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Abstract

We use Hamiltonian Floer theory to recover and generalize a classic rigidity theorem of
Ekeland and Lasry. That theorem can be rephrased as an assertion about the existence
of multiple closed Reeb orbits for certain tight contact forms on the sphere that are close,
in a suitable sense, to the standard contact form. We first generalize this result to Reeb
flows of contact forms on prequantization spaces that are suitably close to Boothby–
Wang forms. We then establish, under an additional nondegeneracy assumption, the
same rigidity phenomenon for Reeb flows on any closed contact manifold. A natural
obstruction to obtaining sharp multiplicity results for closed Reeb orbits is the possible
existence of fast closed orbits. To complement the existence results established here, we
also show that the existence of such fast orbits cannot be precluded by any condition
which is invariant under contactomorphisms, even for nearby contact forms.

1. Introduction

The following theorem of Ekeland and Lasry appeared in 1980.

Theorem 1.1 [EL80]. Let Σ ⊂ R2n be a C2-smooth hypersurface which forms the boundary of
a compact convex neighborhood of the origin. If there are positive numbers r 6 R such that
R <

√
2r and

r 6 ‖x‖ 6 R

for all x ∈ Σ, then Σ carries at least n geometrically distinct closed characteristics with actions
in [πr2, πR2].

This result and the ideas developed in its proof have been highly influential. Much of the
subsequent progress on the problem of detecting closed characteristics on convex hypersurfaces,
such as the remarkable results of Long and Zhu in [LZ02], is built on the foundation laid down
in [EL80]. Indeed, Theorem 1.1 is still one of the most compelling facts supporting the following
well-known conjecture.

Conjecture 1.2. Every compact convex hypersurface in Rn carries at least n geometrically
distinct closed characteristics.

The basic idea underlying the proof of Theorem 1.1 is the following: Closed characteristics on
a convex hypersurface Σ are critical points of Clarke’s dual action principle which is invariant
under the natural S1-action on loops. If Σ satisfies the stated pinching condition, then the
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Rigid constellations of closed Reeb orbits

S2n−1-worth of closed characteristics (critical points) on the sphere of radius r influences the
topology of the negative sublevels of the dual action principle for Σ. In particular, the S1-action
is free on these sublevels and they must also contain an invariant copy of S2n−1. This forces the
restriction of the dual action to these sublevels to have at least cuplength(CPn−1)+1 = n critical
points.

In the present work we detect such influences using tools from Hamiltonian Floer theory.
With these tools we recover Theorem 1.1 and generalize the rigidity phenomenon underlying it
to Reeb flows on any closed contact manifold.

1.1 Recovery
We begin by recovering Theorem 1.1 in a different but equivalent setting. Let λ be a contact
form on M2n−1. It defines a unique Reeb vector field Rλ on M via the equations

iRλdλ = 0 and λ(Rλ) = 1.

It also defines a contact structure ξ = ker(λ). Any other contact form defining the same contact
structure is of the form fλ for some nonvanishing smooth function f : M → R.

Let λ0 be the standard contact form on the unit sphere S2n−1 ⊂ R2n obtained by restricting
the form 1

2

∑n
j=1(pjdqj − qjdpj). The following result is equivalent to Theorem 1.1 for the case

of smooth hypersurfaces.

Theorem 1.3. Let λ = fλ0 for some positive function f . If

max(f)

min(f)
< 2, (1)

then there are at least n distinct closed orbits of Rλ with periods in the interval [πmin(f),
πmax(f)].

Recall that a closed orbit γ of Rλ (closed Reeb orbit of λ) is said to be distinct from another
such orbit γ̃ if for all k ∈ N and c ∈ R there is a t ∈ R such that

γ(t) 6= γ̃(kt+ c).

Two closed orbits are said to be geometrically distinct if they have disjoint images. While
geometrically distinct orbits are distinct, the converse does not hold since two distinct orbits
can both be relatively prime multiples of a third closed orbit.

To see that Theorem 1.3 implies Theorem 1.1, consider a smooth hypersurface Σ as in the
statement of Theorem 1.1. It can be described in the form

Σ =
{
z
√
f(z) | z ∈ S2n−1

}
,

where f is a positive smooth function on S2n−1. There is a bijective correspondence between
the simple closed Reeb orbits of λ = fλ0 with period T (modulo translation) and the closed
characteristics on Σ with action equal to T . To show that Theorem 1.1 follows from Theorem 1.3,
it therefore suffices to show that the convexity of Σ implies that the closed Reeb orbits of λ
with period in [πmin(f), πmax(f)] are simple and hence geometrically distinct. Since max(f) <
2 min(f), it suffices to show that the convexity of Σ implies that Rλ has no closed orbits of period
less than πmin(f) or, equivalently, that Σ has no closed characteristics with action less than
πmin(f). This last condition follows immediately from the main result of Croke and Weinstein
in [CW81], which asserts that the closed characteristics of convex hypersurfaces containing the
ball of radius r have action at least πr2.
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Remark 1.4. Note that the convexity assumption for hypersurfaces is not invariant under
symplectomorphisms and that no assumption like convexity appears in the statement of
Theorem 1.3.

Remark 1.5. Given a contact structure ξ on M , there is a natural coarse pseudo-metric on the
space of contact forms defining ξ. For any two such contact forms, say λ and λ̃, there is a smooth
nonvanishing function fλ/λ̃ on M such that

λ = fλ/λ̃λ̃.

The distance between them can then be defined as

d(λ, λ̃) = ln

(max(fλ/λ̃)

min(fλ/λ̃)

)
. (2)

It is easy to verify that d is a pseudo-metric and that its degeneracy only reflects the fact that
it is invariant under scalar multiplication of the contact forms. In these terms, condition (1) can
be rephrased geometrically as d(λ, λ0) < ln 2.

1.2 Prequantization spaces
Our first generalization of Theorem 1.3 establishes the same rigidity phenomenon for all
prequantization spaces. Consider a closed symplectic manifold (Q,ω) such that the de Rham
cohomology class −[ω]/2π is the image of an integral class e ∈ H2(Q;Z). Let p : M → Q be an
S1-bundle over Q with first Chern class equal to e. Denote the corresponding Boothby–Wang
contact form on M by λQ and the corresponding contact structure by ξQ. We then have
dλQ = p∗ω and the Reeb vector field of λQ generates the circle action on M with period 2π.

Let αf ∈ [S1,M ] be the free homotopy class corresponding to the fibres of the bundle p :
M → Q and denote its order by |αf |.

Theorem 1.6. Let λ = fλQ for some positive function f . If

max(f)

min(f)
< 2,

then there are at least 1
2 dim(Q) + 1 distinct closed Reeb orbits of λ which represent the class

αf and have period in the interval

[2πmin(f), 2πmax(f)].

These orbits are geometrically distinct from one another if the class αf is either primitive or of
infinite order. Otherwise, they are geometrically distinct if there are no closed Reeb orbits of λ
which have period less than or equal to

2π

|αf |
(max(f)−min(f))

and which represent a class β such that βk = αf for some integer k > 1.

Note that we can detect geometrically distinct orbits in many cases without a geometric
assumption like convexity or an equivalent substitute like dynamical convexity.
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Remark 1.7. It is shown in [GGM15] that the class αf is of infinite order if (Q,ω) is symplectically
aspherical and is primitive if π1(Q) is torsion free. Under the assumption that both these
conditions hold, it is also shown in [GGM15] that if all the closed Reeb orbits of λ = fλQ are
nondegenerate and λ has no contractible closed Reeb orbits with Conley–Zehnder index within
one of 2 − 1

2 dimQ, then λ has infinitely many closed Reeb orbits with contractible projections
to Q.

