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SUMMARY
The transient distribution of allele frequencies in a finite population

is derived under the assumption that there are k possible allelic states at
a locus and mutation occurs in all directions. At steady state this dis-
tribution becomes identical with the distribution obtained by Wright,
Kimura and Crow when k — oo. The rate of approach to the steady state
distribution is generally very slow, the asymptotic rate being 2v + 1/(2N),
where v and N are the mutation rate and effective population size,
respectively. Using this distribution it is shown that when population size
is suddenly increased, the expected number of alleles increases more
rapidly than the expected heterozygosity. Implications of the present
study on testing hypotheses for the maintenance of genetic variability in
populations are discussed.

Wright (1949) and Kimura & Crow (1964) independently derived a formula for
the expected number of neutral alleles with a given gene frequency under the
assumptions that (1) there are an infinite number of possible alleles at a locus, and
(2) the effects of mutation and random genetic drift are balanced. The first of these
assumptions seems to be roughly correct if allele differences are studied at the
nucleotide or codon level. The second assumption, however, does not always hold,
since the size of a species or Mendelian population often changes drastically in the
evolutionary process, and once the equilibrium is disturbed, it takes a long time
for the new equilibrium to be attained.

In the present paper we shall remove the second assumption and derive a for-
mula for the transient distribution of allele frequencies. This formula seems to be
important in the study of the mechanism of maintenance of protein polymorphism
and molecular evolution.

Distribution of allele frequencies

We intend to derive a formula for the expected number of selectively neutral
alleles in transient states whose frequencies are from x to x + da;. Following Wright
(1949) and Kimura (1968), we assume that there are k possible alleles at a locus
and each allele mutates to one of the k—X remaining alleles with a frequency of
v/(k — 1) per generation. Therefore, the mutation rate per gene per generation is v.
We consider a randomly mating population of effective size N. Let x be the fre-
quency of a particular allele and <f>(p, x; t) be the distribution of gene frequency x
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at time t, given the initial gene frequency p. The mean {Mtx) and variance {Vix) of
the gene frequency change per generation are given by

M)x= -vx + v^l-x), (1)
Vix = x(l-x)l(2N), (2)

where vx = v/(k-l). Kimura (Crow & Kimura, 1956) studied the frequency
distribution of an allele under mutation pressure [<j>(p, x; t)], and in the present
case it is given by

4(p,x;t) = S l i W e ^ ' , (3)
i = 0

where Xt = i(A + i-l)/(4N), and
Xt(x) = xB-\l-x)A-B~i

in which M = 4Nv, A = kM/(k- 1), and B = M/(k- 1).
We^have assumed that there are k possible alleles, so that the expected number

of alleles whose frequencies are from x to x + dx is given by

®k(x, t)6x = 2 <j){p}, x;t)dx, (5)

where Pj is the initial gene frequency of the jth allele. As mentioned earlier, the
number of possible alleles at a locus is almost infinite at the nucleotide or codon
level. Therefore, in most cases we may put &-=• oo. We denote Q>x{x, t) by <&(x, t).
In the following we consider two specific cases in detail.

Case 1: The first case is that where there is no genetic variability in the initial
population. In this case p = 1 for a particular allele and p = 0 for all other
alleles. Therefore, the distribution of allele frequencies is given by

<£(*, 0 = lim [(k- 1)0(0, x; t) + <f>(l, x; t)]. (6)

To evaluate the first term in (6), we have to know lim (k-^X^x) for p — 0.
fc-*OO

Namely,

i 1 iA B i)T

If we note (k- 1)B = M,A-B = M, Urn (k- l)/r(J3) = M, and

FU + i-1 iA BD-l 1Y r^ + WA-B)J!(A + t-l,-i,A-B,l) - (-1) r(B)T{A_B + iy
we obtain

i-l, -i,M,\~x)

i-l)T(M + i-
i ! T(M)
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On the other hand, to evaluate the second term in (6), we have to know lim Xt(x)
forp = 1. Fori = 0, fc^°°

limZ0(a;) = x-\l-x)M~1F(M-l, 0, 31, 1-x)

