Basic notions

In this chapter we shall deal with semigroups \(\{ V_t, t \in \mathbb{R}^+ = [0, +\infty) \} \) of continuous operators \(V_t : X \to X \) acting on a complete metric space \(X \). We shall denote them \(\{ V_t, t \in \mathbb{R}^+, X \} \) or simply \(\{ V_t \} \).

In what follows, the term *semigroup* refers to any family of continuous operators \(V_t : X \to X \) depending on a parameter \(t \in \mathbb{R}^+ \) and enjoying the semigroup property: \(V_{t_1}(V_{t_2}(x)) = V_{t_1+t_2}(x) \) for all \(t_1, t_2 \in \mathbb{R}^+ \) and \(x \in X \).

A semigroup \(\{ V_t \} \) is called *pointwise continuous* if the mapping \(t \to V_t(x) \) from \(\mathbb{R}^+ \) to \(X \) is continuous for each \(x \in X \). A semigroup is called *continuous* if the mapping \((t, x) \to V_t(x) \) from \(\mathbb{R}^+ \times X \) to \(X \) is continuous.

Given a semigroup \(\{ V_t \} \) the following notation will be frequently used:

\[
\gamma^+(x) := \{ y \in X \mid y = V_t(x), t \in \mathbb{R}^+ \} \equiv \{ V_t(x), t \in \mathbb{R}^+ \};
\]

\[
\gamma^+_{[t_1, t_2]}(x) := \{ V_t(x), t \in [t_1, t_2] \};
\]

\[
\gamma^+_t(x) := \gamma^+_{[t, \infty)}(x) \equiv \{ V_\tau(x), \tau \in [t, \infty) \};
\]

\[
\gamma^+(A) := \bigcup_{x \in A} \gamma^+(x);
\]

\[
\gamma^+_{[t_1, t_2]}(A) := \bigcup_{x \in A} \gamma^+_{[t_1, t_2]}(x);
\]

\[
\gamma^+_t(A) := \bigcup_{x \in A} \gamma^+_t(x).
\]

It is easy to verify that \(V_t(\gamma^+(A)) = \gamma^+_t(A) \).

The curve \(\gamma^+(x) \) is called the positive semi-trajectory of \(x \).

The collection of all bounded subsets of \(X \) is denoted by \(\mathcal{B} \).

We use the letter \(B \) (with or without indices) to denote the elements of \(\mathcal{B} \), i.e. the bounded subsets of \(X \).
A semigroup \(\{V_t\} \) is called *locally bounded* if \(\gamma_{[0,t]}(B) \in \mathcal{B} \) for all \(B \in \mathcal{B} \) and all \(t \in \mathbb{R}^+ \). \(\{V_t\} \) is a *bounded semigroup* if \(\gamma^+(B) \in \mathcal{B} \) for each \(B \in \mathcal{B} \).

Let \(A \) and \(M \) be subsets of \(X \). We say that \(A \) attracts \(M \) or \(M \) is attracted to \(A \) by semigroup \(\{V_t\} \) if for every \(\epsilon > 0 \) there exists a \(t_1(\epsilon, M) \in \mathbb{R}_+^+ \) such that \(V_t(M) \subset O_\epsilon(A) \) for all \(t \geq t_1(\epsilon, M) \). Here \(O_\epsilon(A) \) is the \(\epsilon \)-neighbourhood of \(A \) (i.e. the union of all open balls of radii \(\epsilon \) centered at the points of \(A \)). We say that the set \(A \subset X \) attracts the point \(x \in X \) if \(A \) attracts the one-point set \(\{x\} \).

If \(A \) attracts each point \(x \) of \(X \) then \(A \) is called a *global attractor* (for the semigroup). \(A \) is called a *global \(B \)-attractor* if \(A \) attracts each bounded set \(B \in \mathcal{B} \).

A semigroup is called *pointwise dissipative* (respectively, *\(B \)-dissipative*) if it has a bounded global attractor (respectively a bounded global \(B \)-attractor).

Our main purpose here is to find those semigroups for which there is a minimal closed global \(B \)-attractor and investigate properties of such attractors. These attractors will be denoted by \(\mathcal{M} \). We shall examine also the existence of a minimal closed global attractor \(\hat{\mathcal{M}} \). It is clear that \(\hat{\mathcal{M}} \subset \mathcal{M} \) and later on we will also verify that \(\hat{\mathcal{M}} \) might be just a small part of \(\mathcal{M} \).

The concept of invariant sets is closely related to these subjects. We call a set \(A \subset X \) invariant (relative to semigroup \(\{V_t\} \)) if \(V_t(A) = A \) for all \(t \in \mathbb{R}_+^+ \).

A set \(A \subset X \) is called absorbing if for every \(x \in X \) there exists a \(t_1(x) \in \mathbb{R}_+^+ \) such that \(V_t(x) \in A \) for all \(t \geq t_1(x) \). A set \(A \) is called \(B \)-absorbing if for every \(B \in \mathcal{B} \) there exists a \(t_1(B) \in \mathbb{R}_+^+ \) such that \(V_t(B) \subset A \) for all \(t \geq t_1(B) \).

In our investigation of the problems concerning the attractors \(\mathcal{M} \) and \(\hat{\mathcal{M}} \) the concept of \(\omega \)-limit sets will play a fundamental role. For \(x \in X \) the \(\omega \)-limit set \(\omega(x) \) is, by definition, the set of all \(y \in X \) such that \(y = \lim_{k \to \infty} V_{t_k}(x) \) for a sequence \(t_k \nearrow +\infty \).

The \(\omega \)-limit set \(\omega(A) \) for a set \(A \subset X \) is the set of the limits of all converging sequences of the form \(V_{t_k}(x_k) \), where \(x_K \in A \) and \(t_k \nearrow +\infty \).

An equivalent description of the \(\omega \)-limit sets is given by

Lemma 1.1

\[
\omega(x) = \bigcap_{t \geq 0} [\gamma_t^+(x)]_X; \quad \omega(A) = \bigcap_{t \geq 0} [\gamma_t^+(A)]_X. \tag{1.1}
\]

Here the symbol \([\]_X\) means the closure in the topology of the metric space \(X \).

The proof of Lemma 1.1 is traditional and so is omitted. Since, \(\gamma_{t_2}^+(A) \subset \gamma_{t_1}^+(A) \) whenever \(t_2 > t_1 \), the intersection over all \(t \in \mathbb{R}_+^+ \) in (1.1) may be replaced by \(\bigcap_{t \geq T} \) with any \(T \in \mathbb{R}_+^+ \).
It is necessary to have in mind that for locally non-compact spaces X the use of the concept of limit sets requires some caution since the intersection $A_0 = \bigcap_{k=1}^{\infty} A_k$ of $A_k = [A_k)_X \supset A_{k+1} = [A_{k+1})_X$ in them may be empty (and therefore unhelpful).