be detrimental to future filter efficacy or textile breathability.
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1. Introduction

Drying-driven redistribution of dirt within filters and textiles is a common problem, with
practical industrial importance. For instance, after the rinsing of filters used in vacuum
cleaners or washing machines, the filter dries and any remaining dirt or cloth fibres are
left in the filter (Ji & Sanaei 2023), reducing its capacity for the next filtration cycle.
Waterproof clothing such as coats and boots will dry after use, and impurities or dirt may
similarly be left within the pores of the textile and waterproof membrane (Breward et al.
2020; Sanaei et al. 2022).

A key question in these filtration and waterproof-clothing applications is to determine
where within the porous material the dirt is deposited once the liquid has all evaporated.
We might also ask whether all of the liquid can indeed be evaporated, or whether it
becomes trapped in regions of pore space clogged by the deposited dirt. In the applications
of interest, it is important that the dirt does not clog the material, as this leads to reduced
filter efficacy, or reduced breathability of the waterproof garment. Furthermore, trapped
water in a washing machine filter may contribute to the growth of bacteria or mould,
and should be avoided for hygiene reasons (Abney et al. 2021). A paradigm situation
encompassing these processes is that of a porous material containing a mixture of a
liquid, such as water, and an impurity or dirt that is suspended in the liquid. As the liquid
evaporates, an evaporation front moves into the porous material from its surface. The dirt
is left behind in the liquid as the liquid evaporates, and may deposit into a layer on the
walls of the pore space.

A related problem is the deposition of suspended particles when a droplet of liquid
dries on an impermeable substrate. This is known to lead to a coffee-ring effect, in
which the coffee particles are transported by evaporation-induced flow of liquid to the
edge of the droplet. This coffee-ring effect is well studied, for instance, by Deegan et al.
(1997, 2000), Karapetsas, Sahu & Matar (2016), Kaplan & Mahadevan (2015), Moore,
Vella & Oliver (2021), Murisic & Kondic (2011), Popov (2005), and recently reviewed
by Wilson & D’Ambrosio (2023). The coffee-ring effect is of practical importance, for
instance, in the drying of ink droplets in ink-jet printing (Mampallil & Eral 2018; Soltman
& Subramanian 2008) and in the manufacture of electronic devices (D’Ambrosio et al.
2021).

In a drying porous material, such as a filter membrane or textile, there are several
additional complications not present in the coffee-ring set-up. Firstly, the problem is
multiscale in nature, in that the fluid flow, evaporation and the transport and deposition
of the dirt occur within the pore space, while the depth of porous material to be dried
is likely to be significantly larger than an individual pore, even for fairly thin filter
membranes. It is not immediately clear how to formulate a model that captures the
pore-scale behaviour and yet remains tractable over the scale of the entire drying material.
Additionally, dirt deposition may occur throughout the porous domain, not only at the
base of the evaporating droplet. This means that there is additional coupling between the
drying and the deposition: like in evaporating droplets, the accumulation of suspended
dirt at the evaporating interface can reduce the evaporation rate (Karapetsas et al. 2016),
but additionally the build-up of deposited dirt in the pore space affects the porosity and
reduces the rate of diffusive transport of (i) the suspended dirt through the liquid-saturated
pore space, and (ii) vapour out through the dry porous material. In extreme cases, the
deposited dirt might completely clog the pore space at the evaporation front, terminating
the drying before all liquid is evaporated. This phenomenon is not possible in coffee-ring
problems. Like the surface tension driven flows in coffee rings, a capillary flow may draw
fluid through the porous material, which then evaporates near the surface of the porous
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Impurity deposition during evaporation in porous media

material (Lehmann, Assouline & Or 2008). This is typically the case early in the drying
process (‘stage I’), while later (‘stage II’) the evaporating interface moves into the porous
material, and the transport of vapour out of the porous material limits the evaporation rate
(Or et al. 2013; Fei et al. 2022).

Drying porous media (without dirt) have been studied in a variety of settings and
using various different modelling techniques. Depending on the porous material and
fluids, various drying regimes are possible: liquid and gas may coexist within the pore
space throughout the entire medium and for the majority of the drying time (so that the
majority of the drying is in stage I), or a region in which capillary effects dominate, often
referred to as a ‘film region’, may separate a region of porous material saturated with
liquid from a multiphase region incorporating unconnected pockets of stationary liquid
(Pel, Landman & Kaasschieter 2002; Lehmann et al. 2008). Multiphase flow models for
drying are derived by, for instance, Whitaker (1977) while lumped models, consisting of
nonlinear diffusion equations for the ‘moisture’ (combining liquid and vapour) are also
often used (Vu & Tsotsas 2018; Pel et al. 2002). Evaporation within the pore space may be
simulated directly, although this is computationally expensive and limited to sufficiently
small domain sizes (Fei et al. 2022). Pore-network models are a more computationally
tractable approximation, although the details of the fluid flow are neglected (Nowicki,
Davis & Scriven 1992; Tsimpanogiannis et al. 1999).

The transport and trapping of particles in a liquid-saturated porous material when the
liquid is flowing is known as deep-bed filtration (Zamani & Maini 2009). When there
is no flow of the liquid, the particles may still be transported by Brownian diffusion
(Epstein 1988). Particles may build up in a deposited layer on the pore walls due to several
mechanisms, including electrostatic forces in the bulk (Zamani & Maini 2009). Particles
are generally repelled from air–water interfaces unless they are hydrophobic; in the
hydrophobic case they might be held at the interface and, thus, transported more effectively
with it (Flury & Aramrak 2017). Particles may deposit or attach to the walls of the
pore space due to adsorption, electrostatic forces or other chemical binding mechanisms
(Epstein 1988; Zamani & Maini 2009; Dressaire & Sauret 2017). Experimental work such
as that of Gudipaty et al. (2011), Linkhorst et al. (2016), Stamm et al. (2011) seeks to
visualise the deposits and quantify their growth rates in terms of the system parameters.

For an evaporating droplet, an evaporative flux is generally prescribed at the droplet
surface (Popov 2005; Murisic & Kondic 2011; Kaplan & Mahadevan 2015; Karapetsas
et al. 2016; Moore et al. 2021). This flux may be constant (Moore et al. 2021), but typically
depends on the distance from the edge of the droplet, accounting for the quasi-steady
transport of vapour away from the droplet (Popov 2005; Karapetsas et al. 2016). When
drying from within porous media, a prescribed evaporation rate may be appropriate during
stage I (when the evaporation occurs near the surface of the material) but, since the stage II
drying of porous media is limited by the removal of vapour from the pore space (Lehmann
et al. 2008), like the majority of evaporating drops (Wilson & D’Ambrosio 2023), we
expect that the evaporation rate will depend on the position of the evaporating interface
within the porous material during this stage.

The deposition of dirt during the drying of a filter has recently been studied by Ji &
Sanaei (2023). Here, the suspended dirt is assumed to diffuse through a liquid-saturated
region of porous material ahead of an evaporating interface, and deposit at a rate directly
proportional to its concentration, causing the local porosity to decrease. The evaporating
interface is assumed to move through the porous material at a prescribed speed, dependent
only on the local porosity and suspended dirt concentration, and not the location of the
front within the filter. Simulations of this model show that the porosity of the filter
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decreases during the drying, and that the deposited dirt is non-uniformly distributed in
the pore space once the drying is complete.

In this paper we systematically derive a homogenised model for the coupled processes of
evaporation, transport of liquid vapour, diffusion and deposition of dirt in a drying porous
material, starting from a pore-scale model for these processes. This analysis is based on
previous work (Luckins et al. 2023) for evaporation of a pure liquid in a porous material,
extended to incorporate dirt transport and deposition. One benefit of the homogenisation
approach is that the pore-scale behaviour is included in the homogenised model through
averaged terms. This ensures that the model conserves mass of all species, and also results
in a different diffusive term in the homogenised equations compared with the model posed
by Ji & Sanaei (2023). For simplicity, as in both Luckins et al. (2023) and Ji & Sanaei
(2023), we assume that capillary flows are negligible and a sharp evaporating interface
moves into the porous material. In practice, such systems would be valid when viscous or
gravitational forces dominate over surface tension, for instance, if the solid is hydrophobic
(Shokri, Lehmann & Or 2008) or the pores are sufficiently large relative to the capillary
length scale (Lehmann et al. 2008). Our coupled model for the drying and dirt transport
is a type of Stefan problem, with undercooling in certain parameter regimes. We derive
our homogenised model in § 2. In § 3 we note that the vapour transport is quasi-steady for
physically relevant parameter choices and reduce the vapour-transport problem to a single
ordinary differential equation (ODE) for the position of the evaporation front, providing
a comparison between this model and that of Ji & Sanaei (2023). In § 4 we study the
early time behaviour of our model and describe our numerical solution method. In §§ 5–6
we study the asymptotic limits of slow and fast deposition rates, identifying a distinct
mechanism in each case by which the system may clog before the drying is complete. We
quantify the parameter regimes for which these clogging phenomena occur in § 7 before
concluding in § 8.

2. Model derivation

We consider a porous material of finite thickness l, initially with uniform porosity and
saturated with a uniform mixture of liquid and suspended dirt. We assume that the dirt
particles are small relative to the pore-length scale, and neither interact with each other nor
dissolve in the liquid. The dirt–liquid mixture is thus a suspension of these insoluble dirt
particles. We suppose the porous material is bounded by an impermeable solid material on
one side. The liquid begins to evaporate from the side open to the atmosphere, leaving the
dirt behind, and an evaporation front moves into the porous material, with the suspended
dirt and liquid ahead of the front, and a mixture of inert gas (drawn in from above the
porous material) and liquid vapour behind it. We assume the system is isothermal, with
no variation in temperature. A schematic of the situation under consideration is shown
in figure 1. We consider a two-dimensional porous material for simplicity, with spatial
variables x and y, and with y pointing into the porous material and y = 0 at the surface
of the porous material. Although the structure of our model and the homogenisation
analysis does not depend on the pore-scale geometry, it is helpful to specify this for
simplicity. We choose a square lattice of circular solid inclusions, of radius r0. We account
for deposition of the suspended dirt onto the solid structure by considering deposited
dirt layers of thickness R(x, y, t), on each solid inclusion, which have initial thickness
zero. An important assumption is that the liquid–dirt mixture does not flow, and so our
model excludes any capillary pressure or surface tension effects (since in order to attain a
(quasi-)static meniscus shape, the liquid would need to flow). We first consider the drying
behaviour on the microscale – within the pores of the material – before averaging to
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Gas and vapour

Liquid and suspended dirt

m
y = h(x, t)
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xy = 0
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Impermeable surface

Dirt layer

R (x, y, t)

Solid
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Figure 1. Schematic showing the evaporation front at y = h(x, t) moving through the pore space (length scale
d) of a porous material (of depth l � d), with dirt depositing in a layer of thickness R(x, y, t) on the circular
solid inclusions with radius r0. The unit normal to the solid or dirt boundary of the pore space is ns, while the
evaporating interface has unit normal m.

derive our effective model. We suppose that the evaporating front is located at y = h(x, t),
splitting the domain into a region of pore space containing vapour in 0 ≤ y ≤ h(x, t),
where the thickness of the layers of deposited dirt do not change with time, and a region
of pore space in h(x, t) ≤ y ≤ l containing the liquid–dirt mixture, where the dirt-layer
thicknesses vary in time due to deposition or erosion.