1.3 Rigid constellations
We now present a more extensive generalization of the Ekeland–Lasry rigidity phenomenon. Let
(M,λ0) be any closed contact manifold and let α ∈ [S1,M ] be any free homotopy class. (The
trivial class will be denoted here by e.) We first identify collections of closed orbits of λ0 in class
α which can meaningfully influence the Reeb flows of contact forms which are nearby in the sense
of Remark 1.5. As the original proof of Theorem 1.1 suggests, these collections should consist of
simple orbits (so that the natural R/Z-action is free) and their periods should be isolated in the
period spectrum.

Let T (λ0) be the set of periods of all closed Reeb orbits of λ0 and, assuming that it is
nonempty, let Tmin(λ0) be the smallest such period. Restricting to orbits in class α, we get the
similarly defined set T (λ0, α) and minimal α-period, Tmin(λ0, α).

Given a T in T (λ0, α), let Cλ0,α(T ) be the collection of closed orbits of Rλ0 which represent
the class α and have period in the interval [Tmin(λ0, α), T ].

Definition 1.8. The collection of closed orbits Cλ0,α(T ) is a rigid constellation if every orbit in
Cλ0,α(T ) is simple, no decreasing sequence in T (λ0, α) converges to T and

T < Tmin(λ0, α) + Tmin(λ0). (3)

Given a rigid constellation Cλ0,α(T ), we set

T+ = min{T ′ ∈ T (λ0, α) : T ′ > T}.
This number is strictly greater than T by the second condition of the definition above.

Since Reeb vector fields are autonomous, the elements of a rigid constellation Cλ0,α(T ) can
be divided into separate R/Z-families of closed Reeb orbits, the elements of which differ only by
simple translation reparameterizations. It follows from the simplicity condition in Definition 1.8
that closed orbits belonging to different R/Z-families of a rigid constellation are geometrically
distinct from one another.

Example 1.9. Let λ0 be the standard contact form on the unit sphere M = S2n−1 ⊂ R2n. The
time-t Reeb flow of λ0 is

(z1, . . . , zn) 7→ (ei2tz1, . . . , e
i2tzn)

and so every Reeb orbit is closed with (minimal) period π. For the choice T = π, the set Cλ0,e(π)
is then a rigid constellation (diffeomorphic to S2n−1) with T+ = 2π.

Example 1.10. Consider an n-tuple r = (r1, . . . , rn) in Rn such that

0 < r1 < r2 < · · · < rn <
√

2r1.

Equip the unit sphere S2n−1 with the contact form

λr(z) =

( |z1|2
r2

1

+ · · ·+ |zn|
2

r2
n

)−1

λ0(z),
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where λ0 is the form from Example 1.9. The time-t Reeb flow of λr is

(z1, . . . , zn) 7→ (ei2t/r
2
1z1, . . . , e

i2t/r2nzn).

We then have Tmin = πr2
1 and are free to choose a T of the form Tk = πr2

k for some k = 1, . . . , n.
For these choices, we have

Cλr,e(Tk) = {Γ1, . . . ,Γk},
where each Γi is the R/Z-family of closed Reeb orbits with image equal to the intersection of
S2n−1 with the zi-plane. Each Cλr,e(Tk) is a rigid constellation with

T+
k =

{
πr2

k+1 if k < n,

2πr2
1 if k = n.

Example 1.11. Let (B, g) be a Riemannian manifold with negative sectional curvature. Let Σg∗ ⊂
T ∗B be the unit cosphere bundle and let λg∗ be the restriction to Σg∗ of the tautological one-form
on T ∗B. Then λg∗ is a contact form whose Reeb vector field generates the cogeodesic flow on Σg∗ .
Let α̃ be a nontrivial primitive element of [S1, B] and let α be its lift to [S1,Σg∗ ]. The assumption
of negative sectional curvature implies that there is a unique R/Z-family of closed Reeb orbits
of λg∗ in the class α. Thus, for T = Tmin(λg∗ , α), the set Cλg∗ ,α(T ) is a rigid constellation with

T+ = +∞.

A collection of closed Reeb orbits of a contact form λ is said to be nondegenerate if each of its
elements γ(t) is nondegenerate (and hence isolated) in the usual sense. The rigid constellation in
Example 1.9 is degenerate (Morse–Bott nondegenerate) while those described in Examples 1.10
and 1.11 are nondegenerate.

In § 2, we will associate to each nondegenerate rigid constellation Cλ0,α(T ) a version of S1-
equivariant Floer homology. With this we will define the rank of Cλ0,α(T ). At this point we can
now state our broadest generalization of Theorem 1.1.

Theorem 1.12. Let (M,λ0) be a closed contact manifold and let Cλ0,α(T ) be a nondegenerate
rigid constellation. Let λ = fλ0 for some positive function f . If

max(f)

min(f)
< min

{
T+

T
,
Tmin(λ0) + Tmin(λ0, α)

T

}
(4)

and every closed Reeb orbit of λ in class α and with period in the interval

[min(f)Tmin,max(f)T ]

is nondegenerate, then there are at least rank(Cλ0,α(T )) such orbits which are distinct from one
another. These orbits are geometrically distinct from one another if the class α is either primitive
or of infinite order. Otherwise, these orbits are geometrically distinct if there are no (fast) closed
Reeb orbits of λ with period less than or equal to

1

|α|(T max(f)− Tmin min(f))

that represent a class β such that βk = α for some integer k > 1.
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The primary point of this result is that it establishes the rigidity of closed Reeb orbits without
assumptions on the ambient contact manifold. In particular, it does not assume the existence of
strong symplectic fillings. The price of this generality is the presence of the term

Tmin(λ0) + Tmin(λ0, α)

T
.

While this term constrains the range of the rigidity phenomenon, it is needed to achieve
compactness for the relevant moduli spaces of Floer trajectories used here to detect it. Despite
the fact that the term is expressed in the language of dynamics, we do not know whether it
represents an actual boundary to the generalized Ekeland–Lasry rigidity phenomenon. When
(M,λ0) does admit strong symplectic fillings the proof of Theorem 1.12 simplifies greatly and
yields rigidity results with larger, sometimes infinite, range. These results are described below in
§ 1.5.

In Theorem 1.12 we have imposed nondegeneracy assumptions on certain closed Reeb orbits
of λ while in Theorem 1.6 no such assumptions are made. The lower bounds of Theorem 1.6
correspond to cup-length estimates in the spirit of those predicted in the strong form of
Arnold’s conjecture for Hamiltonian diffeomorphisms. Theorem 1.12 is more in the spirit of the
nondegenerate form of Arnold’s conjecture. Note that rather than assuming the nondegeneracy
of all closed Reeb orbits of λ (strong nondegeneracy) we have only assumed nondegeneracy
for the closed Reeb orbits of λ in a fixed range of periods. For the Ekeland–Lasry rigidity
phenomenon, this seems to be the appropriate assumption to obtain Morse-type inequalities.
The difference between this nondegeneracy assumption and the strong form is analogous, in the
setting of Arnold’s conjecture, to the difference between the assumption that the fixed points of
a Hamiltonian diffeomorphism are nondegenerate and the assumption (clearly irrelevant in that
case) that all its periodic points are nondegenerate. This point its captured nicely by the contact
forms λr from Example 1.10. Given r = (r1, r2) with r1 6 r2 <

√
2r1, we know that all contact

forms λr have at least two closed Reeb orbits with periods in [πr2
1, πr

2
2] and of course we would

like our theorems to see this too. For r1 = r2, these orbits are detected by Theorem 1.3 and,
for r1 < r2, they are detected by Theorem 1.12. In contrast, contact forms λr satisfy the strong
nondegeneracy assumption if and only if r1 and r2 are rationally independent.