For i Si 1,
, l-x)

2i-l)T(M + i-
* i! r*{M)r(i)

Therefore, <J>(a;, t) is given by

(M+2i-l)T(M + i-l . ^ , .,
• i T-I/ Tî f \ IV A / •aj- ' T I / * \ r i / 7i/f \ l c * \ /

It is clear that at t = oo, O(a;; £) becomes identical with Kimura & Crow's formula

In general, the asymptotic rate of approach to the steady state distribution is
given by the smallest eigenvalue, i.e. Ax. In the present case, however, the co-
efficient of e-xJ becomes 0. Therefore, the asymptotic rate is given by

A2 = 2v+\l(2N).
The reason why Ax drops out is that we are considering the configuration of allele
frequencies rather than a particular allele frequency. This result agrees with that
obtained by Ewens & Kirby (1975) and Karlin & Avni (1975) (see also Ewens &
Gillespie, 1974) in their studies of the eigenvalues of the configuration process with
the discrete time model.

In passing we note that 0(1, x; t) for &-* oo, which is given by

^(l, x;t) = ^x-^l-x

(M+2i-l)T(M + i-l)r(M + i)
i\r*Mri 6

is identical with formula (2) in Nei & Li (1975) (see also Crow & Kimura, 1970).
This identity can be easily shown if we note the relationship

F(M + i-l, -i,M, l-x) = xF{-i + l, M + i, M, l-x).

The above formula gives the distribution of the allele that was present in the
original population. Note that the rate of steady decay for this distribution is
given by Ax = v rather than A2. This is because we are considering a particular
allele in this case. Ewens & Gillespie (1974) have called Ax a labelling eigenvalue.

In the derivation of formula (7) no consideration was made about the fact that
the sum of frequencies over all alleles in a population is unity. This is because the
initial condition for the gene frequency is sufficient to determine equation (3)
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uniquely (cf. Crow & Kimura, 1970, p. 441). Therefore, if we consider the initial
conditions for all possible alleles, the sum of gene frequencies should be 1 at any

generation. In fact, it can be shown that x3>{x, t)dx is always 1.
Jo

Case 2: Let us now consider the case in which the initial population is in
equilibrium with a given value of iNv, i.e. M0, and then because of the change in
population size or mutation rate &Nv becomes M. In practice, of course, population
size would change gradually rather than suddenly in a single generation. However,
the change in population size is generally much quicker than that of genetic
variability, so that the assumption of sudden change in population size would not
affect our final result appreciably. Let ®k(p) be the stationary distribution of allele
frequencies for 4Nv = M0 when the number of possible alleles is k. Then,

°*k>>= VIA ^nvrm i (i-y)^-*--1?*"-1, (9)
\.(A0~B0)L(B0)

where Ao = kM0/(k-1) and Bo = Mol(k-1) (Kimura, 1968). Therefore, for
a given value of k, the distribution of allele frequencies in the <th generation is
given by p ^

J o
If we note

rF(A + i-l, -i,A-B, l-p)k(p)dp<i> = k i {Atl~mn[~i)niA<Af0)n'
Jo n = 0 \-A-—£>)nn< \A0)n

where (a)n = a(a+ 1), ..., (a + n — 1), then Ofc(a;, t) is given by

i-l)e '
I t can be shown that if 4̂ = Ao and B = Bo, then Ofc(a;, <) = ^ ( x ) , as expected.

The distribution $>{x, t) can be obtained by putting k-> oo in <l>fc(a;, t). The first
term in (11), corresponding to i = 0, becomes ilfce^l — x)3*-1, as expected. For
i Js 1, we note that

* (A + i-l)n(A0-B0)n(-i)n * (-j)n(

which is 0 if i = 1. Therefore, we have

- Y1x-1(\-x)M-1F{M+i-l, -i,31,l-:
» = 2

jM+2i-imMtimM+i-iK_x^
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It can be shown that for M^ = M or for t = oo, <D(a;, t) = Mx-^l-x)11-1, as
expected. Note that the asymptotic rate of approach to equilibrium is again given

by A2, and I a*D(a;, t)dx = 1 for all i's.
J o

1-5 -i

.2 io
c

0-5-

I
0-5 10

Fig.
Gene frequency

1. Transient distributions of allele frequencies with ±Nv = 0-1. The initial
population was assumed to be monomorphio for a particular allele. T: time in the
unit of 2N generations.