2.1. Pore-scale model
In the pore space occupied by the vapour–gas mixture (behind the evaporating front,
i.e. y < h(x, t)), we expect the Reynolds number to be small (Luckins et al. 2023) and
so we assume that the mixture satisfies the Stokes equations

∇ · u = 0, −∇p + μ∇2u = 0, (2.1a,b)

where u is the mass-averaged velocity of the mixture, p is the pressure and μ is the
viscosity (assumed constant). The vapour contained within the mixture is advected with
the flow, and also diffuses through the mixture with diffusivity Dv , and thus, the density
of the vapour, ρv [kg m−3], satisfies

(ρv)t + u · ∇ρv = Dv∇2ρv, (2.2)

where the subscript t denotes partial derivative. The overall density of the inert gas–vapour
mixture, ρG, is given by

ρG = ρg + ρv. (2.3)

Wherever the gas–vapour mixture meets the solid walls of the pore space we suppose there
is no flux or slip of the gas–vapour mixture, and no flux vapour into the solid material, so
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that on the solid–liquid or dirt–liquid boundary, with normal ns,
u = 0, (ρvu − Dv∇ρv) · ns = 0. (2.4a,b)

In the liquid–dirt mixture in y > h(x, t), we assume that there is no net flow of the
mixture, and the suspended dirt and liquid diffuse against one another in an ideal mixture,
due to Brownian motion. The suspended dirt volume fraction, θ , therefore satisfies

θt = Dd∇2θ, (2.5)
where Dd is the diffusivity of suspended dirt in liquid. As discussed in Luckins et al.
(2023), the assumption that the liquid does not flow means that capillary effects are
neglected from the model.

At the solid walls of the pore space, we suppose that the suspended dirt can deposit onto
the solid microstructure, forming a layer that may also then be eroded away. We suppose
that the deposited layer has a dirt volume fraction θ∗ which is the packing volume fraction
of the dirt particles. We expect this to be close to one, as only a small amount of liquid
(volume fraction 1 − θ∗) is trapped within the deposited dirt layer. Conservation of dirt
across the interface is given by

θVn + Dd∇θ · ns = θ∗Vn, (2.6)
where Vn is the normal velocity of the depositing/eroding interface. We note that, in order
that there is no flow generated at the depositing interface, we assume that the dirt and
liquid have the same mass density, so that the total mixture density is the same on either
side of the depositing/eroding interface, while the dirt and liquid fractions can jump (see,
for instance, Geng, Kamilova & Luckins 2023).

We suppose that the dirt is deposited at a rate dependent on the local suspended dirt
volume fraction, while the erosion rate depends on the (constant) packing volume fraction
θ∗. (If there was a flow of the fluid, we might extend this model and allow the erosion rate
to depend on the local shear stress.) Thus, we prescribe

Vn = k+θ − k−θ∗, (2.7)
where the constants k± have units m s−1. This type of law-of-mass-action deposition rate,
in which the deposition rate is linear in the quantity of suspended dirt, is common in
the phenomenological bed-filtration literature (Zamani & Maini 2009; Dressaire & Sauret
2017), and is also used by Ji & Sanaei (2023) as a model for adsorption of particles onto
the deposit layer.

At the evaporating interface y = h(x, t), we suppose that the inert gas and the dirt do not
pass through the interface, while liquid turns into vapour. We thus impose conservation of
mass of each of the liquid/vapour, gas, and suspended dirt, namely

−ρl(1 − θ)Vm + ρdDd∇θ · m = ρv (u · m − Vm) − Dv∇ρv · m, (2.8a)

0 = ρg (u · m − Vm) + Dv∇ρv · m, (2.8b)

−ρdθVm − ρdDd∇θ · m = 0, (2.8c)
where ρl and ρd are the densities of pure liquid and dirt, respectively. Combining these,
we derive the more helpful form

−ρLVm = ρG (u · m − Vm) , (2.9a)

−ρLVm = ρv (u · m − Vm) − Dv∇ρv · m, (2.9b)

θVm + Dd∇θ · m = 0, (2.9c)

interpretable as a condition on each of u · m, ρv and θ , respectively, where ρL = ρl(1 −
θ) + ρdθ is the (assumed constant) liquid–dirt mixture density. The normal velocity of the
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interface and unit normal to the interface are given by

Vm = ht√
1 + h2

x
, m = (hx, −1)√

1 + h2
x
, (2.10a,b)

where subscripts t and x denote partial derivatives. In addition to (2.9), we also impose a
no-slip condition for the gas-mixture velocity

u + vhx = 0 on y = h(x, t). (2.11)

Finally, we must also incorporate a condition that describes the chemistry governing
the evaporation. In Luckins et al. (2023) the effect of different chemistry conditions were
considered, and these were shown to affect the form of macroscale boundary conditions
derived through a homogenisation analysis. For simplicity, we assume that the liquid and
vapour are in chemical equilibrium at the evaporating interface. The chemical potential on
the liquid side of the interface is dependent on the amount of liquid (1 − θ ) at the interface,
while the chemical potential on the gas-mixture side depends on the density of vapour, ρv ,
at the interface. In general, we may express this chemical equilibrium as

ρv = ρ∗f (θ) on y = h(x, t), (2.12)

where ρ∗ is the (constant) saturation vapour density when θ = 0 and there is no suspended
dirt, and the function f (θ) captures the dirt dependence of the saturation vapour density.
(We note that therefore f (0) = 1.) The presence of particles at the interface are expected
to hinder the vaporisation; in both Ji & Sanaei (2023) and Karapetsas et al. (2016) the
evaporative flux is modelled as decreasing with increased particles on the fluid surface.
We keep f (θ) general as far as possible, and in § 5 we investigate the effect of different
functional dependencies f (θ) on the drying rate. However, in our numerical simulations
we use the simple linear form

f (θ) = 1 − θ (2.13)

to capture the effect of the dirt inhibiting vaporisation. We choose this form so that the
saturation vapour density scales with the amount of liquid at the interface.

At the surface of the porous material, we impose a constant atmospheric vapour density
and atmospheric pressure

ρv = ρa, p = pa, on y = 0. (2.14)

Dirt cannot diffuse through the impermeable boundary and thus so impose that

θy = 0 at y = l. (2.15)

This depth l is assumed to be much greater than the typical pore-length scale, so that there
is separation between the pore- and macro-length scales.

2.2. Non-dimensionalisation
We non-dimensionalise the vapour/gas problem in a similar way to Luckins et al. (2023),
making the rescalings

x = dx̂, h = dĥ, t = d2

εδDv

t̂, ρv = ρ∗ρ̂, u = Dvνε

d
û, p = pa + μDvν

d2 p̂,

(2.16a–f )
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where

δ = ρ∗

ρL
, ε = d

l
, ν = ρ∗

ρG
(2.17a–c)

are dimensionless parameters representing the ratio of vapour density to liquid density, the
ratio of pore- to macro-length scales and the ratio of vapour to gas densities, respectively.
In particular, we note that we have chosen the time scale associated with the speed of
the motion of the evaporating interfaces on the microscale, i.e. the time scale over which
sufficient vapour is removed by diffusion to empty the microscale pore space of liquid.
Making these rescalings and dropping the hat notation, the dimensionless microscale
model is, in y < h(x, t),

ε∇ · u = 0, ε∇2u = ∇p, ε (δρt + νu · ∇ρ) = ∇2ρ, (2.18a)

while in y > h(x, t),

εσθt = ∇2θ. (2.18b)

At gas–solid interfaces in y < h(x, t) (which are stationary),

u = 0, ∇ρ · ns = 0, (2.18c)

and at liquid–solid interfaces in y > h(x, t) (which move with velocity Vn),

∇θ · ns = εσ (θ∗ − θ) Vn, Vn = εκ (θ − β) , (2.18d)

while at the evaporating interfaces y = h(x, t),

u · m − δν−1 ht√
1 + h2

x
= − ht√

1 + h2
x
, (2.18e)

ερ
(
νu · m − δ

ht√
1 + h2

x

)
− ∇ρ · m = −ε

ht√
1 + h2

x
, (2.18f )

u + vhx = 0, (2.18g)

εσθVm + ∇θ · m = 0, (2.18h)

ρ = f (θ). (2.18i)

At the surface of the porous material,

ρ = α at y = 0, (2.18j)

while at the impermeable surface (or centre of a symmetric porous material),

θy = 0 at y = ε−1. (2.18k)

Here we have introduced the additional dimensionless parameters

σ = δ
Dv

Dd
, κ = k+d

ε2δDv

, β = k−θ∗
k+

, α = ρa

ρ∗ (2.19a–d)

that appear in the dirt problem, representing the ratio of the suspended dirt diffusion time
scale to the time scale of the evaporation-front motion, the ratio of the dirt-deposition rate
to the evaporation rate, the ratio of the dirt erosion rate to deposition rate and the ratio of
the atmospheric vapour density to the maximum saturation vapour density, respectively.
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The micro- to macro-length scale ratio ε (defined in (2.17a–f )) is the small parameter
we take advantage of in order to homogenise (2.18). As in Luckins et al. (2023), we take
δ < 1 and ν < 1 to be order one parameters relative to ε for the homogenisation analysis.
We note that δ ≈ 10−3 for water, so will later consider the additional limit of δ → 0
(which is equivalent to taking this limit before performing the homogenisation analysis).
We require α < 1 but expect α � 1 to be reasonable. Although the diffusion of vapour in
air is generally much faster than the diffusion of any kind of molecule through a liquid, so
that Dv � Dd, we note that since δ ≈ 10−3–10−4 is small, σ is likely to be order one. For
instance, if we take Dv ≈ 2.5 × 10−5 m2 s−1 and Dd ≈ 10−9 m2 s−1 (Cussler 2009), then
with δ = 10−4 we find that σ ≈ 2.5. We consider the distinguished limit of σ = O(1)

in this paper, but we note there is an alternative, slow-dirt-diffusion, distinguished limit
with σ = O(ε−1). We discuss this alternative case further in Appendix A.2, and briefly
in § 2.3 below. In summary, all of σ, κ, β and α are taken to be order one relative to ε to
homogenise the model.

2.3. Summary of the homogenised drying model
The homogenisation analysis is described in Appendix A. The result of this analysis is a
macroscale model for the vapour density ρ, suspended dirt volume fraction θ , deposited
dirt-layer thickness, R, and position, Y = H(T) of the evaporation front, namely

δφρT − (ν − δ)φ|HHTρY = (DρY)Y (2.20a)

for Y < H(T), and

σφθT = (DθY)Y − σκC(θ∗ − θ)(θ − βχR), (2.20b)

RT = κ(θ − βχR) (2.20c)

for Y > H(T). At Y = H(T),

DρY = (1 − νρ)φHT , (2.20d)

ρ = f (θ), (2.20e)

σφHTθ + DθY = 0, (2.20f )

while

ρ = α on Y = 0, (2.20g)

θY = 0 on Y = 1. (2.20h)

The porosity, φ(R) = 1 − π(r0 + R)2, surface area, C(R) = 2π(r0 + R), and effective
diffusivity, D(R) (given by (A4)), all vary with the thickness of the deposited dirt layer.

We assume that, initially, the porous material is entirely saturated with a uniform
liquid–dirt mixture, none of which has yet deposited (i.e. the time scale of deposition
is assumed longer than the time scale over which the liquid–dirt mixture flooded the
material). Thus, at T = 0,

R = 0, H = 0, θ = θIC. (2.21a–c)

Our homogenised model (2.20) is similar in structure to those proposed in Breward et al.
(2020), Sanaei et al. (2022) and Ji & Sanaei (2023), with the suspended dirt satisfying a
reaction–diffusion equation ahead of a moving evaporation front. However, through the
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systematic homogenisation analysis, we have found the correct form for the diffusion term
in (2.20b), which was erroneously given as (D(φθ)Y)Y (in our notation) by Ji & Sanaei
(2023). Additionally, we have quantified the effective parameters D, C and φ, which
all vary with the deposited dirt-layer thickness R. We also impose different boundary
conditions to Ji & Sanaei (2023), which will result in different drying behaviours, as
discussed in § 3 below.

A key assumption of our homogenisation analysis was that σ = O(1), which ensured
that θ (and therefore R) is uniform to leading order on the microscale. As discussed
further in Appendix A.2, the extremely slow suspended dirt diffusion limit of σ = O(ε−1)
is not captured by this model: in this case we would expect non-periodic behaviour on
the microscale at the evaporating interface, and the homogenisation analysis would break
down. We do not consider this situation here.