Remark 1.13. Under the strong nondegeneracy assumption one can, in certain cases, detect
more dramatic rigidity phenomena. This is because tools such as the index iteration formulas
for Maslov indices become much sharper, and the rich machinery of symplectic and contact
homology may also become available. For example, Conjecture 1.2 was proven for the case of
convex hypersurfaces all of whose closed characteristics are strongly nondegenerate by Long and
Zhu in [LZ02] (starting from the analytic framework of [EL80]). More recently, this was reproved
under weaker dynamical convexity assumptions by Gutt and Kang in [GK16] using S1-equivariant
symplectic homology, and Abreu and Macarini in [AM17] using contact homology.

1.4 Applications (with no strong symplectic fillings)
Theorem 1.12 can be applied to any Reeb flow on a closed manifold for which one has a basic
understanding of its fastest closed orbits. One does not need the contact manifold to admit a
strong symplectic filling, nor must one preclude the existence of certain closed Reeb orbits. These
points are illustrated by the following three applications.

(A) Consider the three-dimensional torus T3 = R/Z × R/Z × R/Z with angular coordinates
(x, y, θ) and the familiar family of contact forms

λk = cos(kθ) dx+ sin(kθ) dy (5)
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for k ∈ N. The underlying contact structures ξk = kerλk are all weakly symplectically fillable
(and hence tight). However, Eliashberg proved in [Eli96] that for k > 2 the contact structures
ξk are not strongly symplectically fillable. Hence, one cannot define symplectic cohomology or
linearized contact homology for the contact forms they support. Nevertheless, Theorem 1.12 can
be applied to all such forms.

The Reeb vector field of λk is

cos(kθ)
∂

∂x
+ sin(kθ)

∂

∂y
.

Hence, the Reeb flow is linear on each xy-torus. The closed Reeb orbits represent nonzero classes
of the form

(m,n, 0) ∈ Z× Z× Z = H1(T3;Z).

For a fixed pair of integers (m,n) these orbits all have period
√
m2 + n2. They foliate k subtori

of the form
T2 × {θjm,n} ⊂ T3,

where θ1
m,n, . . . , θ

k
m,n are the solutions of the two equations

cos(kθ) =
m√

m2 + n2

and
sin(kθ) =

n√
m2 + n2

.

The orbits on these tori are simple if and only if m and n are relatively prime. In this case,
for T =

√
m2 + n2 the collection Cλk,(m,n,0)(T ) is a rigid constellation with T+ = +∞. (Here we

have identified H1(T3;Z) with [S1,T3] in the obvious way.) A simple perturbation argument, see
for example [Bou03], shows that each torus contributes 2 to the rank of Cλk,(m,n,0)(T ). Hence,
rank(Cλk,(m,n,0)(T )) = 2k. With this, Theorem 1.12 implies the following result.

Theorem 1.14. Let λ = fλk, where f : T3→ R is a positive function. Let m and n be relatively
prime integers. If

max(f)

min(f)
<

√
m2 + n2 + 1√
m2 + n2

and the closed Reeb orbits of λ in class (m,n, 0) and with period in the interval[
min(f)

√
m2 + n2,max(f)

√
m2 + n2

]
are nondegenerate, then there are at least 2k such orbits which are geometrically distinct from
one another.

(B) Next we apply Theorem 1.12 to an overtwisted contact three-manifold. Consider the manifold
M = R/Z× R/Z× [0, 2π] with coordinates (x, y, t) and the family of contact forms

ηk = cos(kt) dx+ sin(kt) dy

for k ∈ N∪{0}. Each ηk is invariant under the free R/Z-action generated by the vector field ∂/∂y.
Thus, we can perform the contact cut operation, as defined by Lerman in [Ler01], with respect
to the restriction of this action to the boundary of M (see [Ler01, Example 2.12]). We obtain in
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this way contact forms η̃k on R/Z×S2. Here x can still be viewed as a coordinate parameterizing

the R/Z-fibres of the product R/Z × S2 and we can identify η̃k with ηk away from the fibres

over the poles of S2 (which correspond to t = 0 and t = 2π). As shown in [Ler01], the contact

structures ker(η̃k) are overtwisted and contactomorphic to one another for all k > 0. Hence, the

contact manifolds (R/Z× S2, η̃k) have no strong symplectic fillings for k > 0.

The Reeb vector field of η̃k (ηk) is

cos(kt)
∂

∂x
+ sin(kt)

∂

∂y

and so the closed Reeb orbits in class

m ∈ Z = H1(R/Z× S2;Z)

occur for values of t such that

cos(kt) =
m√

m2 + n2
(6)

and

sin(kt) =
n√

m2 + n2
(7)

for some n ∈ Z. For a solution t of these equations located in (0, 2π), the corresponding orbits

occur in an S1-family that foliates the two-dimensional xy-tori, T2 × {t}, as in the previous

example. For t = 0 and t = 2π, the corresponding orbits are isolated and correspond to the fibres

of R/Z× S2 over the poles of S2.

The fastest simple closed orbits of η̃k all have period 2π and correspond to the four cases

(m,n) = (±1, 0) and (m,n) = (0,±1). For the case (m,n) = (1, 0), there are k + 1 solutions to

(6) and (7),

0,
2π

k
, . . . ,

2π(k − 1)

k
, 2π.

As described above, the values t = 0 and t = 1 correspond to isolated simple closed Reeb orbits,

and the other k − 1 values of t correspond to subtori foliated by simple closed Reeb orbits (in

class (1, 0)). The collection of all these orbits forms a rigid constellation of rank 2k with T = 2π

and T+ = 2
√

2π.

For the case (m,n) = (−1, 0), there are k solutions of (6) and (7),

π

k
,
3π

k
, . . . , 2π − π

k
.

Each of these corresponds to unique subtori foliated by simple closed Reeb orbits (in class

(−1, 0)). The collection of these tori again forms a rigid constellation of rank 2k with T = 2π

and T+ = 2
√

2π.

Finally, for the cases (m,n) = (0,±1), there are again k solutions of (6) and (7) each of

which corresponds to a subtorus foliated by simple closed Reeb orbits which are contractible in

R/Z× S2. These also form a rigid constellation of rank 2k, this time with T = 2π and T+ = 4π.

Applying Theorem 1.12 to these three rigid constellations, we get the following rigidity

theorem.
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Theorem 1.15. Consider a contact form on R/Z×S2 of the form λ = fη̃k, where f is a positive
function on R/Z× S2.

(i) If max(f) <
√

2 min(f) and every closed Reeb orbit of λ in class

±1 ∈ Z = H1(R/Z× S2;Z)

and with period in the interval [min(f)2π,max(f)2π] is nondegenerate, then there are at least
2k such orbits which are geometrically distinct from one another.

(ii) If max(f) < 2 min(f) and every contractible closed Reeb orbit of λ with period in the
interval [min(f)2π,max(f)2π] is nondegenerate, then there are at least 4k such orbits which are
distinct from one another. They are geometrically distinct if there are no contractible closed
Reeb orbits of λ with period less than or equal to 2π(max(f)−min(f)).

(C) Now we apply Theorem 1.12 to a family of overtwisted contact forms on S3. We start again
with the manifold M = R/Z× R/Z× [0, 2π] with coordinates (x, y, t). For k ∈ N ∪ {0}, we now
consider the contact forms

ζk = cos

((
k +

1

4

)
t

)
dx+ sin

((
k +

1

4

)
t

)
dy.

Each ζk is invariant under the free R/Z-actions generated by the vector fields ∂/∂x and ∂/∂y.
This time we perform a different contact cut operation by choosing the R/Z-action generated
by ∂/∂y at the boundary component R/Z×R/Z× {0}, and the R/Z-action generated by ∂/∂x
at the boundary component R/Z×R/Z×{2π}. The resulting manifold is S3 and we denote the

resulting contact form by ζ̃k. For all k > 0, the contact structures ker(ζ̃k) are overtwisted and
contactomorphic to one another (see the proof of [Ler01, Theorem 3.1]).

