
BULL. AUSTRAL. MATH. SOC. MOS I6A64, (I6A48, I6A62)

VOL. 3 (1970), 337-348.

Interlacing methods and large

indecomposables

S. E. Dickson and G. M. Kelly

The method of interlacing of modules, like amalgamation of

groups, is a way of getting new objects from old. Briefly, the

interlacing module we consider is a certain factor module of a

direct sum of copies (finite or infinite) of an original module

M . The conditions given in a previous paper by the first

author in order that the interlacing module (using finitely many

copies) be indecomposable are here greatly weakened, and we

further allow the number of copies of the original to be

infinite. R. Colby has shown that if R is a left artinian

ring, the existence of a bound on the number of generators

required for any indecomposable finitely-generated left

i?-module implies that R has a distributive lattice of two-sided

ideals. This result is extended to rings whose identity is a sum

of orthogonal local idempotents.

For these rings the same distributivity is proved in case every

indecomposable interlacing module of the above type which begins

with an indecomposable projective M is finitely-generated. A

consequence is that any finite-dimensional algebra over a field

having infinitely many two-sided ideals has infinite-dimensional

indecomposables.

1. Introduction

We deal throughout with left modules over a fixed ring Ft , which we

shall seldom need to mention explicitly. All our rings have identities
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and all our modules are unitary.

Various authors (see in particular Colby [3] and Dickson [5]) have

constructed, under suitable hypotheses on R , arbitrarily large

finitely-generated indecomposable modules, by the use of an interlacing

method: one takes a module M containing two isomorphic submodules S

and S' , forms the direct sum of a number of copies of M , and identifies

the 5 in the fc-th copy of M with the S" in the (fe+l)-th copy;

under suitable conditions the resulting quotient module is indecomposable.

Other authors (see Corner [4], Butler [2], Brenner [?]) have shown

that, even when R is a finite-dimensional algebra over a field, there

may exist infinite-dimensional indecomposable modules. At the moment, it

is for rather special classes of such algebras that infinite-dimensional

indecomposables have been shown to exist. For some of these classes,

however, the indecomposables can have very large infinite dimensions - any

cardinal less than the first strongly inaccessible one.

Our aims in the present paper are three: first, to improve as far as

we can the interlacing method, weakening the hypotheses under which it

produces indecomposables; secondly, to extend it to the countably-infinite

case; and thirdly, to prove that a large class of rings admits

infinitely-generated indecomposables.

2. Indecotnposability of quotient modules

Let i : A -*• B be a monomorphism of modules. Wherever we find it

convenient, we speak as if i were actually the inclusion of a submodule.

In particular, we write the cokernel of i as p : B •*• B/A . We write

EndB for the ring of endomorphisms of B , and Rad End5 for the

Jacobson radical of this. We contemplate the following five conditions

that may be satisfied by such a monomorphism i :

Condition I. For every m : B •* A , mi = 0 .

Condition II. Ext^B, i) : Ext1(S, 4) •*• Ext1(B, B) is monomorphic.

Condition III. If r> is an idempotent endomorphism of A , with

ir = ti for some endomorphism t of B , then r = 0 or r = 1 .

Condition IV. If t is an idempotent endomorphism of B with
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ti = 0 then t = 0 .

Condition V. If t is any endomorphism of B with ti = 0 then

t $ Rad EndB .

2.1. If A is semi-simple, that is if it is the direct sum of a

(possibly infinite) number of simple modules, it is easy to see that

Condition I is equivalent to the assertion that no non-zero submodule of

A is a direct summand of B .

2.2. Since we have the exact sequence

0 •*• Hom(B, A) -»• Hom(B, B) •*• Hom(B, B/A) -* Ext^B, A) •* Ext1{B, B) •* ...

it is clear that Condition II is equivalent to the assertion that

Hom(l, p) : Hom(B, B) -»• Hom(B, B/A) is epimorphic; that is, that every

g : B •* B/A lifts to an / : B •* B with pf = g .

2.3. Condition V implies Condition IV since if (l-t)t = 0 and

t i Rad EndB then 1 - t is invertible and so t = 0 .

2.4. If EndB is a local ring and if A t 0 , Conditions III and V

are automatically satisfied, and so a fortiori is Condition IV. For

Condition V this is clear; since ti = 0 and i t 0 , t is a non-unit

and so belongs to Rad EndB . For Condition III, either t or 1 - t is

a unit; by replacing r "by 1 - r if necessary, we can suppose that

1 - t is a unit. Since ti = ir we have (t-t2)i = i(r-r2) = 0 ; for

r is idempotent. Since 1 - t is a unit this gives ti = 0 , so that

ir = 0 and hence r = 0 since i is monomorphic.

LEMMA 2.5. Let i satisfy Conditions I and II, and let s be an

idempotent endomorphism of B/A . Then there is an idempotent

endomorphism t of B with pt = sp .