3. An ODE for the motion of the evaporation front

The parameter δ = ρ∗/ρL is generally small; indeed for water evaporating we expect
δ ≈ 10−3. Before studying the full drying problem, we consider the limit of δ → 0 in
the vapour–gas transport problem, which we show results in a single ODE describing the
motion of the evaporation front H(T). This gives insight into the drying dynamics and is
interesting as a comparison with other models for the motion of evaporating interfaces in
the literature, e.g. Ji & Sanaei (2023). Furthermore, the analysis in this section is helpful
for all of the subsequent analysis of the model, including the early time asymptotic analysis
in the following section (§ 4), which we use to initialise numerical simulations of the
model.

For small δ, we see from (2.20a) that the vapour-density profile is quasi-steady, varying
instantaneously with the motion of the evaporation front. Specifically, in the limit δ → 0,
the vapour-transport equation (2.20a) becomes

− νφ|HHTρY = (DρY)Y . (3.1)

Integrating twice with respect to Y and applying the boundary conditions (2.20d) and
(2.20g), we obtain

ρ = 1
ν

(
1 − (1 − να) exp

(
−νφ|HHT

∫ Y

0

1

D(R(Ŷ))
dŶ
))

. (3.2)

By additionally imposing the boundary condition (2.20e) we obtain an equation for the
motion of the evaporation front, H, in terms of the suspended dirt volume fraction there,
θ |H , namely

HT

∫ H

0

1

D(R(Ŷ))
dŶ = 1

νφ|H log
(

1 − να

1 − νf (θ |H)

)
. (3.3)

One particular case of interest is if D is uniform (for instance, if little dirt has been
deposited, so R ≈ 0 is constant). In this case (3.3) reduces to

HHT = D
νφ|H log

(
1 − να

1 − νf (θ |H)

)
. (3.4)

If θ |H were constant, we would see a
√

T behaviour of the evaporation front, as expected
for this type of Stefan problem. For D non-uniform in Y , the integral term in (3.3) behaves
like an overall resistance to vapour transport. In particular, the integral is dominated by
any localised regions of pore space in Y < H for which D is very small.
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We see that the ODE (3.4) for H (with D constant) takes the form

HHT = E1(φ|H, θ |H) (3.5)

for an algebraic function E1, while the more general (3.3) takes the form

HT = E2(φ|H, θ |H, H, R|Y<H). (3.6)

By comparison, Ji & Sanaei (2023) prescribe an evaporative flux that does not explicitly
depend on H, of the form

HT = E3(φ|H, θ |H), (3.7)

in our notation. Unlike (3.5) and (3.6), the model (3.7) does not explicitly depend on
the position H of the evaporating interface. These different equations for H result from
different modelling assumptions: Ji & Sanaei (2023) assume that the vaporisation of the
liquid molecules is the limiting process in the evaporation, whereas we have assumed that
the vaporisation is instantaneous (the vapour is at its saturation point adjacent to Y = H)
and that evaporation is instead limited by the transport of vapour out of the porous material.
For sufficiently deep or hydrophobic porous media that there is a moving drying front, it
is clear that the evaporation rate should depend on the location H of the drying front
(Lehmann et al. 2008; Shokri et al. 2008). Furthermore, we note that our drying model is
given in terms of well-defined physical parameters such as the diffusivity and saturation
vapour densities, and results in a reasonable drying time scale l2ρL/ρ∗Dv ≈ 102 s (using
values for water: ρL ≈ 103 kg m−3, ρ∗ ≈ 1 kg m−3, Dv ≈ 10−5 m2 s−1 and l ∼ 10−3 m),
whereas the coefficients in a prescribed evaporation rate must be fitted in some way.

We note from (3.3) that evaporation only occurs when f (θ |H) > α, so that the vapour
density at the liquid–gas interface is greater than the atmospheric vapour density;
otherwise if f (θ |H) = α, we see that HT = 0. We define θ̂ such that f (θ̂) = α, noting
that since f is monotonic in θ , evaporation only occurs for θ < θ̂ .

Our analysis above (and in the remainder of this paper) is for the case that the
atmospheric vapour density ρ = α is prescribed at the surface Y = 0. As an aside, we
now briefly consider an alternative case, in which the flux, J, of vapour out of the material
at Y = 0 is prescribed by a Newton cooling law: J = m(ρ|0 − a∞), for some constants
a∞ (the far-field ambient vapour density) and m (the mass-transfer coefficient). Since
the vapour flux is spatially uniform throughout Y < H in the limit δ � 1, we find that
φ|HHT = m(ρ|0 − a∞). Eliminating ρ|0, we find that HT is given by the implicit ODE

HT

∫ H

Y=0

1
D dY = 1

νφ|H log
(

1 − νa∞ − νφ|HHT/m
1 − νf (θ |H)

)
. (3.8)

(We may rearrange (3.8) to give HT explicitly in terms of a Lambert-W function, but
we consider the form (3.8) more useful as we may compare directly with (3.3).) Clearly
in the limit as m → ∞ (for which vapour is easily removed from the surface of the
porous material), and with a∞ = α we regain (3.3). In the case of a bounded mass-transfer
coefficient m, the non-instantaneous removal of vapour from the surface results in a slower
evaporation rate HT , compared with that given by (3.3).

4. Early time behaviour and numerical method

In this section we first consider the early time behaviour of our model (2.20) in § 4.1,
in the limit of δ � 1. This will be necessary in order to accurately initialise numerical
simulations of the model, which is then discussed in § 4.2.

986 A31-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

36
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.360


E.K. Luckins, C.J.W. Breward, I.M. Griffiths and C.P. Please

4.1. Early time analysis
To study the early time behaviour of the system (2.20), we suppose T = bτ where b � 1
is the smallest parameter in the system, and τ = O(1). From (2.20c), on this time scale
we see that Rτ = O(bκ) � 1, and so R is small, hence, all of D, φ and C are constant to
leading order in b.

We first consider the vapour problem in Y < H. On the short time scale the interface
only moves a short distance, and so we rescale

H =
√

bD
φ

H̄, Y =
√

bD
φ

Ȳ (4.1a,b)

in order to balance the mass-flux boundary condition (2.20d). The vapour problem is
therefore self-similar in that we regain the same system at early time with these rescalings
as the full system (2.20a), (2.20d)–(2.20e) and (2.20g), namely

δρτ − (ν − δ)H̄τ ρȲ = ρȲȲ , for Ȳ ∈ (0, H̄(τ )), (4.2a)

ρ = α on Ȳ = 0, (4.2b)

ρȲ = (1 − νρ)H̄τ on Ȳ = H̄(τ ), (4.2c)

ρ = f (θ) on Ȳ = H̄(τ ). (4.2d)

We have already noted that δ � 1 in general, and we take this limit now to make analytical
progress. As in § 3, we find that

ρ = 1
ν

(
1 − (1 − να) exp

(−νH̄τ Ȳ
))

, (4.3)

where H̄(τ ) is the solution of

H̄H̄τ = 1
ν

log
( 1 − να

1 − νf (θ |Ȳ=H̄(τ ))

)
. (4.4)

The value of θ at Ȳ = H̄(τ ) depends on the solution of the suspended dirt problem in
the domain Y ∈ (H, 1) = (

√
bD/φ H̄(τ ), 1). On this short time scale, the full dirt problem

(2.20b), (2.20f ) and (2.20h), with the initial condition (2.21a–c), becomes

σφθτ = b (DθYY − σκC(θ∗ − θ)(θ − βχR)) for Y ∈ (
√

bD/φ H̄(τ ), 1), (4.5a)

σφθH̄τ +
√

bDθY = 0 on Y =
√

bD/φ H̄(τ ), (4.5b)

θY = 0 on Y = 1, (4.5c)

θ = θIC at τ = 0. (4.5d)

To leading order in b, we see that θτ = 0, so that θ = θIC is independent of time over the
domain. However, in a boundary layer at Y = √

bD/φH̄, suspended dirt accumulates due
to the motion of the evaporation front. To examine this region, we make the change of
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Figure 2. Early time solution behaviour. Coloured lines show the variation of the solution of (4.9) and (4.10)
with the suspended dirt diffusion time scale σ . Green dashed lines are the small-σ approximations (4.11), while
black dashed lines are the large-σ approximations (4.13). Here we use the form f (θ) = 1 − θ and set α = 0, so
that θ̂ = 1. We additionally set ν = 0.5.

variables Y = √
bD/φ(H̄(τ ) + z), so that, at leading order in b, the equations are

σ
(
θτ − H̄τ θz

) = θzz for z > 0, (4.6a)

σθH̄τ + θz = 0 on z = 0, (4.6b)

θ → θIC as z → ∞, (4.6c)

θ = θIC at τ = 0. (4.6d)

This system (4.6) must be solved with (4.4) to determine θ and H̄.
We look for a similarity solution of the form

H̄ = 2λ√
σ

√
τ , θ = Θ

(√
σ z√
τ

)
, (4.7a,b)

for some constant λ to be determined. In particular, from (4.4) we see that the suspended
dirt volume fraction at the evaporating interface, θ |H̄ = Θ(0), must be constant in time for
such a similarity solution to exist. Substituting into (4.6), we find the solution

Θ = θIC + (Θ(0) − θIC)

erfc
(
λ+

√
σ z

2
√

τ

)
erfc(λ)

, (4.8)

where λ and the constant Θ(0) satisfy

λ2 = σ

2ν
log

(
1 − να

1 − νf (Θ(0))

)
, (4.9)

Θ(0) = θIC + √
πλΘ(0)eλ

2
erfc(λ). (4.10)

Solutions of (4.9)–(4.10) may be computed numerically, and are shown for various σ and
θIC in figure 2.

To establish some intuitive understanding of this early time behaviour, we now consider
the sublimits σ � 1, θIC � 1 and σ � 1 in turn. We show our early time analytic
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solutions for each case in figure 3 (alongside numerical solutions for comparison,
computed using the method described in § 4.2 below), all with excellent agreement. In
each, we see that the vapour density ρ varies from f (θ |H) = 1 − θ |H at Y = H to α = 0
at the surface of the material, according to (4.3). The evaporation front moves with the
expected

√
T behaviour, faster if there is a steeper vapour-density gradient. Suspended dirt

accumulates in the liquid ahead of the evaporation front, with a spatial maximum in θ at
Y = H. The size of the boundary layer at H over which θ varies is dependent on σ , which
quantifies suspended dirt diffusion. At early times, we expect little dirt deposition, so that
the dirt-layer thickness R ≈ 0 throughout the porous material.

If σ � 1 so that suspended dirt diffusion is fast relative to the motion of the evaporation
front, then we see from (4.9) that λ = O(

√
σ), and so from (4.10) that θ |h ∼ θIC.

Specifically, we find that

Θ(0) = θIC + O(
√

σ),

λ = √
σ

(√
1

2ν
log

(
1 − να

1 − νf (θIC)

)
+ O(

√
σ)

)⎫⎪⎬
⎪⎭ as σ → 0. (4.11)

Thus, reverting to our original variables, the early time evaporating interface is given by

H =
√

T

√
D

2νφ
log

(
1 − να

1 − νf (θIC)

)
+ O(

√
σ) as σ → 0. (4.12)

We also note from the form (4.8) of the solution that the spatial region over which θ varies
is wide, O(1/

√
σ). In this small-σ limit, the diffusion of dirt is fast relative to the motion

of the evaporation front, and so the suspended dirt volume fraction θ remains close to its
initial value θIC, only deviating by a small, O(

√
σ), amount. For conservation of overall

dirt, the region over which the accumulating suspended dirt is spread is wide, of O(1/
√

σ)

relative to the early time boundary layer. This may be seen in figure 3(a,b): since σ � 1,
the θ profile is approximately uniform in Y , and so close to its initial value of θIC = 0.1 at
early times. The suspended dirt is accumulating due to the evaporation, but spread almost
evenly through the domain.

Next, we suppose that σ = O(1) but the initial suspended dirt volume fraction θIC � 1
is small. In this case, for a balance in both of (4.9) and (4.10), we must have Θ(0) = O(θIC)

and λ = O(1), as we might expect. The solution shown in figure 3(c,d) is for this case, with
θIC = 0.1: we indeed observe that θ |H = O(0.1) (and this effect becomes increasingly
clear for smaller θIC).