Some of the numerical results obtained by using (7) and (12) are given in
Figs 1-3. Fig. 1 refers to the case where the initial population was completely
homozygous and M = 0-1. (We note that in many natural populations the value
of M is about 0 1 ; Nei, 1975.) In the early generations (t = 0-1N) allele frequencies
are concentrated either near 0 or near 1. This is because most new mutant alleles
exist in low frequency, while the frequency of the original allele remains high. The
number of alleles whose frequency is close to 0-5, however, increases gradually,
and by generation t = N it becomes about one-sixth of the value at steady state.
At t = ION generations the distribution of allele frequencies becomes almost
indistinguishable from that of the steady state in this case. Fig. 2 refers to the case
where the initial population was in equilibrium with M$ = 0-1 and later the value
of M has increased 10 times. In this case, the expected number of alleles whose
frequency is close to 0 gradually increases due to accumulation of new mutations,
whereas the expected number of alleles whose frequency is close to 1 declines.
With M = 1, the steady state distribution of allele frequencies becomes inverse-J
shaped. If a locus is defined as monomorphic when the frequency of the most
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common allele is 0-99 or more, then the probability of monomorphism is only
0-01 at t = oo (cf. Kimura, 1971). Fig. 3 refers to the case where Mo = 0-05 and
M — 5. In this case, because of the large value of M, new mutations are rapidly
accumulated and the probability of monomorphism quickly declines. At t = 0- IN
there arises a peak in the distribution around the gene frequency equal to 0-9-
This is because the originally monomorphic alleles still have a high gene frequency.
In the present case the distribution of allele frequencies becomes almost indis-
tinguishable from that of the steady state by t = 2N generations.

15 -i

0 •

0 0-5 , 0
Gene frequency

Fig. 2. Transient distributions of allele frequencies. I t is assumed tha t the initial
population was in equilibrium with iNv = 0-1, but because of the increase of
population size, 4tNv was raised to 1-0. T: time in the unit of 2iV generations.

Using amino acid substitution data in evolution, Kimura & Ohta (1971) have
estimated the mutation rate for protein loci to be of the order of 10~7 per year
under the assumption of neutral mutations. If we use this estimate, the population
size becomes 1-25 x 107 for M = 5 in an organism whose generation time is one
year. Thus, 2N generations, which are required for reaching steady state, corre-
spond to about 25 million years. This is an extremely long time.

Heterozygosity and average number of alleles per locus

Average or expected heterozygosity is an important measure of genetic vari-
ability of a population. The expected heterozygosity in the tth generation is defined
as

H = 1 - f z2<D(
J o

a;, t)dx.
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Thus, this can be evaluated by using either (7) or (12), depending on the initial
condition. In both cases it can be shown to be

M
Ht = l + M+\ ° 1 + M) (13)

As expected, this agrees with the result obtained by Nei & Feldman (1972) and
Li & Nei (1975) (see also Mal6cot, 1948).

15 - ,

•3 10 -

0- I
0-5

Gene frei.|iiency
10

Fig. 3. Transient distributions of allele frequencies. It is assumed that the initial
population was in equilibrium with 4Nv = 0-05, but because of the increase of popu-
lation size, 4:Nv was raised to 5-0. T: time in the unit of 2JV generations.

Table 1. Expected number of alleles and heterozygosity in transient states

(Case 1: M = 1 and N = 500 with the initial population being completely mono-
morphic. Case 2: M = 1 and N = 500 with the initial population being in equilib-
rium with Mo = 0 1 and N = 50)

Time in generations ...