Proof. By 2.2, Condition II allows us to find f : B + B with

pf = sp . Set n = f - f2 , and observe that n commutes with / . Then

pn = p(.f-f2) = (s-s2)p = 0 , so that n = im for some m : B •*• A . Since

mi = 0 by Condition I, it follows that n2 = 0 . Setting

t = f - n + 2nf , and using f2=f-n and w2 = 0 , we verify at once

that t2 = t . Since pn = pirn = 0 , we have pt = pf = sp .

PROPOSITION 2.6. Let i satisfy Conditions I and II. Then B/A

is indecomposable if and only if every idempotent enilomorphism of B that
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maps A into A is either 0 or 1 .

Proof. IF Let s be an idempotent endomorphism of B/A . By Lemma

2.5 there is an idempotent endomorphism t of B with pt = sp ; thus

t maps A into A . By hypothesis, t = 0 or 1 ; since p is

epimorphic it follows that s = 0 or 1 ; thus B/A is indecomposable.

ONLY IF Let t be an idempotent endomorphism of B mapping A

into A . Then t induces an idempotent endomorphism s of B/A with

sp = pt . Since B//1 is indecomposable, s = 0 or 1 ; on replacing t

by 1 - t if necessary we can suppose that s = 0 . Then since pt = 0

we have t = im for some m : B •* .4 . Since mi = 0 by Condition I, we

have £2 = 0 ; whence t = 0 since i = i2 .

COROLLARY 2.7. Let i satisfy Conditions I, II, III, IV. Then

B/A is indecomposable.

Proof. Let t be an idempotent endomorphism of B mapping A into

A . Then ti = ir for some r : A -*• A , and r too is idempotent. By

Condition III, r = 0 or 1 ; on replacing t by 1 - t if necessary,

we may suppose that r = 0 . Then ti = 0 , so that t = 0 by Condition

IV.

3. The interlacing construction

Consider module homomorphisms ty, \j> : S -*• M ; we suppose that <)>

(but not necessarily i/>) is monomorphic. Let fi be an ordinal i 1

that is either a finite ordinal n or else the first infinite ordinal u) .

Let A be the direct sum of copies of 5 , indexed by the ordinals < fi ;

le t B similarly be the direct sum of copies of M , indexed by the

ordinals < ft ; and define a homomorphism i : A •* B as follows, in

terms of i t s matrix components i :
ctp

i = <j> for a l l a ,
aa

ia a_± = <|) for al l a > 1 ,

i = 0 for a l l other (a, 3) .
ass

Thus in the finite case i i s the matrix
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0 0

$ 0

0 0

0 0

0 0

0 0 0 <|> 0

0 0 0 \\) (f>

That £ is a monomorphism follows at once from the fact that <)> is a

monomorphism. It is our intention to show that B/A is indecomposable

under suitably hypotheses on (j> and t|i .

We shall need to contemplate for the monomorphism (j> the same

Conditions I - V that we contemplated in §2 for the monomorphism i . We

must also contemplate the following two conditions on the ordered pair

Condition VI. For any a, b £ EndW and any k $ EndS , if

atp = bij> + fyk then aty = 0 .

Condition VII. For any a £ EndW , if aty = 0 then a<j> = 0 .

LEMMA 3.1. If <$>, i|» satisfy Conditions VI and VII, and i/

?z : M -*• S t then h<$> = hty = 0 . Jn particular, ty satisfies Condition I.

Proof. We have (<|>7i)tj; = <|>(?"JJ) , whence by Condition VI (<$>h)ty = 0 .

It then follows from Condition VII that (4>?0(|> = 0 . Since <)> is

monomorphic, we conclude that h\p = h§ - 0 .

PROPOSITION 3.2. Let <|> satisfy Conditions II, III, and V, and

let ()>, i|> satisfy Conditions VI and VII. T«en i satisfies, in the

finite case, Conditions I, II, III, and V . In the infinite case, i

satisfies Conditions I, II, III, and IV, provided that we add the

following extra hypothesis: the functor Ext1 (A/, -) preserves countable

direct sums.