Finally, if σ � 1, so that the diffusion of suspended dirt is slow relative to the motion
of the evaporation front, then from (4.9) we see that we must have f (Θ(0)) = α to leading
order in σ−1 � 1. At this value,

Θ(0) = θ̂ , (4.13a)

there is no evaporation at leading order, as the vapour density at the atmospheric value is
in equilibrium with the liquid–dirt interface, and there is no transport of vapour out of the
porous material. Indeed, we see from (4.10) that when θ = θ̂ , λ is the solution of

λeλ
2

erfc(λ) = θ̂ − θIC

θ̂
√

π
, (4.13b)
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Figure 3. Early time solutions (4.3), (4.7a,b) and (4.8) (dotted lines) compared with numerical solutions (solid
lines) of the full model (2.20), for σ = 0.01 (a,b) σ = 1, (c,d) and σ = 10 (e, f ). The profiles of ρ, θ and R
in figures a, c, and e are at times for which H = 0.3 (towards the end of what we would consider ‘early’
time, especially in the small-σ case). Throughout the figure we take f (θ) = 1 − θ , κ = 1, θIC = 0.1, ν = 0.5,
δ = 10−3, r0 = 0.2, α = 0 and β = 0.

which is independent of σ and of O(1), so that the position of the evaporating interface,
given by

H = 2λ√
σ

√
D
φ

√
T, (4.14)
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is of order σ−1/2 � 1 away from its initial position. Thus, when the suspended dirt
diffusion is slow, the diffusion of dirt away from H limits the speed of the evaporation
front, so that there is a slower, O(σ ), drying time scale. We also note from (4.8) that
the region over which θ varies is narrow, with width O(1/

√
σ) relative to the early time

boundary layer. The boundary layer is narrow for large σ , so that the early time solution
actually remains valid for the majority of the drying process. Indeed, in figure 3(e, f ) we see
excellent agreement between the early time analytic solution and the numerical solution
for ρ, θ and H up to the time when the evaporating front is halfway through the domain.
This is because the boundary layer at H over which θ varies is narrow, and so the effect of
the boundary at Y = 1 is not felt until H is close to 1. However, we notice in figure 3(e)
that the early time approximation R = 0 ceases to be accurate at these late times. The early
time solution would remain valid so long as R remains relatively small (e.g. if κ and θIC

are fairly small). We note that, since the boundary layer width scales with
√

T , it quickly
becomes numerically impractical to resolve the solution at small times for large σ . The
early time asymptotic solution is therefore very valuable in initialising the simulations
accurately for large σ .

Finally, we note that our early time analysis in this section is equivalent to studying the
original problem on a semi-infinite domain Y ∈ (0, ∞), in the combined limit κ, δ → 0.

4.2. Numerical method
We solve the model (2.20) numerically using the method of lines. Specifically, we
first transform the model onto two separate fixed domains, setting η = Y/H(T) for the
gas–vapour problem, which then holds in η ∈ (0, 1), and setting ξ = (Y − H(T))/(1 −
H(T)) for the liquid–dirt problem, which then also holds in ξ ∈ (0, 1). We discretise
spatially on these transformed domains, with a uniform mesh, using central differences
for diffusive terms and first-order upwinding for advective terms, so that the scheme is
overall first order. (The advection for the vapour problem (2.20a), including the artificial
advection terms due to the change of variables, is negative; the purely artificial advection in
the liquid–dirt problem (2.20b)–(2.20c) is also negative. Upwinding these terms therefore
requires forward differences in both cases.) We then use the inbuilt ODE solver ode15s
in Matlab for the time stepping. We note that the model is stiff in certain parameter
regimes of interest (δ � 1 and/or σ � 1), and that ode15s is specifically designed for stiff
systems. Ode15s is a multistep solver, using numerical differentiation formulas of order
1–5 (Shampine & Reichelt 1997). We make use of our early time asymptotic solution
of § 4.1 to initialise our numerical simulations. In particular, the spatial mesh must be
sufficiently fine to resolve the boundary layer in the suspended dirt problem at Y = H at
early times. Our analysis in § 4.1 suggests we require the number of spatial mesh points N
to scale like

N = O

(√
D(0)σ

φ(0)T

)
for T � 1. (4.15)

More efficient solvers might take further advantage of the asymptotic structure of the
system and distribute mesh points unevenly through the domain in order to ensure good
resolution of the boundary layer while maintaining computational efficiency. However,
by making use of our early time asymptotic solution we do not require simulations at
particularly small T , and our uniform-mesh formulation suffices.
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5. The slow deposition limit κ � 1 and dry clogging

Having stated the model and our numerical solution method, we are now in a position to
explore solutions of the model. In this section we focus on the limit κ � 1, for which the
dirt-deposition time scale is much longer than the evaporation time scale. We expect that
the accumulation of suspended dirt due to evaporation and the effects of suspended dirt
diffusion to be dominant.

We first consider the leading-order behaviour, taking κ = 0, and show that the
evaporation becomes infinitely slow as suspended dirt accumulates. We then allow κ to be
small but non-zero, and explore our first clogging scenario, which we term ‘dry clogging’.

5.1. Infinitely slow evaporation when κ = 0
Taking κ = 0, we see from (2.20c) that we have R = 0 everywhere, and thus, D = D0,
C = C0 and φ = φ0 are all constant, equal to their values at R = 0. Taking the δ � 1 limit
as in § 3, the motion of the evaporation front is therefore governed by (3.4), i.e.

HHT = − D0

νφ0
log

(
1 − νf (θ |H)

1 − να

)
, (5.1)

while θ satisfies

σφ0

D0
θT = θYY for Y ∈ (H(T), 1), (5.2a)

σφ0

D0
θHT + θY = 0 on Y = H(T), (5.2b)

θY = 0 on Y = 1, (5.2c)

θ = θIC at T = 0. (5.2d)

To investigate how the accumulation of suspended dirt affects the evaporation rate, we
consider the additional limit of σ � 1 so that the diffusion of suspended dirt is fast. In
this case, we see from (5.2) that θ(T) is uniform, and so, for overall conservation of dirt,
we must have

θ(T) = θIC

1 − H(T)
. (5.3)

Substituting (5.3) into (5.1) we obtain the single equation for H(T),

HHT = − D0

νφ0

[
log

(
1 − νf

(
θIC

1 − H

))
− log(1 − να)

]
. (5.4)

As discussed previously, the evaporation shuts down when θ = θ̂ so that f (θ̂) = α, since
then HT = 0. At this point we see from (5.3) that H = 1 − θIC/θ̂ .

Numerical solutions of the model (2.20) (with κ = 0, δ = 10−3) are shown in
figures 4(a) and 4(b), and compared with the solution of (5.4) for the limit of σ → 0, with
good agreement for σ = 0.1 and smaller. We take the functional form f (θ) = 1 − θ for
these simulations, and fix α = 0 (so that θ̂ = 1). In figure 4(c) we show solutions of (5.4)
for various θIC. We see that, for larger θIC, the evaporation is slower, with the evaporating
interface H moving more slowly into the domain. In particular, we note that when θIC = 0,
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Figure 4. The effect of suspended dirt accumulation on the evaporation, for κ = 0 and σ � 1. Numerical
solutions of (2.20) shown with κ = 0 (no dirt deposition), alongside the solution of (5.4) in the limit σ → 0,
(taking f (θ) = 1 − θ and α = 0). Throughout the figure we take ν = 0.5 and r0 = 0.2. (a) Motion of the
evaporation front H(T) for various σ , with θIC = 0.3. (b) Vapour density and suspended dirt volume fraction
profiles at the same time T = 0.2 for various σ , with θIC = 0.3. (c) Effect of θIC on the evaporating interface
motion. Dashed lines are 1 − θIC.

the evaporation is completed (with H = 1) in finite time

T = − νφ0

2D0 log(1 − ν)
≈ 0.36, (5.5)

(from (5.4) with θIC = 0), whereas for θIC > 0, we see that H appears to take infinite time
to reach 1 − θIC/θ̂ .

We investigate this late time behaviour (within the σ � 1 limit) by considering the
expansion

H = 1 − θIC

θ̂
(1 + cH) so that θ = θ̂

1 + cH , (5.6)

where c � 1 is small and H = O(1) is positive. Assuming that f is continuous at θ = θ̂ ,
on substitution of (5.6) into (5.4) we find that (retaining only leading-order terms on either
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side)

c
(

1 − θIC

θ̂

)
θIC

θ̂
HT = − D0

φ0(1 − να)

(
f
(

θ̂

1 + cH
)

− α

)

= − D0

φ0(1 − να)
(f (θ̂(1 − cH + O(c2))) − α). (5.7)

So long as the gradient of the function f is bounded at θ̂ , we may Taylor expand the
right-hand side of (5.7) and, thus, find that, to leading order in c,

HT = D0θ̂
3

φ0(1 − να)θIC(θ̂ − θIC)
f ′(θ̂)H, (5.8)

since f (θ̂) = α by definition. Thus, H decays exponentially to zero as T → ∞ (since
f ′(θ̂) < 0) and the evaporation takes infinite time. (Similarly, if f ′(θ̂) = 0 but higher
derivatives are non-zero then H has polynomial, and still infinite-time, decay.)

We might ask if there are sensible choices for f (θ) that result in finite-time completion
of the evaporation. In order for the evaporation to complete in finite time, we see that
the gradient of f must be unbounded at θ̂ . For instance, if f (θ̂(1 − cH)) = α + A(cH)1/n,
for n > 1 and some constant A, then by substituting this expansion for f into (5.7) and
integrating the resulting ODE for H in time T , we find that

H ∼
(

const. − D0θ̂
2A(n − 1)

φ0θIC(θ̂ − θIC)(1 − να)n
c−(n−1)/nT

)n/(n−1)

, (5.9)

and so H reaches zero in finite time. However, this finite-time drying requires that the
gradient of f is unbounded at θ̂ , which is physically unreasonable, not least because θ̂

(defined as the value of θ for which f = α) depends on the atmospheric vapour density ρa
via the value of α. For physically reasonable functional forms f (θ), we therefore expect
a bounded derivative at θ̂ , and thus, that the evaporation becomes unboundedly slow as
θ → θ̂ .

This analysis is for the case σ � 1. For larger σ , we see from figure 4(a) that the
evaporation rate is slower. As we see in figure 4(b), this is because suspended dirt
accumulates near the evaporating interface rather than quickly diffusing through the
domain, and with higher values of θ |H , we see from (5.1) that the evaporation rate is
reduced. Numerically, we see that, for non-negligible σ , we still have H → 1 − θIC/θ̂ in
infinite time. Indeed, although for larger σ the evaporation is additionally slowed by the
diffusion of the suspended dirt away from the evaporating interface, at late times when the
evaporation becomes infinitely slow, the diffusion of dirt does not limit the drying process.

In summary, for κ = 0, the drying takes infinite time to complete and, as drying occurs,
the suspended dirt concentrates in a layer at y = 1. The drying never fully stops (although
it becomes infinitely slow). By contrast, we see in § 5.2 that if κ � 1 is non-zero then the
dirt begins to deposit at late time, and this causes the drying to completely stop in finite
time (which we refer to as clogging).

5.2. Dry-clogging behaviour for small but non-zero κ

The analysis in § 5.1 assumed that κ = 0 so that there was no deposition of dirt at all, and
we saw that, in this case, there is an infinitely long drying time as θ → θ̂ . However, in
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reality we might instead have κ � 1 small but non-zero. In this case, we would expect the
same behaviour as in § 5 initially (over an O(1) time), but then during the slow evolution
towards θ → θ̂ , the deposition will begin to become important. Dirt is slowly deposited,
and the deposited dirt layer, thickness R, grows. From the microscale geometry, we see that,
when R = Rclog := 0.5 − r0, the dirt layers on neighbouring solid circles meet, and the
pore-scale liquid region ceases to be connected. This means that the effective diffusivity
D(Rclog) = 0. In particular, if R = Rclog then vapour cannot be transported through the
porous material, and thus, evaporation ceases. We define ‘clogging’ to be this situation
when R = Rclog at Y = H(T) at finite time T , and thus, the evaporation is stopped.