Case 1: na

H

Case 2: na

H

0
1
0

1-4
009

OliV

4 1
0-05

4-4
0 1 3

N

6 1
0-32

6-2
0-34

lOiV

7-1
0-5

7 1
0-5

oo

7 1
0-5

7-1
0-5

Another parameter which is of interest in population genetics studies is the
expected number of alleles that are existing in a population (Wright, 1949;
Ewens, 1964; Kimura, 1968). This number is obtained by

J 1I2N
(x, t)dx.
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This value was computed for two different cases. In Case 1, M = 1 and N = 500
were assumed with the initial population being completely monomorpbic. In
Case 2, M = 1 and N = 500 were again assumed but the initial population being
in equilibrium with Mo = 0-1 and N = 50. We assumed a high mutation rate
simply because it makes the numerical computation easier. The results obtained
are given in Table 1, together with the values of expected heterozygosity. It is
clear that the expected number of alleles rapidly increases in the early generations,
whereas the increase in expected heterozygosity is rather slow. This is of course
expected, since most of the new mutant alleles in the early generations exist in
low frequency, so that they do not contribute to heterozygosity very much.

DISCUSSION

In the last decade the formula <b(z) = Mx-1^ — x)M~x has been used extensively
in the study of the mechanism of maintenance of protein polymorphism. Thus,
Ewens (1972) and Maruyama & Yamazaki (1974) developed tests of selective
neutrality of genes, based on this distribution. In practice, however, the
assumption of steady state on which this formula is based does not always hold.
Therefore, we must be cautious about the conclusion obtained by these methods.
This is also true with the test proposed by Yamazaki & Maruyama (1972).
Recently, Latter (1975) applied this technique and showed that the observed
amount of heterozygosity for low gene frequency classes is much higher than the
expected. He took this as evidence for his hypothesis of optimum model selection
for protein activity. However, his results can also be explained by the hypothesis
that the populations he studied (species of the Drosophila willistoni group)
experienced a bottleneck recently, as indicated by Nei (1976). In fact, the present
study shows that if population size increases, many low frequency alleles are
accumulated in the population in the early generations (Figs 1 and 2). Thus, the
relative amounts of heterozygosity for low gene frequency classes are expected to
be higher than those for other classes. It is therefore difficult to distinguish between
the two competing hypotheses.

A similar difficulty arises in the study of the distribution of allele frequencies.
Ohta (1975) compared the observed distributions of allele frequencies in Drosophila
and man with the expected distributions which were obtained under the assump-
tion of steady state. She found an excess of low frequency alleles in both
Drosophila and man. This excess is expected to occur if her hypothesis of slightly
deleterious mutations is correct. However, it can also be explained by the hypo-
thesis of recent bottleneck or population expansion, since in this case the number of
low frequency alleles first increases (see, for example, Fig. 2). In this connexion
it is noted that there is another hypothesis for explaining the excess of low fre-
quency alleles. Namely, if mutation rate varies from locus to locus, the excess of
low frequency alleles is again expected to occur even if the population is in
equilibrium. This is because the expected number of low frequency alleles increases
rapidly with increasing value of 4JVv, whereas the number of intermediate or high
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frequency alleles is less sensitive to the variation of iNv. This can be seen from
comparison of the steady state distributions for the different values of iNv in
Figs 1-3.

As mentioned earlier, the present study is based on Kimura & Crow's infinite
allele model. In practice, however, protein polymorphism is usually studied by
electrophoresis. Recently, Kimura & Ohta (1975) derived an approximate formula
for the steady state distribution of allele frequencies appropriate to electrophoretic
data. Their study suggests that as long as the value of 'LNv remains small com-
pared with unity, the infinite allele model applies approximately to electrophoretic
data. In practice, 4J$v for protein loci seems to be generally small compared with
unity, since the observed value of average heterozygosity is almost always smaller
than 0-3 (Nei, 1975).

This study was supported by U.S. Public Health Service Research Grant GM 20293.
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