Away from the fibres of the Hopf fibration that lie over the two poles in S2, we can identify ζ̃k
with ζk. Thus, we can analyze the closed Reeb orbits as before. Here the set of the fastest simple
closed orbits of ζ̃k is a rigid constellation with T = 2π, T+ = 2

√
2π. It comprises two isolated

orbits and 4k S1-families of closed orbits and so has rank 8k + 1. In this setting Theorem 1.12
implies the following result.

Theorem 1.16. Consider a contact form on S3 of the form λ = f ζ̃k, where f is a positive
function. If max(f) <

√
2 min(f) and every contractible closed Reeb orbit of λ with period in

the interval [min(f)2π,max(f)2π] is nondegenerate, then there are at least 8k + 2 such orbits
which are distinct from one another. They are geometrically distinct if there are no closed Reeb
orbits of λ with period less than or equal to 2π(max(f)−min(f)).

1.5 Applications (with strong symplectic fillings)
For contact manifolds which admit a symplectic filling, Theorems 1.6 and 1.12 both hold as
stated but with improved ranges (if α is interpreted as a free homotopy class of the filling). For
example, if we assume that the prequantization space (M,λQ) admits an exact symplectic filling,
then Theorem 1.6 holds, as stated, with the larger upper bound

max(f)

min(f)
< |αf |+ 1.

Similarly, assuming that there is an exact symplectic filling of (M,λ0), Theorem 1.12 holds, as
stated, with the upper bound

max(f)

min(f)
<
T+

T
.
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As the next set of applications demonstrates, this version of Theorem 1.12 allows one to view a

variety of previously known rigidity phenomena from a single perspective.

(D) Applying Theorem 1.12 to the contact forms in Example 1.10, one can recover the various

pinching theorems of Berestycki et al. established in [BLMR85] up to some extra nondegeneracy

assumptions.

(E) Returning to the setting of Example 1.11, consider a closed Riemannian manifold (B, g) with

negative sectional curvature and the corresponding unit cosphere bundle Σg∗ ⊂ T ∗B. Let α̃ be

a nontrivial primitive element of [R/Z, B] and denote its lift to [R/Z,Σg∗ ] by α. As described in

Example 1.11, the rigid constellation Cλg∗ ,α(Tmin(λg∗ , α)) has T+ = +∞. It also has rank 1 and

so Theorem 1.12 implies that every hypersurface Σ in T ∗B which is fibrewise star-shaped about

the zero section must carry at least one closed characteristic in class α. A similar but stronger

result in this direction is proved in [BPS03] as Corollary 3.4.2 (see also [HV88]).

(F) Let gn be the standard flat metric on the n-dimensional torus Tn. Denote its cosphere bundle

by Σg∗n ⊂ T ∗Tn and the restriction of the tautological one-form to Σg∗n by λg∗n . Every nontrivial

primitive class α̃ in [R/Z,Tn] lifts to a class α in [R/Z,Σg∗n ], which is again nontrivial and

primitive. There is a unique Tn-family of closed Reeb orbits in class α. Denoting their period

by T (α), the constellation Cλg∗n ,α(T (α)) is rigid with T+ = +∞ and rank(Cλg∗n ,α(T )) = 2n. With

this, Theorem 1.12 implies the following.

Theorem 1.17. Let Σ be a smooth hypersurface in T ∗Tn which is fibrewise star-shaped about

the zero section. Let λΣ be the restriction of the tautological one-form to Σ. If the closed Reeb

orbits of λΣ in class α are all nondegenerate, then there must be at least 2n such orbits which

are geometrically distinct.

This complements a theorem of Cielebak from [Cie94], which establishes the existence of at

least ⌊
n

2

⌋
+ 1

geometrically distinct closed Reeb orbits with no nondegeneracy assumption.

(G) The finite collection of prime closed geodesics in Katok’s famous examples of Finsler metrics

from [Kat73] also yields a rich source of rigid constellations. Consider for example a Katok

metric gK on the sphere P = S2n or S2n−1. It has precisely 2n prime closed geodesics and can be

constructed so that for any ε ∈ (0, 1) the longest prime geodesic has length 1+ ε and the shortest

has length 1− ε. For ε < 1
2 and T = 1 + ε, the collection of prime closed geodesics is then a rigid

constellation with T+ = 2(1 − ε) and rank 2n. If, as above, we let Σg∗K
⊂ T ∗P be the cosphere

bundle of gK , then for any other hypersurface Σ of T ∗S2n which is fibrewise star-shaped about

the zero section there is a unique smooth function fΣ : Σg∗K
→ (0,∞) such that

Σ = {(q, fΣ(q, p)p) : (q, p) ∈ Σg∗K
}.

Let λΣ be the restriction of the tautological one-form to Σ. In this setting Theorem 1.12 implies

the following result.
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Theorem 1.18. If
max(fΣ)

min(fΣ)
<

2(1− ε)
1 + ε

and all the closed Reeb orbits of λΣ with period in the interval[
2πmin(fΣ)

1 + ε
,
2πmax(fΣ)

1− ε

]
are nondegenerate, then λΣ has at least 2n distinct closed Reeb orbits with periods in this
interval. These orbits are geometrically distinct if there are no closed Reeb orbits of λΣ with
period less than or equal to the length of this interval.

If one restricts Theorem 1.18 to hypersurfaces that are cosphere bundles of Finsler metrics, it
then yields multiplicity results for closed geodesics which complement recent work of Rademacher
in [Rad07] and of Wang in [Wan15].

1.6 Fast orbits
The possible presence of periodic orbits with small periods sometimes obstructs our ability to
conclude that the distinct orbits detected by Theorems 1.6 and 1.12 are in fact geometrically
distinct. This is a fundamental, and somewhat notorious, difficulty common to such multiplicity
problems. In certain settings one can preclude the existence of such fast orbits by imposing
geometric restrictions, like the convexity of the hypersurfaces in [EL80]. It is natural then to ask
if one can find conditions on the contact structure which preclude fast orbits and are invariant
under contactomorphisms. We prove here that this is not possible. This is one implication of our
final theorem, which can also be viewed as a soft compliment to Theorems 1.6 and 1.12.

Theorem 1.19. Let (M,λ0) be a contact manifold. For any free homotopy class α ∈ [S1,M ] and
any positive constants c1, c2 > 0, there is a contact form λ = fλ0 on M such that min(f) = 1,
max(f) < 1 + c1 and λ has a closed Reeb orbit in class α of period less than c2.

There are some intriguing phenomena hidden in the gap between the construction underlying
Theorem 1.19 and, say, Theorem 1.12. For example, in creating the nearby form λ in
Theorem 1.19 with an arbitrarily fast closed orbit we are forced, by the Reeb condition, to
cede all control over the number and basic properties of any additional closed Reeb orbits we
might also create in the process. This follows from work of Rechtman in [Rec09] and is discussed
further in Remark 5.5.

1.7 Related works
Our proof of Theorem 1.6 is motivated by the method to obtain cup-length estimates in Floer
theory that was introduced by Albers and Momin in [AM10] and further developed by Albers
and Hein in [AH16].