To investigate this, we look at the behaviour of the system on the long time T = T̃/κ

over which R varies. With this change of variables in (5.1), we see that H satisfies

κHT̃

∫ H

0

1
D dY = − 1

νφ
log

(
1 − νf (θ |H)

1 − να

)
, (5.10)

while, for Y > H,

RT̃ = θ − βχR, (5.11)

κσφθT̃ = (DθY)Y − σκC(θ∗ − θ)(θ − βχR), (5.12)

along with the boundary conditions (2.20f ) and (2.20h),

κσφHT̃θ + DθY = 0 on Y = H(T̃), (5.13)

θY = 0 on Y = 1. (5.14)

At leading order in κ , we see from (5.12)–(5.14) that θ = θ̂ is uniform, and thus, in Y > H,
from (5.11) we find that

R = (θ̂ − β)T̃ (5.15)

is spatially uniform. Clearly R = Rclog after time T̃ = Rclog/(θ̂ − β), or in the original
time variable, at

Tend = Rclog

κ(θ̂ − β)
+ O(1). (5.16)

We note that, during this late, O(1/κ) time, the position of the evaporating interface, H,
and the O(κ) deviation of θ from θ̂ may be found by going to next order in κ in (5.10) and
(5.12), and matching to the early time behaviour in T̃ (or O(1) time behaviour in T). Thus,
R reaches the clogging point Rclog in finite time, and thus, the system clogs. We term
this type of clogging ‘dry’ clogging because, to leading order, θ = θ̂ everywhere ahead
of the clogging front. Since we expect θ̂ ≈ 1 (indeed we take θ̂ = 1 in our numerical
simulations), there is therefore a negligible amount of liquid left trapped in the porous
material by the clogging. This dry-clogging behaviour is illustrated in figure 5(a).

Results of a numerical simulation of (2.20) for κ = 0.04 are shown in figure 6. As
expected, we see in figure 6(b) that H varies from zero to around 1 − θIC/θ̂ over an
O(1) time, while R at the interface Y = H (where R is maximised in space at that time
T) remains closer to zero during the time for which H varies. Subsequently, there is a
longer O(1/κ) time over which H remains nearly stationary, since θ ≈ θ̂ everywhere in
Y > H, while R (at Y = H) increases linearly to Rclog = 0.3. The prediction (5.16) gives
Tend = 7.5 for the parameter values used in figure 6(b), which is seen to be fairly accurate,
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Figure 5. The two clogging behaviours: dry clogging (a) for which θ = θ̂ for Y > H when the system clogs,
so that (almost) pure dirt remains with negligible liquid trapped; and wet clogging (b) for which a mixture of
liquid and dirt is trapped in Y > H by the clogging.
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Figure 6. Numerical solution of (2.20) for small κ showing dry-clogging behaviour, using parameter values
κ = 0.04, σ = 1, θIC = 0.3. (a) Profiles of ρ, θ and R very close to the clogging time Tend . (b) The motion
H(T) of the evaporation front.

although a slight underestimate, as this does not take into account the early time (in T̃ , or
O(1) in T) stage.

The dry clogging that we have described in this section always occurs for κ � 1, but
it may also occur for κ = O(1), when the deposition rate is of the same order as the
evaporation rate. Indeed, the model (2.20) must always dry clog for κ > 0, even if β = 0.
This is because, if β = 0, θ can never reach zero even for large κ , and can only decay
exponentially towards it. However, if κ � 1 is sufficiently large that θ is very close to zero
by the end stages of the drying, the dry clogging occurs at a negligible distance from the
end of the domain, H = 1, and is not physically meaningful. We discuss this more in § 7
below. Furthermore, if β > 0 then we expect θ ≥ β for all time (so long as this is true
initially). In this case we would certainly anticipate much more prominent dry-clogging
behaviour, for a wider range of parameters, although to investigate this thoroughly is
beyond the scope of the present study.
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6. The fast deposition limit (κ � 1) and wet clogging

We now consider the limit of κ � 1, in which the deposition of dirt occurs much faster
than the motion of the evaporation front. Since the deposited dirt layer grows quickly, it can
become large enough to significantly affect the effective diffusivity D and porosity φ, if
θIC is sufficiently large, impacting on the drying dynamics. In particular, the deposited
dirt-layer thickness R may reach the maximum radius Rclog = 1/2 − r0, at which the
diffusivity D = 0, and the system is clogged early in the domain, when θ is not θ̂ in
Y > H(T), so that a non-negligible quantity of liquid is trapped by the clogging. We refer
to this type of clogging as ‘wet clogging’ as, compared with the dry-clogging behaviour
discussed in § 5.2, a non-negligible amount of liquid is trapped by the clogging. This
wet-clogging mechanism is illustrated in figure 5(b).

6.1. Large-κ behaviour
To understand the deposition (and potential clogging) behaviour when κ � 1, we change
to the fast time scale over which R varies, by setting

T = 1
κ

t̄, (6.1)

where t̄ = O(1). At such early times the evaporating interface is close to the surface of the
porous material, and we rescale

H = 1√
σκ

h̄, Y = 1√
σκ

ȳ, (6.2a,b)

for Y < H(T) (assuming that σκ � 1), so that (3.3) becomes

1
σ

h̄t̄

∫ h̄

0

1
D(R(ȳ))

dȳ = − 1
νφ|h̄

log
(

1 − νf (θ |h)
1 − να

)
. (6.3)

For Y > H = (1/
√

σκ)h̄, we see that (2.20b)–(2.20c) become

φθt̄ = 1
σκ

(DθY)Y − C(θ∗ − θ)(θ − βχR), (6.4)

Rt̄ = θ − βχR. (6.5)

To leading order in (κσ )−1 � 1, we have a plane-autonomous deposition system:

φ(R)θt̄ = −C(R)(θ∗ − θ)(θ − βχR), (6.6a)

Rt̄ = θ − βχR. (6.6b)

We refer to the system (6.6) as the outer problem, which holds away from the evaporation
front in the majority of the domain. (At the evaporation front there must be a boundary
layer, which we discuss later.) Specifically, the initial conditions θ = θIC > β and R = 0
at t̄ = 0, imply that both θ and R are independent of Y for all t̄, and, recalling that φ(R) =
1 − π(r0 + R)2 and C(R) = −φ′(R) = 2π(r0 + R), a first integral from (6.6) is

φ(R)(θ∗ − θ) = φ(0)(θ∗ − θIC), (6.7)

which is independent of time t̄. Equation (6.7) may be interpreted as an expression of
overall conservation of dirt: since there is no transport of dirt on this time scale, the total

986 A31-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

36
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.360


Impurity deposition during evaporation in porous media

0 0.05 0.10 0.15 0.20 0.25

R

R = Rclog

0.30 0.35 0.40

0.1

0.2

0.3

0.4

0.5θ

θIC
crit

θcrit(R)

θ  = β

0.6

0.7

0.8

0.9

1.0

>

>

>

>

>

>

>

>

>

>

> > > > > >

Figure 7. Phase plane dynamics in the outer region when κ � 1. Black curves show trajectories, with the
system moving down these curves from (0, θIC) to the attractor at θ = β (direction shown by arrows). For
θIC > θcrit

IC , the trajectory hits R = Rclog before reaching θ = β. Here we take θ∗ = 1, β = 0.15, r0 = 0.2.

suspended dirt in the liquid and deposited dirt in the layer, must remain constant in time.
We could use (6.7) in (6.6) to find implicit expressions for the spatially uniform R and θ ,
although this is not particularly illustrative. Instead, we use (6.7) to plot the phase plane
in the outer region in figure 7. The system begins at R = 0, θ = θIC. If θIC > β, we see
from (6.6b) that R increases in time and, from (6.7), that θ decreases towards θ = β. If
instead θIC ≤ β, then R remains zero and θ remains at its initial value (as any deposited
dirt immediately re-suspends, from (6.6b)). We note that the system clogs if R reaches
Rclog before θ reaches β. We see that this occurs for sufficiently large initial suspended
dirt concentrations, namely (from (6.7)) if

θIC > θcrit
IC := θ∗ − (θ∗ − β)

(1 − π/4
1 − πr2

0

)
. (6.8)

Although this analysis shows that the system certainly clogs for θIC > θcrit
IC (in this limit

κσ � 1), we expect that the system will in fact clog for lower values of θIC too, since we
expect there will be higher θ and, therefore, faster deposition near to the evaporation front
at h̄.

Indeed, in a boundary layer of width O(1/
√

σκ), dirt accumulates due to the motion of
the evaporation front. By making the change of variables

Y = 1√
σκ

(
h̄ + z

)
, (6.9)

we find that, in the boundary layer z ∈ (0, ∞),

φ
(
θt̄ − h̄t̄θz

) = (Dθz)z − C(θ∗ − θ)(θ − βχR), (6.10a)

Rt̄ − h̄t̄Rz = θ − βχR, (6.10b)

while at the evaporation interface z = 0,

φθ h̄t̄ + Dθz = 0, (6.10c)

986 A31-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

36
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.360


E.K. Luckins, C.J.W. Breward, I.M. Griffiths and C.P. Please

and, as z → ∞,

R → Rout(t̄), θ → θout(t̄), (6.10d)

where Rout and θout are the values in the outer region, as described above. This boundary
layer system (6.10), coupled with (6.3), describes the motion of the evaporation front,
accumulation of suspended dirt ahead of it and the deposition of dirt. We note that dirt
accumulation, transport and deposition all balance in the boundary layer.

We show a solution with κ = 100 in figure 8. Figures 8(a)–8(d) show the spatial profiles
for ρ, θ and R at four successive times, while the motion of the evaporation front H(T) is
shown in figure 8(e), with the time points of the plots (a–d) marked as red circles. At early
times, in figures 8(a) and 8(b), we clearly see the boundary layer structure in the θ and R
plots in Y > H, with both R and θ uniform in the rest of the domain. As time progresses,
we see that R increases while θ decreases, as suspended dirt becomes deposited onto the
solid structure. By the time shown in figure 8(c), we see that θ is close to zero everywhere:
the deposition has nearly finished. Since κ � 1, this occurs when the evaporation front
is still only a short O(

√
κ) distance into the domain. After this time, θ(≈0) and R are

both constant in Y > H, and the evaporation front travels to the bottom of the domain,
resulting in a fully dry porous material with non-uniformly deposited dirt. Indeed, we note
that the combination of dirt accumulation, diffusion and deposition in the boundary layer
results in an internal spatial peak in the final thickness, R, of the deposited dirt layer (for
Y < H) near the top of the domain. Since R is higher here, the effective diffusivity of the
vapour is correspondingly reduced. This can be seen in the non-monotone gradient of ρ in
figure 8(d), where the ρ profile is steepest at the peak value of R. The reduced diffusivity
here limits the drying rate for the remainder of the process.

The fact that we obtain this internal peak in R at early time due to the boundary layer
accumulation, diffusion and deposition of dirt means that our estimate for the clogging
criterion (6.8), which assumes that dirt deposits in a spatially uniform way, must be
an upper bound on the true critical θIC: we expect to have clogging at θIC lower than
the critical value given by (6.8). Indeed, in figure 9 we show a simulation for the same
parameter values as in figure 8, except that we take a larger initial suspended dirt volume
fraction θIC = 0.6, which is still lower than the estimate of θcrit

IC = 0.755 given by (6.8),
for the chosen parameter values. Nevertheless, we see that the system indeed clogs early
in the domain. Both liquid and suspended dirt are trapped ahead of the clogged point,
since θ < 1 in Y > H. The clogging happens at an O(1/

√
κ) distance into the domain, at

H ≈ 0.07, and after an O(1/κ) time, as predicted by our analysis above.
We note that the motion of the evaporation front shown in figure 9(b) no longer follows

a
√

T behaviour. Instead, we see that the speed HT of the evaporation front is not smoothly
decreasing. Evaporation is fast to start with as R is small and the vapour has only a short
way to travel to the surface of the porous material. Then the evaporation front begins to
slow down, as both θ |H increases due to accumulation and the effective diffusivity D
decreases, as R begins to increase. As the clogging point is approached, HT increases
again, because the porosity φ is decreasing, so that there is less liquid in the pore space to
be evaporated since so much of the pore space is occupied by the deposited and suspended
dirt. Similar time-varying behaviour of HT is visible at early times in the case shown in
figure 8(e) (inset), when the system did not clog.

