1

Basic notions

In this chapter we shall deal with semigroups $\left\{V_{t}, t \in \mathbb{R}^{+}=[0,+\infty)\right\}$ of continuous operators $V_{t}: X \rightarrow X$ acting on a complete metric space X. We shall denote them $\left\{V_{t}, t \in \mathbb{R}^{+}, X\right\}$ or simply $\left\{V_{t}\right\}$.

In what follows, the term semigroup refers to any family of continuous operators $V_{t}: X \rightarrow X$ depending on a parameter $t \in \mathbb{R}^{+}$and enjoying the semigroup property: $V_{t_{1}}\left(V_{t_{2}}(x)\right)=V_{t_{1}+t_{2}}(x)$ for all $t_{1}, t_{2} \in \mathbb{R}^{+}$and $x \in X$.

A semigroup $\left\{V_{t}\right\}$ is called pointwise continuous if the mapping $t \rightarrow V_{t}(x)$ from \mathbb{R}^{+}to X is continuous for each $x \in X$. A semigroup is called continuous if the mapping $(t, x) \rightarrow V_{t}(x)$ from $\mathbb{R}^{+} \times X$ to X is continuous.

Given a semigroup $\left\{V_{t}\right\}$ the following notation will be frequently used:

$$
\begin{aligned}
\gamma^{+}(x) & :=\left\{y \in X \mid y=V_{t}(x), t \in \mathbb{R}^{+}\right\} \equiv\left\{V_{t}(x), t \in \mathbb{R}^{+}\right\} \\
\gamma_{\left[t_{1}, t_{2}\right]}^{+}(x) & :=\left\{V_{t}(x), t \in\left[t_{1}, t_{2}\right]\right\} \\
\gamma_{t}^{+}(x) & :=\gamma_{[t, \infty)}^{+}(x) \equiv\left\{V_{\tau}(x), \tau \in[t, \infty)\right\} \\
\gamma^{+}(A) & :=\bigcup_{x \in A} \gamma^{+}(x) \\
\gamma_{\left[t_{1}, t_{2}\right]}^{+}(A) & :=\bigcup_{x \in A} \gamma_{\left[t_{1}, t_{2}\right]}^{+}(x) \\
\gamma_{t}^{+}(A) & :=\bigcup_{x \in A} \gamma_{t}^{+}(x) .
\end{aligned}
$$

It is easy to verify that $V_{t}\left(\gamma^{+}(A)\right)=\gamma_{t}^{+}(A)$.
The curve $\gamma^{+}(x)$ is called the positive semi-trajectory of x. The collection of all bounded subsets of X is denoted by \mathcal{B}.

We use the letter B (with or without indices) to denote the elements of \mathcal{B}, i.e. the bounded subsets of X.

A semigroup $\left\{V_{t}\right\}$ is called locally bounded if $\gamma_{[0, t]}^{+}(B) \in \mathcal{B}$ for all $B \in \mathcal{B}$ and all $t \in \mathbb{R}^{+} .\left\{V_{t}\right\}$ is a bounded semigroup if $\gamma^{+}(B) \in \mathcal{B}$ for each $B \in \mathcal{B}$.

Let A and M be subsets of X. We say that A attracts M or M is attracted to A by semigroup $\left\{V_{t}\right\}$ if for every $\epsilon>0$ there exists a $t_{1}(\epsilon, M) \in \mathbb{R}^{+}$such that $V_{t}(M) \subset \mathcal{O}_{\epsilon}(A)$ for all $t \geq t_{1}(\epsilon, M)$. Here $\mathcal{O}_{\epsilon}(A)$ is the ϵ-neighbourhood of A (i.e. the union of all open balls of radii ϵ centered at the points of A). We say that the set $A \subset X$ attracts the point $x \in X$ if A attracts the one-point set $\{x\}$.

If A attracts each point x of X then A is called a global attractor (for the semigroup). A is called a global B-attractor if A attracts each bounded set $B \in \mathcal{B}$.

A semigroup is called pointwise dissipative (respectively, B-dissipative) if it has a bounded global attractor (respectively a bounded global B-attractor).

Our main purpose here is to find those semigroups for which there is a minimal closed global B-attractor and investigate properties of such attractors. These attractors will be denoted by \mathcal{M}. We shall examine also the existence of a minimal closed global attractor $\widehat{\mathcal{M}}$. It is clear that $\widehat{\mathcal{M}} \subset \mathcal{M}$ and later on we will also verify that $\widehat{\mathcal{M}}$ might be just a small part of \mathcal{M}.

The concept of invariant sets is closely related to these subjects. We call a set $A \subset X$ invariant (relative to semigroup $\left\{V_{t}\right\}$) if $V_{t}(A)=A$ for all $t \in \mathbb{R}^{+}$.

A set $A \subset X$ is called absorbing if for every $x \in X$ there exists a $t_{1}(x) \in$ \mathbb{R}^{+}such that $V_{t}(x) \in A$ for all $t \geq t_{1}(x)$. A set A is called B-absorbing if for every $B \in \mathcal{B}$ there exists a $t_{1}(B) \in \mathbb{R}^{+}$such that $V_{t}(B) \subset A$ for all $t \geq t_{1}(B)$.

In our investigation of the problems concerning the attractors \mathcal{M} and $\widehat{\mathcal{M}}$ the concept of ω-limit sets will play a fundamental role. For $x \in X$ the ω-limit set $\omega(x)$ is, by definition, the set of all $y \in X$ such that $y=\lim _{k \rightarrow \infty} V_{t_{k}}(x)$ for a sequence $t_{k} \nearrow+\infty$.

The ω-limit set $\omega(A)$ for a set $A \subset X$ is the set of the limits of all converging sequences of the form $V_{t_{k}}\left(x_{k}\right)$, where $x_{K} \in A$ and $t_{k} \nearrow+\infty$.

An equivalent description of the ω-limit sets is given by

Lemma 1.1

$$
\begin{equation*}
\omega(x)=\bigcap_{t \geq 0}\left[\gamma_{t}^{+}(x)\right]_{X} ; \quad \omega(A)=\bigcap_{t \geq 0}\left[\gamma_{t}^{+}(A)\right]_{X} . \tag{1.1}
\end{equation*}
$$

Here the symbol [] $]_{X}$ means the closure in the topology of the metric space X.

The proof of Lemma 1.1 is traditional and so is omitted. Since, $\gamma_{t_{2}}^{+}(A) \subset$ $\gamma_{t_{1}}^{+}(A)$ whenever $t_{2}>t_{1}$, the intersection over all $t \in \mathbb{R}^{+}$in (1.1) may be replaced by $\bigcap_{t \geq T}$ with any $T \in \mathbb{R}^{+}$.

It is necessary to have in mind that for locally non-compact spaces X the use of the concept of limit sets requires some caution since the intersection $A_{0}=\bigcap_{k=1}^{\infty} A_{k}$ of $A_{k}=\left[A_{k}\right]_{X} \supset A_{k+1}=\left[A_{k+1}\right]_{X}$ in them may be empty (and therefore unhelpful).