Proof, i satisfies I: Immediate from Lemma 3.1.

i satisfies II: Since Ext^B, -) is the direct product of the

functors E x t 1 ^ , -) , it suffices to prove that Ext^W, i) is

monomorphic. How E x t 1 ^ , A) and Ext1 (M, B) are, using the extra

hypothesis in the infinite case, direct sums of copies of Ext^Af, S) and
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of Ext (M, M) respectively; and E x t 1 ^ , i) is the matrix made from

Ext1 (M, <j>) and E x t 1 ^ , \p) exactly as the matrix i is made from cj>

and tp . That E x t 1 ^ , i) is monomorphic now follows from the hypothesis

that ExtM^j <l>) is monomorphic; that is, from Condition II for <(> .

i satisfies III: Let ti = ir where r is idempotent. Write t

and r (0 5 a, B < (!) for the matrix components of t and of r .
Ot C5

For simplicity set r = 0 for a < 0 and (in the finite case) t . = 0
Otp dp

for 6 i f! • With this convention the equation ti = iv becomes the

following set of equations, which hold for all a, 3 with 0 5 a, B < fl :

We first prove by induction on a that r . = 0 for 3 > a ; it is

ap

true for a < 0 , and we suppose it to be true for all a' < a . Then by

the inductive hypothesis (l) gives
(2) taB* + ta j B + 1* = <j>rae for 6 > - « ,

whence Condition VI gives

(3) ta>6+1<), = 0 for 3 2 «

and t h e n C o n d i t i o n VI I g i v e s

(1*) t a g+1<t> = 0 fo r B i d .

Equations (2), (3), and (1*) now give <J>r o = 0 for 3 > a , and since <j>

is monomorphic we have the desired result

(5) r . = 0 for 3 > a •

ats

Since rz = r and since rQ = 0 for 3 > 0 , we have r* = r .

Moreover (l) gives, using (3), t if) = <$>r . I t now follows from

Condition III for <]) that r = 0 or 1 . On replacing r by 1 - r

if necessary, we may suppose that

<6> r0Q = 0 .

We next prove by induction on a that r = 0 . Let a > 0 , and
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suppose it true for all a' < a . Putting 3 = a - 1 in (l) and using

the inductive hypothesis gives

a,a-lT aor v a,a-l '

whence Condition VI gives

(7) taj> = 0 ,

and then Condition VII gives

(8) taa<(. = 0 .

Putting now 3 = a in (l), and using (8), (3), and (5), we get

§r = 0 , and since <J> is monomorphic we have the desired result

(9) raa = 0 .

We finally prove by induction on a - 3 that r „ = 0 for a > 3 •
ap

In view of (5) and (9) the equation r = r2 gives, for a > 3 >

(10) r „ = I r r . .

aB £ ay Y6

For a - 3 = 1 , the right side of (10) is vacuous, and we get r - 0 .

Let a - 3 > 1 , and suppose the result is true for all lesser values of

a - 3 • Then each term on the right side of (10) vanishes by the

inductive hypothesis, whence we indeed have

(11) r . = 0 for a > 3 •
otp

From (5), (9), and (11) we have r = 0 , which completes the proof that i

satisfies Condition III.

i satisfies Condition V {finite ease): If ti = 0 equation (l)

gives

whence t O4> = 0 by Condition VI; and then Condition V for (t allows us
cits

to conclude that t . € Rad EndM . As is well known, this is equivalent
oip

to the assertion that t € Rad EndS .
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i satisfies Condition IV (.infinite case): The above reasoning still

gives £ . € Rad EndM , even in the infinite case, but this no longer

implies that t d Rad EndS . Thus we cannot get Condition V for i in

the infinite case, but the weaker Condition IV will now follow once we

prove:

LEMMA 3.3. Let t be an idempotent endomorphism of B with

£ . € Rad EndM for each a, 3 . Then t = 0 .
afcs

Proof. Write t. for the 3-th column of t , so that ta is the
p fcs

3-th component homomorphism £ : M -*• B . It suffices to show that

t = 0 for all 3 , and to do this it suffices to show that tox = 0 for
p p

each x £ M .

Given 3 and x , the element tax of B has components t .x ,
p oip

0 - CJ < ft ; and all but a finite number of these components are 0 .

Suppose that t x = 0 for a 2 N . Partition the matrix t and the
ap

column-vector tn thus:
P

a b
t =

a d

where a has N rows and N columns, and p has N entries. Since

(l-t)t = 0 we have (l-*)*fl = 0 , or

1-a -b\

-c \-d\

p)
0 ;

<7J

in particular we have (l-a)p - bq = 0 , and therefore

(l-a)px = bqx .

But the assertion that £ .x = 0 for a > N is just the assertion that
otp

qx = 0 ; so we have

(l-a)px = 0 .

But if B' is the direct sum of the first N copies of M , we have
a € Rad EndS' since each £ g i Rad EndM ; hence 1 - a is invertible,
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and we conclude that px = 0 . From px = 0 and qx = 0 we now have
tox = 0 , as required.

P

The proof of Proposition 3-2 i s now complete. Combining Proposition

3.2 with Corollary 2.7j and taking account of 2.1*, we have:

THEOREM 3.4. Let $, ty : S •*• M be homomorphisms with <f>

monomorphia, and construct i : A -*• B as above. Let <j> satisfy

Conditions I I , I I I , and V,- in the case when EndM is local and S p 0 ,

Conditions I I I and V for $ are automatic and need not be explicitly

imposed. Let <f>, <|i satisfy Conditions VI and VII. In the infinite case,

let Hxtl{M, -) preserve countable direct sums. Then B/A is

indecomposable.