Evidently, wet clogging can occur at initial suspended dirt volume fractions θIC
significantly below the estimate for the critical value given by (6.8). To better understand
the clogging criterion, we must better understand the behaviour in the boundary layer
at Y = H. However, the nonlinearity of the boundary layer equations (6.10) makes them
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Figure 8. Numerical solution of (2.20) for large deposition rate κ = 100. We also take f (θ) = 1 − θ , α = 0,
β = 0, ν = 0.5, σ = 1, θIC = 0.4, δ = 10−3 and r0 = 0.2. The green dashed lines in figures (a–d) show the
clogging point, Rclog = 0.5 − r0, which is not attained in this simulation. Results are shown for (a) T = 0.0025,
(b) T = 0.005, (c) T = 0.01, (d) T = 0.1, (e) Motion of the evaporation front.
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Figure 9. Wet clogging: numerical solution of (2.20) for large deposition rate κ = 100 and θIC = 0.6. We also
take f (θ) = 1 − θ , α = 0, β = 0, σ = 1, ν = 0.5, δ = 10−3 and r0 = 0.2. The green dashed line shows the
clogging point, Rclog = 0.5 − r0, which is attained at T ≈ 5.1 × 10−3 in this simulation. The profiles in (a) are
at the time when the system clogs with R = Rclog at Y = H.

intractable to further analytical progress. Instead, we study a paradigm problem in the next
section, which is a simplified version of the large-κ problem, but which still captures the
essence of the wet-clogging behaviour.

6.2. The clogging criterion for a paradigm problem
In § 6.1 we saw numerically that, for large κ , the deposited dirt-layer thickness R is
non-uniform near Y = 0, increasing from zero to Rmax := maxT(R|H) that is larger than
the final value of R attained in the outer region. This means that wet clogging occurs for
lower values of θIC than predicted by the outer region estimate (6.8). Since the spatially
uniform deposition dynamics in the outer region do not capture this non-uniformity in R
near to Y = 0, we consider the behaviour in the boundary layer at Y = 0, where there is
a balance between all of the accumulation, diffusion and deposition of dirt processes, in
order to derive an improved criterion for wet clogging.

However, the boundary layer equations (6.10) are intractable analytically, due to the
coupling between variables and the nonlinear terms. In order to build intuition for what
determines the size of the peak Rmax, in this section we investigate a paradigm problem,
with a different functional form for f (θ), and unphysical simplifications of D and the
bulk deposition term. With these (non-systematic) simplifications, we solve the boundary
layer equations (6.10) explicitly, and hence, determine Rmax analytically. In this way, we
determine a criterion for wet clogging (given by Rmax ≥ Rclog), and build intuition for the
more general case.

We assume, for simplicity, that β = 0 and α = 0. Additionally, we suppose that r0
is close to 1/2, so that R � r0 (since the circular inclusions are close together, and
only thin deposited dirt layers are possible before clogging occurs). Then φ ≈ φ0 and
C ≈ C0 are approximately constant, even for R approaching Rclog. We make the additional
approximations

D =
{
D0 if R < Rclog,

0 if R = Rclog,
f (θ) =

{
1 if θ < 1,

0 if θ = 1.
(6.11a,b)
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Finally, we alter the deposition term in (6.10) by replacing the factor θ∗ − θ with the
constant value θ∗. With these choices of functional forms (which we emphasise are not
a true limit of the full problem), the paradigm boundary layer problem is, while θ < 1,

1
σD0

h̄h̄t̄ = − 1
νφ0

log (1 − ν) , (6.12a)

along with, in z ∈ (0, ∞) and while R < Rclog,

φ0
(
θt̄ − h̄t̄θz

) = D0θzz − C0θ∗θ, (6.12b)

Rt̄ − h̄t̄Rz = θ, (6.12c)

while at the evaporation interface z = 0,

φ0θ h̄t̄ + D0θz = 0, (6.12d)

and, as z → ∞,
R → Rout(t̄), θ → θout(t̄), (6.12e)

where the outer solution Rout, θout satisfy

φ0θ
out
t̄ = −C0θ∗θout, (6.12f )

Rout
t̄ = θout. (6.12g)

Initially, at t̄ = 0,
θ = θIC, R = 0, h̄ = 0. (6.12h)

Solving (6.12), we see from (6.12a) that the evaporation front is simply

h̄ = B
√

Dt̄, (6.13)

where, for simplicity of notation, we define

B :=
√

−2σ

ν
log(1 − ν), D := D0

φ0
. (6.14a,b)

Furthermore, the outer region phase plane equations (6.12f )–(6.12g) decouple, with the
explicit solution

θout = θIC exp
(−Ct̄

)
, Rout = θIC

C

(
1 − exp

(−Ct̄
))

, (6.15a,b)

where, again for simplicity of notation, we define

C := C0θ∗
φ0

. (6.16)

The boundary layer equations (6.12b)–(6.12e) are therefore

θt̄ − B
√

D√
t̄

θz = Dθzz − Cθ, Rt̄ − B
√

D√
t̄

Rz = θ, (6.17a)

while, at the evaporation interface z = 0,

B
√

D√
t̄

θ + Dθz = 0, (6.17b)
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and, as z → ∞,

θ → θIC exp
(−Ct̄

)
, R → θIC

C

(
1 − exp

(−Ct̄
))

. (6.17c)

Thus, under all of our simplifying assumptions, the equations for θ and R decouple: we
may solve the linear system (6.17a) (left), (6.17b) and (6.17c) (left) for θ , before then
computing R.

Specifically, we look for a solution for θ of the form

θ = θICe−Ct̄F(η), where η = z√
Dt̄

(6.18)

is a similarity variable. Thus, in the boundary layer the far-field deposition solution θout =
θICe−Ct̄ is modified by an ‘accumulation factor’ F, which describes how the evaporation
causes suspended dirt to accumulate near the evaporating interface. Substituting this
form of θ into (6.17a) (left equation), (6.17b) and (6.17c) (left equation), and solving the
resulting ODE system for F(η), we find that

θ = θICe−Ct̄
(

1 +
√

πBeB2

1 − √
πBeB2 erfc(B)

erfc
(

B + z

2
√

Dt̄

))
. (6.19)

The factor 1 − √
πBeB2

erfc(B) is always positive (although it approaches zero as B, or
equivalently σ , approaches ∞), and so the accumulation factor F > 1 (and F → 1 as η

(or z)→ ∞). Thus, as we would expect, the value of θ is higher in the boundary layer than
in the far field.

The large θ in the boundary layer results in greater deposition occurring there, and so
R increases compared with the solution as z → ∞. The problem (6.17a) (right equation)
for R is first-order hyberbolic, and – given the form (6.19) – may be solved using the
method of characteristics. Specifically, we find the characteristic curves take the form z =
z0 − 2B

√
Dt̄, where z0 parameterises the initial data R = 0 at t̄ = 0. (The shape of the

characteristic curves mean we do not require data for R at z̄ = 0.) The solution R, in terms
of z and t̄, is given by

R(z, t̄) = θIC

C

(
1 − e−Ct̄

)
+ θIC

√
πBeB2

2C(1 − √
πBeB2 erfc(B))

×
[

exp(−(
√

C/Dz + 2B
√

Ct̄)) erfc
(

z

2
√

Dt̄
+ B −

√
Ct̄
)

+ exp((
√

C/Dz + 2B
√

Ct̄)) erfc
(

z

2
√

Dt̄
+ B +

√
Ct̄
)

− 2e−Ct̄ erfc
(

z

2
√

Dt̄
+ B

)]
. (6.20)

The solutions (6.19) and (6.20) of the paradigm model (6.17) are shown in figure 10.
Clearly the system bears qualitative resemblance to the full model. The deposited dirt-layer
thickness is maximised (spatially in the liquid–dirt domain, at any given time) at the
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Figure 10. The black curves are the analytic solution (a) θ given by (6.19) and (b) R for Y > H given by (6.20),
of the paradigm problem (6.17), at various times through the drying, with arrows showing increasing time. The
red curve in (b) shows the final deposited dirt layer after the drying is completed. We have taken parameter
values κ = 100, ν = 0.5, σ = 1, θIC = 0.1 and r0 = 0.4.

evaporation front. Evaluating (6.20) at z = 0, we have

R|h̄ = θIC

C

(
1 − e−Ct̄

)
+ θIC

√
πBeB2

2C(1 − √
πBeB2 erfc(B))

×
[
e−2B

√
Ct̄ erfc

(
B −

√
Ct̄
)

− 2e−Ct̄ erfc (B) + e2B
√

Ct̄ erfc
(

B +
√

Ct̄
)]

. (6.21)

In order to find the maximum value R attains, we simply maximise R|h̄ over t̄. We find that
there is a single maximum for positive t̄, at the critical time t̄∗ = τ 2∗ /C, where τ∗ = τ∗(B)

satisfies
2τ∗√
πB2 = e(B−τ∗)2

erfc(B − τ∗) − e(B+τ∗)2
erfc(B + τ∗). (6.22)

The solution τ∗ of (6.22) is shown as a function of B in figure 11(a). We see O(1) variation
of τ∗ when B varies over six orders of magnitude. Indeed, τ∗ → √

3/2 as B → ∞ (or
σ → ∞, say, the limit of slow dirt diffusion), whilst τ∗ grows very slowly as B → 0,
behaving like the growing root of τ∗e−τ 2∗ = √

πB2 for B � 1, namely

τ∗ ∼
√

−W−1(−2πB4)

2
∼
√

log
(

1√
πB2

)
+

log
(

log
(

1√
πB2

))
√

log
(

1√
πB2

) + · · · , (6.23)

where W−1 is the lower branch of the real Lambert W function.
From the critical time t̄∗, we can compute the value that R attains at its maximum,

namely

Rmax = θIC

C
G(B), (6.24)
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Figure 11. The maximum of R for the paradigm problem. (a) The solution τ∗ of (6.22) as a function of B, with
the large B limit

√
3/2 (red dashed) and the small-B limit, namely the (non-negligible) root of τ∗e−τ 2∗ = √

πB2

(green dashed). (b) The (scaled) maximum value of Rmax, given by (6.25), against B. For small B, we have
G ∼ 1 while, for large B, we have G ∼ e−3/2(

√
6 − 1)B2 (red dashed).

where

G(B) = 1 + 1

1 − √
πBeB2 erfc(B)

(
e−τ 2∗ (τ∗ − 1) +

√
πBeB2

2
e2Bτ∗ erfc(B + τ∗)

)
, (6.25)

with τ∗ the solution of (6.22). We show G = RmaxC/θIC as a function of B in figure 11(b).
For B � 1, we see from (6.25) that G ≈ 1, while for B � 1, we find, using the
large-B value τ∗ ≈ √

3/2, along with the facts that 1 − √
πBeB2

erfc(B) ∼ 1/(2B2) and√
πBeB2

e
√

6B erfc(B + √
3/2) → e−3/2 as B → ∞, that

G ∼ e−3/2(
√

6 − 1)B2 as B → ∞. (6.26)

We note from (6.14a,b) that B = O(
√

σ), and so Rmax and G increase linearly with σ as
σ → ∞. Thus, we see that, no matter how small the initial suspended dirt level θIC, for
sufficiently slow dirt diffusion (sufficiently large σ ), we will find that Rmax exceeds Rclog
and the system will clog.