The proof of Theorem 1.12 has two main parts. The first involves the construction of a version
of Hamiltonian Floer theory for rigid constellations. In this construction we use several results
concerning the Hamiltonian Floer theory of autonomous Hamiltonians established by Bourgeois
and Oancea in [BO09]. To obtain the C0-bounds for our Floer trajectories (which allows us to
do away with fillings), we also adapt an argument of Albers et al. from [AFM15]. In the second
part of the proof we use the Floer-theoretic tools developed in the first to adapt an argument
of Chekanov from [Che98] to detect the desired closed orbits. This is based on previous work of
the author from [Ker08].
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Similar ideas to those underlying Theorem 1.12 were developed by Gutt in his thesis
[Gut14] and subsequent paper [Gut15].1 In these works, Gutt shows that positive S1-equivariant
symplectic homology can be used as a contact invariant for a certain class of fillable contact
manifolds that can be realized as the boundary of Liouville domains. Among the many interesting
applications of his theory, Gutt reproves Theorem 1.1 under the additional strong nondegeneracy
assumption, and also proves a result [Gut15, Theorem 1.6] very similar in content to Theorem 1.6
here. Happily, besides a shared debt owed to the technical foundations for S1-equivariant
Hamiltonian Floer theory laid down by Bourgeois and Oancea, this is essentially the extent
of the overlap between the two projects.

The construction of a Reeb semi-plug described in the proof of Theorem 1.19 is similar in
several details to Cieliebak’s construction of a confoliation-type plug from [Cie97]. The goals of
the two constructions diverge at an early stage, however. In keeping within the class of Reeb
flows we sacrifice here the possibility, achieved in [Cie97], of realizing the insertion of our plugs
on fillable contact manifolds, as the result of a symplectomorphism acting on the interior of a
filling.

2. Hamiltonian Floer theory and rigid constellations

Let Cλ0,α(T ) be a rigid constellation for the contact form λ0 on M . In this section we develop a
version of Hamiltonian Floer theory adapted to Cλ0,α(T ).

2.1 Admissible families of functions
Denoting the R-coordinate of R×M by τ , we consider the symplectization

(R×M,d(eτλ0)).

Definition 2.1. A smooth function H : R × M → R is an admissible Hamiltonian if it is
nonnegative, satisfies

H(τ, p) = 0 for all τ 6 0 (8)

and if there is a T > 0 such that

dH(τ,p) = 0 for all τ > T. (9)

The Hamiltonian vector field, VH , of H is defined by the equation

iVHω = −dH.

Conditions (8) and (9) imply that the support of dH is compact and so the flow of VH is defined
for all times.

Let x(t) be a 1-periodic orbit of H (i.e. VH). We define the action of x(t) by

AH(x) = −
∫
R/Z

x∗(eτλ0) +

∫
R/Z

H(x(t)) dt.

Let P−(H) be the set of all 1-periodic orbits of H which have negative action. Since H
is nonnegative, every x in P−(H) is nonconstant. We say that H is nondegenerate if every
x in P−(H) is also transversally nondegenerate. Strict nondegeneracy is impossible since H is

1 The author is grateful to Peter Albers for notifying him of Gutt’s thesis when the author spoke of the results
presented here at the Lorentz Centre in July 2014.
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autonomous. In particular, every nonconstant 1-periodic orbit x(t) of H belongs to an R/Z-family
of such orbits, which we will denote by X. The elements of X all have the same action and so
the notation AH(X) can and will be used unambiguously. The collection of all R/Z-families of
1-periodic orbits of H with negative actions will be denoted by P−R/Z(H).

The action gap of a nondegenerate admissible Hamiltonian H is defined to be

∆(H) = sup
X,Y ∈P−R/Z(H)

{AH(X)−AH(Y ) : AH(X) 6= AH(Y )},

where we set ∆(H) = 0 if there are no families X and Y meeting the required conditions (for
example if dH is sufficiently C1-small). Given two nondegenerate admissible Hamiltonians H0

and H1, we set

∆(H0, H1) = sup{AH0(X0)−AH1(X1) : AH0(X0) 6= AH1(X1)},

where here the supremum is over pairs (X0, X1) ∈ P−R/Z(H0) × P−R/Z(H1) and we again set

∆(H0, H1) = 0 if no relevant pairs exist.
An admissible homotopy from H0 to H1 is a smooth family of functions Hs for s ∈ R such

that for some S > 0 and T > 0 we have:

(Hs1) Hs = H0 for all s 6 −S;

(Hs2) Hs = H1 for all s > S;

(Hs3) for all s ∈ R, the support of d(Hs) is contained in [0,T]×M .

The cost of the homotopy Hs is defined to be

cost(Hs) =

∫
R

max
(τ,p)

(∂s(H
s(τ, p))) ds.

Finally, an admissible homotopy of homotopies between H0 and H1 is a smooth R2-family
of functions Hr,s such that for each r ∈ R, Hr,s is an admissible homotopy from H0 to H1 and
the supports of all the d(Hr,s) are contained in a single neighborhood of the form [0,T] ×M .
The cost of Hr,s is defined as

cost(Hr,s) =

∫
R

max
(τ,p,r)

(∂s(H
r,s(τ, p))) ds.

2.2 Dividing and tuned Hamiltonians
Let H be an admissible Hamiltonian of the form

H(τ, p) = h(eτ ).

We will refer to h as the profile of H. The Hamiltonian vector field of H is

VH(τ, p) = h′(eτ )Rλ0(p).

Thus, every nonconstant 1-periodic orbit x(t) of VH corresponds to a unique closed Reeb orbit
γx(t) of λ0 such that

x(t) = (τx, γx(h′(eτx)t)). (10)

In particular, h′(eτx) is the period of the orbit γx, which we will also denote by Tγx . The action
of x(t) is

AH(x) = −eτxh′(eτx) + h(eτx). (11)
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Note also that the R/Z-family of 1-periodic orbits of VH containing x, X corresponds to the
unique R/Z-family of closed Reeb orbits of λ0 containing γx. Denoting this family of Reeb orbits
by ΓX , we have

ΓX =
⋃
x∈X

γx.

We now define a class of Hamiltonians which have useful collections of 1-periodic orbits
(related to useful collections of closed Reeb orbits) that can be identified simply by the fact that
their actions are negative. For positive constants a, b > 0 and c > 1 + a, let ha,b,c be the space of
smooth profile functions h : R→ R with the following properties:

(h1) h(s) = 0 for s 6 1;

(h2) h′′(s) > 0 for s ∈ (1, 1 + a);

(h3) h(1 + a) = a2;

(h4) h′(s) = b for s ∈ [1 + a, c];

(h5) h′′(s) < 0 for s ∈ (c, c+ a);

(h6) h(s) = b(c− 1− a) + a2 for s > c+ a.

Let Rb(λ0) be the set of closed Reeb orbits of λ0 with period less than b.

Lemma 2.2. Suppose that H(τ, p) = h(eτ ) for some profile h in ha,b,c. If b is not the period of a
closed Reeb orbit of λ0 and c is sufficiently large, then every x ∈ P−(H) is nonconstant and of
the form

x = (τx, γx(h′(eτx)t))

for some eτx in (1, 1 + a) and some γx in Rb(λ0). Moreover, the correspondence x→ γx defines
a bijection between P−(H) and Rb(λ0).

Proof. Every point (τ, p) in R×M with eτ 6 1 or eτ > c+ a corresponds to a constant periodic
orbit of H. The constant orbits in the first region have action (H-value) equal to zero by (h1).
The orbits in the second region have strictly positive action (H-value) by conditions (h3)–(h6).
Thus, neither set contributes to P−(H).

It follows from our choice of b that the nonconstant periodic orbits of H are of the form

x(t) = (τx, γx(h′(eτx)t))

for some eτx in either (1, 1 + a) or (c, c+ a). As mentioned above, the action of such an orbit is

AH(x) = −eτxh′(eτx) + h(eτx). (12)

These action values correspond to values of the function

F (s) = −sh′(s) + h(s).