3.5. In the finite case there is a slightly different interlacing

construction we can use. We can take B as before to be the sum of n

copies of M , but A to be the sum of only (tt-l) copies of 5 , with

i as the matrix

1 =

<!>
0

0

0

0

-e-

•

0

0

0

0

*

0

0

. . . 0

. . . 0

. . . 0

... •

. . . 0

0

0

0

-e-

The above arguments a l l s t i l l work with very minor changes, and B/A

again indecomposable under the same conditions.
i s

4. Rings with large indecomposabies

We call an idempotent e in a ring R a local idempotent, if the

ring eRe is local (see Lambek [6], pp. 76-78). We call a ring R

special, if 1 admits a decomposition 1 = e-^ + e~ + . . . + em as a sum

of orthogonal local idempotents. An artinian ring (one with minimum

condition for left ideals) is of course special. Clearly any quotient

ring of a special ring is special.

THEOREM 4.1. Let R be a special ring, and suppose that its

lattice of two-sided ideals is not distributive. Then R has
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•indecomposable modules that are not finitely generated. It also has

finitely-generated indecomposable modules requiring an arbitrarily high

number of generators.

Proof. Since the lattice of two-sided ideals of R is modular but

not distributive, i t contains a sublattice of the form

K .

Since an indecomposable i?/§-module is also an indecomposable i?-module,

and since R/Q is again special, we may without loss of generality-

suppose that Q = 0 .

Then given x € J there is a unique y € J with x-y d K ; write

rue for this y . Then n : J •*• J is an isomorphism of (R, i?)-bimodules.

Let 1 = e + e ? + ... + e be a representation of the identity of

J as a sum of orthogonal local idempotents. Since J 4 0 , there must be

some e with Ie t 0 ; write e for this e . Then Ie and Je
a a a

are (ft, eRe )-bimodules , and n restricts to an (i?, eRe)-isomorphism

£ : Ie •*• Je .

Take M to be the left i?-module Re . As a direct summand of R ,

M is projective. The endomorphisms of M are exactly the right

multiplications by elements of eRe , and EndM = (eRe)0? is therefore

local; in particular M is indecomposable.

Take 5 to be the left i?-module Ie . Define (J) : 5 -»• M to be the

inclusion Ie •*• Re , and ^ : S •*• M to be the isomorphism t, : Ie •*• Je

followed by the inclusion Je + Re .

Since M is projective, %xkl(M, -) = 0 . Thus Condition II for $

is trivially satisfied, as is the condition that Ext^Af, -) preserve

infinite direct sums. Since EndW is local and S ̂  0 , Conditions III

and V for (j) are automatically satisfied, by 2.U.

We have im<{> = Ie , irnij) = Je . Since Ie and Je are stable under
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the endomorphisms of M , and since Ie n Je = 0 , Condition VI is

satisfied. Since Ie and Je are isomorphic as (/?, ei?e)-bimodules, and

hence as (R, EndM)-bimodules, Condition VII is satisfied.

If we now carry out the interlacing construction of §3, using either

the finite or the infinite case, it follows from Theorem 3.1* that B/A is

indecomposable.

It remains to prove that B/A is not finitely generated in the

infinite case, and requires in the finite case a number of generators that

approaches infinity with n .

Since I n J = 0 , IJ = 0 ; and similarly for the other products

IK and so on. Since P = J + K , it follows that IP = 0 ; similarly

JP = 0 . Since P = I + J , it then follows that P2 = 0 . Hence P

lies in the radical N of R . Since imc|> and imlf) both lie in the

submodule Pe of M = Re , they "both lie in Ne . Thus B/A has a

quotient module consisting of the direct sum of fi copies of M/NM , that

is of Re/He . By the theory of local idempotents (see [6], pp. 76-78)

Re/Ne is a simple left i?-module, hence B/A cannot be covered by a

direct sum of a finite number of copies of R/N (hence of J) in case Q

is infinite, and in the finite case an increasingly large number of copies

of R/N (hence of R) is required as n becomes large.

Since a distributive lattice in which all chains have bounded length

is finite, we have

COROLLARY 4.2. Let R be an artinian ring whose lattice of

two-sided ideals is infinite. Then the conclusions of Theorem 4.1 hold.

4.3. The simplest example to which Theorem U.1 applies is the

Z2-algebra R with additive basis {l, x, y) and with

x2 = y2 = xy = yx = 0 . The lattice of ideals is
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The indecomposable B/A produced by the above process has a basis

consisting of elements u (0 S a < u) and el<

w i t h xu = u , yu = u .. , xv = yv = 0 .
a a ' a a a+1 a * a

consisting of elements u (0 S a < u) and elements v (0 5 a < a)) ,
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