Indeed, this expression (6.24) for Rmax gives the clogging condition for this paradigm
setting: the system clogs when Rmax ≥ Rclog. Using (6.16), this clogging criterion is

θIC ≥ θcrit
IC := C0θ∗Rclog

φ0G(B(σ, ν))
. (6.27)

We show this critical initial suspended dirt volume fraction (6.27) as a function of the
suspended dirt diffusion rate σ in figure 12, along with the small- and large-σ limits (which
follow directly from the small- and large-B behaviour of G discussed above), namely

θcrit
IC → C0θ∗Rclog

φ0
as σ → 0, (6.28a)

θcrit
IC → e3/2νC0θ∗Rclog

2φ0(
√

6 − 1) log(1/(1 − ν))
σ−1 as σ → ∞. (6.28b)

We note that, since G ≥ 1 and Rclog > 0, this θcrit
IC , given by (6.27), for the paradigm

problem is strictly smaller than the upper bound (6.8) (that essentially assumes a uniform
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Figure 12. The critical initial suspended dirt volume fraction (6.27) predicted in the paradigm case, as a
function of σ . Dashed curves are the low- and high-σ limits (6.28). We take parameter values r0 = 0.45,
ν = 0.1 and θ∗ = 1.

deposited dirt layer), since, in the case β = 0 that we have assumed for the paradigm
case, the upper bound (6.8) may be rearranged to be written in terms of φ0 = 1 − πr2

0,
C0 = 2πr0 and Rclog = 1/2 − r0, becoming

θcrit
IC =

θ∗(C0Rclog + πR2
clog)

φ0
. (6.29)

Thus, as expected, the non-uniformity of the dirt deposit in the boundary layer at the
evaporation front results in clogging for lower initial suspended dirt volume fractions than
if the dirt were to deposit uniformly.

We note that our expression (6.27) for θcrit
IC in this paradigm case is independent of κ ,

since we have taken the leading-order behaviour as κ → ∞. Since we require the boundary
layer structure, our paradigm estimate for the clogging criterion is only valid when the
width 1/

√
σκ of the boundary layer is small, and so only for σ sufficiently large that

σ � 1/κ (although since we assume κ � 1 this is not particularly restrictive).
Additionally, we see that the expression (6.27) is independent of D, and hence, of D0.

From this, we learn that it is the relative diffusivity of the suspended dirt and the liquid
vapour, captured through σ that is important, and not how both are equally affected by
the presence of the porous material (recall that D0 is the effective diffusivity). Of course,
the depth y into the porous material at which the clogging occurs does depend on D.
Specifically, the clogging depth when θIC = θcrit

IC takes its critical value is

Hcrit
clog =

√
2D0 log(1/(1 − ν))

νC0θ∗
τ∗√
κ

. (6.30)

Curiously, although this position given by (6.30) depends on κ and D0, it is only weakly
dependent on σ , since τ∗ (the solution of (6.22)) was seen to have very weak dependence
on B ∝ √

σ .
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Figure 13. The numerically computed critical initial suspended dirt volume fraction θ crit
IC , in the case of large

κ = 100, and with (a) r0 = 0.45 and (b) r0 = 0.2. We also show the upper bound, (6.8), and the prediction of
the paradigm model, (6.27), for θcrit

IC . Throughout the figure we take f = 1 − θ , α = 0, β = 0 and ν = 0.5, and
use δ = 10−3 for the numerical simulation.

We considered a simplified, paradigm version of the problem in this section, in order to
make analytic progress. Although this analysis does not directly relate to the full drying
model, we may extrapolate some general conclusions. Firstly, the qualitative wet-clogging
behaviour seen in the full model, characterised by an internal peak in R, does not rely on
the variation of D, φ and the evaporation-front speed hT with R and θ (in the paradigm case
we supposed all these were constant). Instead, the important mechanism, captured by the
paradigm model, is the variation of the rate of dirt deposition with θ , along with the fact
that θ is spatially non-uniform in the boundary layer at the evaporation front, determined
by a balance of all three mechanisms of diffusion, accumulation due to liquid evaporation
and the deposition.

In the following section we generate bifurcation diagrams showing parameter regimes
for which the system clogs. We compare these numerical results with the predictions of
the paradigm model as appropriate.

7. Clogging parameter regimes

Having built understanding of the two mechanisms by which the porous material may
clog, in this section we compute bifurcation diagrams numerically in order to quantify the
parameter regimes for which clogging occurs.

Firstly, we consider the case κ � 1 for which the dirt-deposition rate is high relative
to the evaporation rate. As in § 6, we do not expect the system to dry clog, but instead to
exhibit wet clogging for sufficiently large θIC and σ . In figures 13(a) and 13(b) we show
the numerically computed regions of parameter space for which dry clogging occurs, for
two different values of the microscale-geometry parameter r0. For both, we observe that
there is a well-defined critical suspended dirt volume fraction θcrit

IC above which the system
clogs, and below which there is no clogging and the evaporation front reaches H = 1. We
see that θcrit

IC is a monotone decreasing function of σ . The estimate (6.8) is indeed seen
to be an upper bound for the numerically computed θcrit

IC , and is most accurate for small
σ , when the diffusion of dirt is fast and so dirt deposition is approximately uniform. For
r0 = 0.45 (figure 13a), where Rclog = 0.05 is fairly small and φ and C do not vary much
with R, we see that the prediction (6.27) of the paradigm model is, in fact, a reasonable
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Figure 14. Clogging behaviour of (2.20) as κ is varied. (a) The end position Hend when the evaporation
terminates, so Hend = 1 if the drying is complete without clogging, Hend < 1 indicates clogging. (b) The total
volume of liquid remaining in the pore space when the evaporation terminates. In both (a,b), the red dashed
line indicates the upper estimate (6.8) for the wet-clogging criterion. Throughout the figure we take σ = 0.1,
f = 1 − θ , α = 0, β = 0, ν = 0.5, r0 = 0.2 and δ = 10−3.

approximation for the full system, despite the fact that the paradigm model is not a real
limit of the full model. In particular, for large σ , we observe wet clogging for very small
initial suspended dirt volume fractions. For r0 = 0.2 (figure 13b), the paradigm model
prediction of θcrit

IC is a poor approximation of the full system.
In figure 14 we investigate the effect of the deposition rate κ and the initial condition

θIC on the clogging behaviour. We simulate the model (2.20) for each set of parameter
values (θIC, κ), and in figure 14(a) the colour indicates the position Hend of the evaporating
interface at the time when the simulation terminated (so Hend = 1 if there was no clogging
and the evaporation completed, while Hend < 1 if the system clogged). In figure 14(b), for
the same set of model simulations, the colour indicates the volume of liquid remaining
when the simulation terminates, namely

liquid volume remaining =
∫ 1

Y=Hend

φ(1 − θ) dY. (7.1)

We note that the κ axis is on a log scale in figure 14. For large κ , we see that there is a
critical θIC ≈ 0.65, which appears to be largely independent of κ , above which we have
wet clogging and below which the system does not clog. A non-negligible amount of liquid
remains trapped in the pore space when the evaporation terminates. This wet-clogging
behaviour is as discussed in § 6. The upper bound on the critical initial suspended dirt
volume fraction θcrit

IC , given by (6.8) and shown by the red dashed curve, is seen to be a
significant overestimate, even for the relatively small value σ = 0.1 (as in figure 13, we
expect (6.8) to be most accurate for small σ ). We see that, as κ increases, the wet clogging
occurs earlier (Hend is smaller) and correspondingly more liquid remains trapped in the
pore space.

For small κ , we observe dry-clogging behaviour, as discussed in § 5, with Hend < 1
but with a negligible amount of liquid trapped in the pore space, since θ ≈ 1 for Y > H
in this case. For κ � 1, we see that dry clogging occurs for all θIC > 0, to varying degrees,
with Hend close to one for small θIC, but actually very small for larger values of θIC.
The transition from the no-clogging/wet-clogging regime for κ � 1 to the dry clogging
for κ � 1 is gradual. Indeed, for κ = O(1), for which we were unable to make analytic
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progress, it is not clear how to classify the system. For small θIC, there is some dry
clogging, with Hend ≈ 1 and the remaining liquid volume very small. Moreover, for larger
θIC, the behaviour could be considered to be either dry or wet clogging, with Hend around
halfway through the domain, and a fairly small amount of liquid remaining trapped in the
pore space.

8. Discussion and conclusions

We have derived and analysed a model for the drying of liquid from within a porous
material and the associated deposition of impurities within the pore structure. By
beginning with a pore-scale model and systematically homogenising, we incorporated
delicate couplings between the dependent variables, including the effect of a growing
layer of deposited dirt on the porosity, the diffusivity of both dirt and vapour, and on
the deposition rate of the dirt. We explored the relevant limit where the vapour density is
much smaller than the liquid density (δ � 1); in this case, the vapour-transport problem
was reduced to a single equation for the motion of the evaporation front. Our resulting
equation is valid in the physically relevant limit where the vapour transport through the
porous material limits the evaporation. This is different to prescribing an evaporation
rate, which is a common approach in the literature, and which is only valid when the
vaporisation of the liquid molecules is the limiting mechanism.

The accumulation of suspended dirt at the evaporating interface during drying was
shown to reduce the evaporation rate, since we imposed a dirt-dependent saturation vapour
density at the evaporating interface. We also saw that, in the limit of slow suspended
dirt diffusion, the transport of the dirt away from the evaporating interface limits the
evaporation rate. The thickness, R, of the deposited dirt layer was seen to vary spatially
within the porous material. For slow deposition rates κ , R increased monotonically into
the porous material, with the majority of the dirt concentrated at the end of the porous
material. Conversely, for large κ , we observed an internal peak in R a short O(1/

√
κ)

distance from the external surface of the material, and a uniform-thickness deposit through
the majority of the remaining material. These spatial non-uniformities in R were shown to
result in two distinct clogging mechanisms, in distinct regions of parameter space. The
first clogging mechanism was dry clogging, where deposition is slow, and suspended dirt
is pushed further and further into the material as the evaporation front passes through
the domain, until there is insufficient space for it all to deposit and the system clogs.
A negligibly small amount of liquid is trapped in the system during dry clogging. By
contrast, we found that wet clogging, defined as clogging when both liquid and suspended
dirt are trapped in the porous material, occurs at sufficiently high dirt-deposition rates κ

and sufficiently slow suspended dirt diffusion rates σ−1, such that the internal peak in R
is too high, and the deposited dirt layer clogs the pore space. We constructed a simplified
paradigm model in the large-κ situation, which captured the key mechanisms of coupled
accumulation, diffusion and deposition of dirt in a boundary layer at the evaporating
interface, and derived a wet-clogging criterion.

For industrial drying scenarios, it may be important to control the dirt-deposition profile.
In particular, it may be important to obtain as uniform a deposited layer through the
material as possible, for instance, if it is a dye or ink pigment that is being deposited. In the
drying of filters and textiles after cleaning, clogging of the system should be avoided as
much as possible, since a clogged filter can no longer perform its function. The drying rate
might more easily be controlled than the diffusivity or deposition rate of the dirt (perhaps
by controlling the ambient temperature or humidity) in order to avoid clogging-prone
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parameter regimes. Specifically, so long as the total initial amount of dirt is sufficiently
low that wet clogging will not occur, the drying rate should be kept slow (i.e. κ should be
made large), in order to avoid dry clogging.

For our numerical simulations, we chose a simple linear dependence of the saturation
vapour density on the suspended dirt volume fraction f (θ) = 1 − θ , but this should be
investigated further, since it is a key mechanism by which the accumulation of suspended
dirt affects the evaporation rate. We also focused the majority of our analysis in the case of
α = 0 so that the ambient humidity is very low, and the case β = 0, so that the dirt cannot
re-suspend into the liquid once deposited. The effect of non-zero α and β should be further
investigated. In particular, we would expect dry clogging to be more prominent in the case
β > 0, even for high deposition rates κ , since the suspended dirt volume fraction would not
decay to zero ahead of the evaporation front in this case. We also used a two-dimensional
microstructure, with circular solid inclusions. Three-dimensional microstructures should
be investigated, such as an array of spheres, which would result in different functional
forms for C, φ and D. In particular, the liquid region would remain connected when
the dirt layers growing on neighbouring spheres met, although continuing growth of
the dirt would eventually result in clogging in a similar way to our two-dimensional
case. We expect qualitatively similar behaviour for alternative micro-geometries to our
two-dimensional circles, including the possibility of both dry and wet clogging in the
appropriate parameter regimes. The model and homogenisation analysis could be extended
to other geometries, such as hexagonally packed cylinders or square solid inclusions,
as well as more general pore-scale geometries by using a level-set description of the
microscale dirt–liquid interface, as in, for instance, Richardson & Chapman (2011). We
should additionally investigate our model in higher macroscale dimensions, so that the
evaporating interface is at Y = H(X, T). In particular, in the slow-dirt-diffusion case
σ � 1, which is analogous to a Stefan problem with constitutional supercooling, it is
possible that the evaporating interface may become unstable.