By (h1), we have F (1) = 0 and by (h2) we have F ′(s) = −sh′′(s) < 0 in (1, 1 + a). Thus, all
the nonconstant periodic orbits x with eτx in (1, 1 + a) have negative action and so appear in
P−(H).

On the other hand, given a closed Reeb orbit γ of λ0 with period Tγ < b, it follows from (h2)
and (h4) that there is a unique solution τγ of

h′(eτ ) = Tγ
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contained in the interval (1, 1 + a). Then

x(t) = (τγ , γ(Tγt))

belongs to P−(H).
To complete the proof it just remains to show that a nonconstant periodic orbit x as above

with eτx in (c, c+ a) has positive action for all large enough values of c. For such an x, we have

AH(x) > −(c+ a)h′(eτx) + (c− 1− a)b

and thus
AH(x) > c(b− Tγx)− b(2a+ 1). (13)

Since the period spectrum, T (λ0), of λ0 is closed and b lies outside it, the quantity

b−max{t ∈ T (λ0) : t < b}

is positive. From (13), we then get

AH(x) > c(b−max{t ∈ T (λ0) : t < b})− b(2a+ 1).

Hence, for all sufficiently large c > 0, we have AH(x) > 0 for all x ∈ Crit(AH) with eτx ∈ (c, c+a),
as desired. 2

Let Ha,b,c,κ be the space of smooth functions of the form

H(τ, p) = h(eτ−κ),

where κ > 0 and h is in ha,b,c. For an H in Ha,b,c,κ, we have

VH(τ, p) = h′(eτ−κ)e−κRλ0(p)

and for every nonconstant 1-periodic orbit x(t) of VH there is a unique closed Reeb orbit γx(t)
of λ0 such that

x(t) = (τx, γx(h′(eτx−κ)e−κt)) (14)

and
AH(x) = −eτxTγx + h(eτx−κ). (15)

Arguing as above, we then get the following.

Lemma 2.3. Let H be in Ha,b,c,κ. If be−κ is not in T (λ0) and c is sufficiently large, then every
x ∈ P−(H) is nonconstant and of the form

x(t) = (τx, γx(h′(eτx−κ)e−κt))

for some eτx ∈ (eκ, (1 + a)eκ) and some γx ∈ Rbe−κ(λ0). Moreover, the correspondence x→ γx
defines a bijection between P−(H) and Rbe−κ(λ0).

Definition 2.4. A function H as in Lemma 2.3 will be called a dividing Hamiltonian.

Remark 2.5. Note that, changing all the forms λ0 above to forms λ, we can use the same
definition for the notion of dividing functions which detect collections of closed Reeb orbits
of λ.
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Definition 2.6. A Hamiltonian H is tuned to the rigid constellation Cλ0,α(T ) if it belongs to
some Ha,b,c,κ for which:

(t1) eκ < min{T+/T , (Tmin(λ0) + Tmin(λ0, α))/T};
(t2) Teκ < b < T+;

(t3) c > 2b/(b− Teκ).

Every H tuned to Cλ0,α(T ) is dividing. So, the sets P−(H) and Rbe−κ(λ0) are in bijection.
The class α ∈ [S1,M ] determines a unique class in [R/Z,R×M ], which we will also denote by α.
Let P−α (H) be the subset P−(H) consisting of 1-periodic orbits of H which have negative action
and which represent the class α. The point of Definition 2.6 is that, if H is tuned to Cλ0,α(T ),
then the elements of P−α (H) correspond precisely to the elements of Cλ0,α(T ), i.e.

x ∈ P−α (H)←→ γx ∈ Cλ0,α(T ). (16)

To identify tuned Hamiltonians that are suitable for defining Floer theory on the
symplectization of (M,λ0), we must refine this notion further. It is clear from (15) that for
a tuned H in Ha,b,c,κ with a small value of a, the actions of the orbits in P−α (H) are close to −eκ
times the period of an element of Cλ0,α(T ). Developing this further, we get the following useful
set of inequalities.

Lemma 2.7. For a rigid constellation Cλ0,α(T ), there is a positive constant ā > 0 such that the
following hold.

(i) If H in Ha,b,c,κ is tuned to Cλ0,α(T ) and a < ā, then

AH(x) < −Tmin(λ0, α)/2 (17)

for every x ∈ P−α (H).

(ii) If H in Ha,b,c,κ is tuned to Cλ0,α(T ) and a < ā, then

∆(H) < Tmin(λ0). (18)

(iii) If H0 ∈ Ha0,b0,c0,κ0 and H1 ∈ Ha1,b1,c1,κ1 are tuned to Cλ0,α(T ) and a0, a1 < ā, then

∆(H0, H1) < Tmin(λ0). (19)

Proof. By (15) and the properties of h, we have

− eκ(1 + a)T < AH(x) < −eκTmin(λ0, α) + a2 (20)

for every x ∈ P−α (H). The fact that inequality (17) holds for sufficiently small a follows
immediately from this and the fact that κ > 0. The inequalities of (20) also imply that

∆(H) < eκ(T − Tmin(λ0, α)) + aeκ(T − a). (21)

Since Cλ0,α(T ) is rigid, we have T < Tmin(λ0, α) + Tmin(λ0). Together with condition (t1), this
yields

eκ <
Tmin(λ0)

T − Tmin(λ0, α)
. (22)

The fact that inequality (18) holds for sufficiently small a now follows immediately from (21)
and (22). Finally, (20) also implies that

∆(H0, H1) 6 −eκ0Tmin(λ0, α) + eκ
1
T + (a0)2 + eκ

1
a1T (23)

6 eκ
1
T − Tmin(λ0, α) + (a0)2 + eκ

1
a1T. (24)

This, together with (t1), implies that (19) holds when both a0 and a1 are sufficiently small. 2
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Definition 2.8. A function H in Ha,b,c,κ tuned to the rigid constellation Cλ0,α(T ) is said to be
finely tuned to Cλ0,α(T ) if a < ā and hence inequalities (17), (18) and (19) hold.

2.3 Almost complex structures
For the next four subsections we will assume that H is an admissible Hamiltonian and that
each element of P−(H), that is, each 1-periodic orbit of H with negative action, is transversally
nondegenerate. Given such an H, we now define a useful class of almost complex structures on
R×M . Recall first that an almost complex structure J on the symplectization (R×M,d(eτλ))
is said to be cylindrical if it is invariant under τ -translations and satisfies J(∂/∂τ) = Rλ. The
related notion of being cylindrical on subsets of the form {τ 6 T} or {τ > T} is defined in the
obvious way.

Denote by J (H) the set of smooth almost complex structures on R×M with the following
properties:

(J1) J is compatible with d(eτλ0);

(J2) J = J0 on {τ 6 0}, where J0 is fixed and cylindrical;

(J3) J is cylindrical on {τ > T} for some T > 0;

(J4) for any point z = (τ, p) on the image of a family X in P−R/Z(H), we have

[VH , JVH ](z) 6= 0 and [VH , JVH ](z) /∈ Span{VH(z), JVH(z)}.

Lemma 2.9 [BO09, see proof of Proposition 3.5(i) in § 4]. The set J (H) is a nonempty open
subset of the set of all smooth almost complex structures with properties (J1)–(J3).

2.4 Floer trajectories: transversality
Consider a pair

F = (H,J)

consisting of an admissible Hamiltonian H and an almost complex structure J in J (H). We will
refer to F as a Floer data set and will denote the set of all Floer data sets by F.

Given two (nonconstant) R/Z-families X and Y in P−R/Z(H) and an F = (H,J) in F, we

define

M̂(X,Y ;F )

to be the space of solutions u : R× R/Z→ R×M of

∂su+ J(u)(∂tu− VH(u)) = 0

which satisfy the asymptotic conditions

lim
s→−∞u(s, t) ∈ X, lim

s→+∞
u(s, t) ∈ Y and lim

s→±∞ ∂su(s, t) = 0,

where the convergences are all uniform in t. The following transversality statement for these
spaces is established by Bourgeois and Oancea in [BO09].

Proposition 2.10 [BO09, Proposition 3.5(i)]. There is a subset Jreg(H) of J (H) of second
category such that for any J ∈ Jreg(H) and any pair of R/Z-families X,Y ∈ P−R/Z(H) such

that the orbits of either X or Y are simple, each set M̂(X,Y ;F ) for F = (H,J) is a smooth
finite-dimensional manifold.
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The assumption that either X or Y is simple implies that the elements of M̂(X,Y ;F ) are
all somewhere injective. Having thus avoided the fundamental difficulty of dealing with multiply
covered maps, transversality can then be established in the manner of [HS95]. The subtle point,
observed and overcome in [BO09], is that condition (J4) can be used to prove that the set

of injective points in the domain of an element of M̂(X,Y ;F ) constitutes an open and dense
subset of some neighborhood of an end asymptotic to a simple orbit. Let Freg be the subset of
F consisting of Floer data sets F = (H,J) with J ∈ Jreg(H).

Next we consider spaces of Floer continuation trajectories. Let Hs be an admissible homotopy
between admissible Hamiltonians H0 and H1 whose nonconstant 1-periodic orbits with negative
action are transversally nondegenerate. Let Js be a smooth family of d(eτλ0)-compatible almost
complex structures such that for some S > 0 and T > 0, we have:

(Js1) Js = J0 ∈ J (H0) for all s 6 −S;

(Js2) Js = J1 ∈ J (H1) for all s > S;

(Js3) Js = J0 on (−∞, 0]×M for all s ∈ R;

(Js4) Js is cylindrical (for λ0) on [T,+∞)×M for all s ∈ R.

We refer to the pair F s = (Hs, Js) as Floer continuation data (connecting F 0 = (H0, J0) to
F 1 = (H,J1)) and will denote the set of all such triples as Fs = Fs(F 0, F 1).

For an F s = (Hs, Js) in Fs and families X0 in P−R/Z(H0) and X1 in P−R/Z(H1), let

M̂s(X
0, X1;F s)

be the space of solutions u : R× R/Z→ R×M of

∂su+ Js(u)(∂tu− VHs(u)) = 0

which satisfy the asymptotic conditions

lim
s→−∞u(s, t) ∈ X0, lim

s→+∞
u(s, t) ∈ X1 and lim

s→±∞ ∂su(s, t) = 0.

Arguing as above, one gets the following basic transversality statement.

Proposition 2.11. Suppose that F 0 and F 1 are in Freg. Then there is a subset Fs
reg of

Fs(F 0, F 1) of second category such that for any F s ∈ Fs
reg and any families X0 ∈ P−R/Z(H0)

and X1 ∈ P−R/Z(H1) such that the orbits of either X0 or X1 are simple, each M̂s(X
0, X1;F s) is

a smooth finite-dimensional manifold.

More generally, we have the moduli space of Floer trajectories corresponding to an admissible
homotopy of homotopies, Hr,s, from H0 to H1. Let Jr,s be a smooth R2-family of d(eτλ0)-
compatible almost complex structures such that for some smooth positive function S(r) and for
some T > 0, the following condition holds:

(Jr,s1) for each r, the R-family Jr,s satisfies (Js1)–(Js4) for S = S(r).

Following the pattern above, we refer to the triple F r,s = (Hr,s, Jr,s) as Floer homotopy data
and will denote the set of all such triples by Fr,s. For an F r,s = (Hr,s, Jr,s) in Fr,s and two
families X0 in P−R/Z(H), X1 in P−R/Z(H1), let

M̂r,s(X
0, X1;F r,s) = {(r, u) : r ∈ R, u ∈ M̂s(X

0, X1;F r,s)}.

2411

https://doi.org/10.1112/S0010437X17007448 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007448


E. Kerman

Proposition 2.12. There is a subset Fr,s
reg of Fr,s of second category such that for any F r,s ∈ Fr,s

reg

and any families X0 ∈ P−R/Z(H) and X1 ∈ P−R/Z(H1) such that the orbits of either X0 or X1 are

simple, each M̂r,s(X
0, X1;F r,s) is a smooth finite-dimensional manifold.

2.5 Floer trajectories: C0-bounds
With transversality in hand, we now turn to compactness. Since the manifold R×M is open, we
must first establish C0-bounds. The positive end of this manifold (τ → +∞) is never a possible
source of noncompactness. Since every (family of) Hamiltonian(s) we consider is constant for
τ � 0 and every (family of) almost complex structure(s) we consider is cylindrical for τ � 0,
the maximal principle forbids our curves from entering these regions. It remains for us to deal
with the negative end of R×M .

Before proceeding, we recall the relevant notions of energy in this context and some useful
equalities and inequalities involving them. For F = (H,J), the L2-energy of each u ∈ M̂(X,Y ;F )
is defined to be

E(u) =

∫
R×R/Z

d(eτλ0)(∂su, J(u)∂su) ds dt. (25)

The following well-known identity then follows from Stokes’ theorem and the definition of M̂(X,
Y ;F ):

E(u) = AH(X)−AH(Y ). (26)

Hence, we have
E(u) 6 ∆(H) (27)

for any u in any M̂(X,Y ;F ).

Similarly, for F s = (Hs, Js), the L2-energy of u in M̂s(X
0, X1;F s) is defined to be

Es(u) =

∫
R×R/Z

d(eτλ0)(∂su, J
s(u)∂su) ds dt. (28)

In this case, Stokes’ theorem yields

Es(u) = AH0(X0)−AH1(X1) +

∫
R×R/Z

(∂sH
s)(u(s, t)) ds dt (29)

and
Es(u) 6 ∆(H0, H1) + cost(Hs). (30)

Finally, for F r,s = (Hr,s, Jr,s) and (r, u) in M̂r,s(X
0, X1;F r,s), we have

Er,s((r, u)) =

∫
R×R/Z

d(eτλ0)(∂su, J
r,s(u)∂su) ds dt 6 ∆(H0, H1) + cost(Hr,s). (31)

We now prove that for a fixed H we have uniform C0-bounds for the elements of the spaces
M̂(X,Y ;F ). Recall that Tmin(λ0) is the smallest period of any closed Reeb orbit of λ0.

Proposition 2.13. Suppose that H is an admissible Hamiltonian and that X and Y are
transversally nondegenerate families in P−R/Z(H). If

AH(X)−AH(Y ) < Tmin(λ0),

then there is a K > 0 such that for any choice of Floer data of the form F = (H,J) the image

of every u ∈ M̂(X,Y ;F ) is contained in [−K,+∞)×M ⊂ R×M .
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Proof. In terms of the product structure of R ×M , any u ∈ M̂(X,Y ;F ) can be written in the
form

u(s, t) = (ρ(s, t), ξ(s, t)).

Arguing by contradiction, we assume that there are a sequence of almost complex structures Jk
in J (H) and a sequence of curves

uk(s, t) = (ρk(s, t), ξk(s, t))

in M̂(X,Y ;Fk) for Fk = (H,Jk) such that

lim
k→∞

(
min

(s,t)∈R×R/Z
ρk(s, t)

)
= −∞. (32)

To obtain the desired contradiction, we will argue as in [AFM15] (see also [EHS95]). We
begin by isolating purely J0-holomorphic portions of the uk. Fix a decreasing sequence εk ↘ 0
such that uk is transverse to {−εk} ×M for all k ∈ N and set

Vk = u−1
k ((−∞,−εk]×M).