A key assumption of our modelling was that the liquid remained stationary and did
not flow. This resulted in a sharp evaporating interface separating the liquid/dirt and
gas/vapour occupied regions of the porous material. In reality, a capillary-driven flow of
liquid towards the surface of the porous material could draw suspended dirt to the surface
as well, and we might anticipate even higher peaks in the deposited dirt-layer thickness at
or near the surface, increasing the likelihood of wet clogging. Incorporating such capillary
flows will be an important area for our future work.

The drying model derived in this paper captures many subtle couplings between the
evaporation, accumulation, transport and deposition of dirt, and the transport of vapour
out of the porous material during drying. The model itself and our subsequent analysis
constitutes an important step towards an accurate prediction of deposited dirt profiles and
clogging behaviours, of particular relevance in filtration and the textile industry.
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Appendix A. Overview of homogenisation analysis

In this appendix we give an overview of the homogenisation analysis for the model (2.18),
which holds within the pore space, by which we obtain the effective model (2.20), which
holds over the much simpler macroscale domain. We introduce macroscale space and time
variables

T = εt, X = εx, (A1a,b)

and denote the average position of the evaporating interface to be at Y = H(T), which
we assume is independent of X, so that the evaporating interface is flat and parallel to
the surface of the porous material. Homogenisation of the partial differential equations
(PDEs) describing Stokes flow of the gas mixture and advection–diffusion of both the
vapour and the suspended dirt is fairly standard, and will follow, for instance, Dalwadi,
Griffiths & Bruna (2015). In order to derive effective boundary conditions for the motion
of the evaporating interface on the macroscale, we follow the framework of Luckins et al.
(2023), who study the motion of an evaporation front in porous media without dirt in the
liquid. In terms of the macroscale spatial variables, we therefore consider a pore-scale
(O(ε)) boundary layer on either side of the evaporating interface Y = H(T) in which the
evaporating interface y = h(x, t) moves on the microscale, as illustrated in the schematic
in figure 15 and denoted as ‘inner’ regions. The approach involves a coupled boundary
layer analysis and homogenisation, alongside a more standard homogenisation to derive
the effective PDEs in the ‘outer’ regions (far from the evaporating interface) and careful
matching between the inner and outer regions in order to derive the effective boundary
conditions.

Since the analysis closely follows that of Luckins et al. (2023), we do not give all the
details here. Instead we give an overview, indicating where the analysis deviates from
that in our previous work. We begin in § A.1 with the analysis of the gas and vapour in
Y < H(T), before considering the liquid and dirt problem in Y > H(T) in § A.2, and state
the resulting effective model on the macroscale in § 2.3.

A.1. Homogenisation of the gas–vapour problem in Y < H(T)

The microscale problem for the flow of the gas–vapour mixture and advective–diffusive
transport of vapour in y < h(x, t), namely (2.18a) with (2.18c), (2.18e)–(2.18g), (2.18i) and
(2.18j), is almost identical to that considered by Luckins et al. (2023) in the case α � 1
(in their notation) for the chemistry boundary condition (2.18i). The differences are as
follows.

(i) The chemistry interface condition (2.18i) is a Dirichlet condition for ρ that now
depends on θ , and may vary in time and along the interface.

(ii) The microstructure of the porous material is no longer periodic: there may be spatial
variation in the microstructure due to the dirt that has been deposited on the pore
walls at earlier times. This will affect the flow and transport of vapour.
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Figure 15. Schematic illustrating the homogenisation and boundary layer analysis. The solid microstructure
of the porous material is shown by the grey circles in the insets, the gas–vapour mixture is shown in yellow and
the dirt–liquid mixture in blue. The brown regions denote the layer of deposited dirt that is built up on the solid
microstructure.

As discussed in § A.2 below, taking σ = O(1) relative to ε means that θ is independent
of the microscale space and time variables. This is important to our resolution of both
points (i) and (ii) above. Specifically, since θ is independent of the microscale, the Dirichlet
condition (2.18i) for ρ at the evaporating interface is independent of the microscale, and
so our analysis in Luckins et al. (2023) follows as before. Furthermore, since θ only varies
over the macroscale, we see below that the thickness, R, of the deposited dirt layer on the
pore microstructure only varies on the macroscale, and thus, the porosity φ and effective
diffusivity D in the region y < h(x, t), occupied by the gas mixture, may only vary over
a macro-length scale. The effect of a spatially varying porosity on the flow and advection
of a fluid through porous media has been studied in, for instance, Dalwadi et al. (2015).
Following Dalwadi et al. (2015), we may incorporate a spatially varying microstructure
into the governing macroscale PDE for ρ. We also note that the derivation of the effective
boundary conditions for the gas–vapour problem are unchanged from that of Luckins et al.
(2023) by the spatially varying microstructure. This is because the variation of R on the
macroscale only enters the equations at O(ε2), whereas we only need to consider terms up
to O(ε) in the inner region for the derivation of the interface conditions.

Adapting the analysis of Luckins et al. (2023) to include the spatial variation in R, we
obtain at leading order the effective model, for Y < H(T),

qY = 0, q = −kPY , δφρT + νqρY = (DρY)Y , (A2a–c)

with the (microscale-)time-averaged Darcy velocity, q, and pressure P given, respectively,
by

q = HT

∫ 1/HT

t=0

∫∫
ωf (R)

u(0) dx dy dt, P = HT

∫ 1/HT

t=0
p(0) dt, (A3a,b)
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where ωf (R) is the pore-space domain (occupied by either the gas–vapour or liquid–dirt
mixture). The micro-time averages are needed here since there may be fast oscillations in
the pressure and flow as the evaporating interface moves through the microscale cell. The
effective diffusivity is defined to be

D = D(R) =
∫∫

ωf (R)

1 + Wy dx dy, (A4)

where W is the solution of the cell problem given in Appendix B (which depends on the
microscale geometry). We note that the permeability k, defined in Luckins et al. (2023),
is also now a function of R (although we will not need this: in our macroscale geometry,
which we assume to be one-dimensional – with no variation in X – we will not need to
solve for the average pressure P).

The interface conditions for q and ρ at Y = H(T) are

q = −(1 − δν−1)FHT , DρY = (1 − νρ)FHT , ρ = f (θ), (A5a–c)

where F , arising because of the averaging, is the total flux of liquid/vapour through the
microscale evaporating interface in one micro-time period. We specify the value of F in
(A17) later. Finally, at the surface of the porous material, we have

ρ = α, P = 0, at Y = 0. (A6)

We note that (A2a,b), (A5a–c) and (A6) may be combined, reducing the effective
gas–vapour problem simply to a problem for ρ.

A.2. Homogenisation of the liquid–dirt problem in Y > H(T)

While the gas and vapour problem in § A.1 did not rely on any particular microscale
geometry, for simplicity, it is helpful to specify the pore-scale geometry when considering
the dirt–liquid problem. As illustrated in figure 15, we assume that the porous structure is
made from circular solid inclusions of dimensionless radius r0, with a layer of dirt outside
this, of dimensionless thickness R ≥ 0. Thus, the deposited-dirt–liquid interface, ∂ωs(R),
is at |x| = r0 + R, and the normal velocity of the interface is

Vn = Rt. (A7)

The microscale problem for θ , namely (2.18b), (2.18d) and (2.18h) is

εσθt = ∇2θ for y < h(x, t), (A8)

εσθ
ht√

1 + h2
x

+ ∇θ · m = 0 on y = h(x, t), (A9)

∇θ · ns = εσ (θ∗ − θ)Rt on ∂ωs, (A10)

Rt = εκ(θ − βχR) on ∂ωs, (A11)

where χR is an indicator function, with χR = 1 if R > 0 and χR = 0 if R = 0.
We homogenise these equations in the outer region (away from Y = H(T) in a similar

way to the filtration model of Dalwadi et al. (2015), or the reactive decontamination model
of Luckins et al. (2020). The one difference is handling the multiple time scales, t and T ,
but this is dealt with straightforwardly as in Luckins et al. (2023). In particular, to leading
order, we find that the suspended dirt volume fraction is independent of the microscale, so
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that diffusion is quasi-steady on the microscale, which is a direct result of our assumption
that σ = O(1). If, instead, σ = O(ε−1), then further analysis would be needed, since the
suspended dirt would accumulate in a spatially non-uniform manner within the periodic
cell.

The resulting effective equations for the suspended dirt volume fraction, θ , and the
deposited dirt-layer thickness, R, in H(T) < Y < 1 are

σφθT = (DθY)Y − σκC(θ∗ − θ)(θ − βχR), (A12)

RT = κ(θ − βχR), (A13)

where φ(R) = 1 − π(r0 + R)2 is the local porosity, D(R) is the local effective diffusivity
(defined in (A4)) and C(R) = 2π(r0 + R) is the circumference (or surface area) of the
deposited dirt layer. Although (A13) is an ODE for R in time T , R may vary spatially,
since the dirt-deposition rate depends on the local suspended dirt volume fraction θ .

At the edge of the macroscale domain, Y = 1, the macroscale version of (2.18k) holds
and so we have

θY = 0 on Y = 1. (A14)

Following the same boundary layer analysis for the inner region as in the gas–vapour
problem in Luckins et al. (2023), we obtain a macroscale boundary condition for θ at
Y = H(T), namely

σFHTθ + DθY = 0 on Y = H(T). (A15)

By considering the overall conservation of dirt, we now show that F (the total flux of liquid
through the microscale evaporating interface in one micro-time period) must be exactly
the porosity, φ, at Y = H(T). Integrating the suspended dirt conservation equation (A12)
over the macroscale domain Y ∈ [H, 1], and using Leibniz’ rule, the boundary conditions
(A14)–(A15), (A13) for RT and using the fact that φT = −CRT by definition, we obtain

d
dT

( ∫ 1

H(T)

φθ dY
)

= HTθ |Y=H (F − φ|Y=H) −
∫ 1

H(T)

RTCθ∗ dY. (A16)

We can interpret this as the overall conservation of suspended dirt: on the left is the rate
of change of the total amount of dirt suspended in the liquid, and the final term on the
right-hand side is the rate at which suspended dirt is ‘lost’ to the deposited layer on the
solid. There is no other way that dirt should be lost or gained, and so the additional term
(the first term on the left) must equal zero. Thus, we require

F = φ|Y=H. (A17)

In Luckins et al. (2023), for a pure evaporation problem with no dirt in the evaporating
liquid, it was argued that F = φ|Y=H by consideration of the microscale conservation of
mass of liquid: all the liquid occupying the unit cell (φ) had to pass through the evaporating
interface as vapour (F ) in order for the interface to move down through the cell. It may
therefore seem counterintuitive that F = φ|Y=H when there is suspended dirt in the liquid
also. However, since we assume σ = O(1) and so dirt diffusion is quasi-steady on the
microscale, all the suspended dirt contained within the unit cell is forced out by diffusion
in order that the evaporating interface can pass through the cell. Thus, the full volume φ

of liquid passes through the interface in one time period, in keeping with F = φ|Y=H .
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Appendix B. The cell problem for the effective diffusivity D
As shown by Luckins et al. (2023), the effective diffusivity D(R) given by (A4) may be
found by solving a cell problem for W, namely

∇2W = 0 for x, y ∈ ωf (R), (B1)

(∇W + e1) · n = 0 on |x| = r0 + R, (B2)

W periodic in both x and y over ω(R), (B3)

where n is the unit normal to the solid–liquid interface at |x| = r0 + R. The definition of
the effective diffusivity D presented in (A4) is common to many diffusion problems in
multiscalegeometries. The solution D has been computed for our circular geometry by,
for instance, Bruna & Chapman (2015) and Dalwadi et al. (2015). We use the numerically
computed solution of Dalwadi et al. (2015) in the numerical simulations in this paper.
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