By (32), we may assume, by passing to a subsequence if necessary, that each Vk is nonempty. Let
vk = uk|Vk . Since H is admissible and Jk belongs to J (H), each vk is a J0-holomorphic curve
with a possibly disconnected domain and image in {τ 6 0}. For these curves, we have∫

Vk

v∗kd(eτλ0) =

∫
Vk

d(eτλ0)(∂suk, Jk(uk)∂suk) ds dt < E(uk)

and so, by (26), we have ∫
Vk

v∗kd(eτλ0) < AH(X)−AH(Y ). (33)

The Hofer energy of vk is

EHofer(vk) = sup
φ

∫
Vk

v∗kd(φλ0),

where the supremum is over all functions φ in C∞(R, [0, 1]) that are nondecreasing.
Applying Stokes’ theorem twice, we get

EHofer(vk) = sup
φ

∫
Vk

v∗kd(φλ0)

= sup
φ

∫
∂Vk

v∗k(φλ0)

=

∫
∂Vk

v∗kλ0

= eεk
∫
∂Vk

v∗k(e
τλ0)

= eεk
∫
Vk

v∗kd(eτλ0)

= eεk
∫
Vk

v∗kd(eτλ0).
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Hence, by (33), we have

EHofer(vk) < eεk(AH(X)−AH(Y )).

So, we have a sequence, vk, of J0-holomorphic curves in the symplectization (R ×M,d(eτλ0))
whose Hofer energies are uniformly bounded from above, which all intersect the hypersurface
{−ε1} × M and whose R-components have minima that converge to negative infinity. This
suggests that the curves break at τ = −∞ along closed Reeb orbits of λ0 with period less
than the limiting energy bound. Indeed, this is the case. This is a consequence of [AFM15,
Theorem 5.3], which utilizes the compactness argument from [CM05] and yields the following
precise statement in the present setting.

Proposition 2.14 [AFM15, Theorem 5.3]. There are a subsequence kn and cylinders Cn ⊂ Ukn
that are biholomorphically equivalent to the standard cylinders [−Ln, Ln] × R/Z such that the
lengths Ln → ∞ and the curves vkn |Cn converge in C∞loc(R × R/Z,R ×M) to a trivial cylinder
over a closed Reeb orbit of λ0 of period at most AH(X)−AH(Y ).

The existence of this closed Reeb orbit of λ0 implies that Tmin(λ0) 6 AH(X)−AH(Y ) and
we have arrived at the desired contradiction. 2

Starting from the uniform bounds (30) and (31) and arguing as above, one also obtains

C0-bounds for moduli spaces of the form M̂s(X
0, X1;F s) and M̂r,s(X

0, X1;F r,s) whenever
AH0(X0)−AH1(X1) + cost(Hs) < Tmin(λ0) and AH0(X0)−AH1(X1) + cost(Hr,s) < Tmin(λ0),
respectively.

2.6 Floer trajectories: quotients and compactifications
Consider a regular Floer data set F = (H,J) in Freg and two distinct families X and Y in
P−R/Z(H) at least one of which is simple. Since both H and J do not depend on t, it follows that

the R× R/Z-action on M̂(X,Y ;F ) given by

(s, t) ∗ u(·, ·) = u(·+ s, ·+ t)

is free. The quotient

M(X,Y ;F ) = M̂(X,Y ;F )/(R× R/Z)

is then a smooth manifold. Let Mk(X,Y ;F ) be the submanifold of M(X,Y ;F ) which consists
of all its components which have dimension k. Given Proposition 2.13, the follow compactness
statements are then standard.

Proposition 2.15. Suppose that AH(X)−AH(Y ) < Tmin(λ0). ThenM0(X,Y ;F ) is a compact
manifold of dimension zero. If, in addition, both X and Y are simple, thenM1(X,Y ;F ) admits

a compactification M1
(X,Y ;F ) which is a one-dimensional manifold with boundary equal to⋃

Z∈P−R/Z(H)

M0(X,Z;F )×M0(Z, Y ;F ).

Now consider two admissible and nondegenerate Hamiltonians H0 and H1, regular Floer
data F 0 = (H0, J0) and F 1 = (H1, J1) and regular Floer continuation data F s ∈ Fs(F 0, F 1)
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in Fs
reg. For families X0 ∈ P−R/Z(H0) and X1 ∈ P−R/Z(H1), at least one of which is simple, the

manifold M̂s(X
0, X1;F s) admits a free R/Z-action,

t ∗ u(·, ·) = u(·, ·+ t).

The quotient
Ms(X

0, X1;F s) = M̂s(X
0, X1;F s)/(R/Z)

is then a smooth manifold and we let Mk
s(X

0, X1;F s) be the collection of its k-dimensional
components. In this case we get the following compactness result.

Proposition 2.16. Suppose that AH0(X0) − AH1(X1) + cost(Hs) < Tmin(λ0). Then M0
s(X

0,
X1;F s) is compact. If, in addition, both X0 and X1 are simple and cost(Hs) < −AH(X0), then

M1
s(X

0, X1;F s) admits a compactificationM1
s(X

0, X1;F s) which is a one-dimensional manifold
whose boundary is ⋃

Y 0∈P−R/Z(H0)

M0(X0, Y 0;F 0)×M0
s(Y

0, X1;F s)

∪
⋃

Y 1∈P−R/Z(H1)

M0
s(X

0, Y 1;F s)×M0(Y 1, X1;F 1).

Note that the condition cost(Hs) < −AH(X0) is needed to ensure that the orbits Y0 that
appear in the expression above have negative action.

Finally, for regular Floer homotopy data F r,s = (Hr,s, Jr,s) ∈ Fr,s(F 0, F 1), we set

Mr,s(X
0, X1;F r,s) = M̂r,s(X

0, X1;F s)/(R/Z)

and define Mk
r,s(X

0, X1;F r,s) as above. For k = 0, we get the following.

Proposition 2.17. If AH0(X0)−AH1(X1) + cost(Hr,s) < Tmin(λ0), thenM0
r,s(X

0, X1;F r,s) is
a compact manifold of dimension zero.

For k = 1, there are two important versions of the relevant compactness statement to state.

Version 1: A closed homotopy of homotopies. We say that the homotopy data F r,s is closed if
for some R > 0,

F r,s =

{
F 0,s ∈ Fs

reg(F 0, F 1) for all r 6 −R,

F 1,s ∈ Fs
reg(F 0, F 1) for all r > R.

Proposition 2.18. Suppose that F r,s = (Hr,s, Jr,s) is regular and closed and that AH0(X0)−
AH1(X1) + cost(Hr,s) < Tmin(λ0). If X0 and X1 are both simple and cost(Hr,s) < |AH(X0)|,
thenM1

r,s(X
0, X1;F r,s) admits a compactificationM1

r,s(X
0, X1;F r,s) which is a one-dimensional

manifold with boundary equal to

M0
s(X

0, X1;F 0,s) ∪M0
s(X

0, X1;F 1,s)

∪
⋃

Y 0∈P−R/Z(H0)

M0(X0, Y 0;F 0)×M0
r,s(Y

0, X1;F r,s)

∪
⋃

Y 1∈P−R/Z(H1)

M0
r,s(X

0, Y 1;F r,s)×M0(Y 1, X1;F 1).
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Version 2: A half-open homotopy of homotopies. We now consider a more explicit homotopy of
homotopies with an open end. Let H0, H1 and G be nondegenerate and admissible Hamiltonians.
Consider two admissible homotopies, Hs

0 from H0 to G, and Hs
1 from G to H1. Now consider a

homotopy of homotopies of the form

Hr,s
0#1 =

{
H
s+ξ(r)
0 for s 6 0,

H
s−ξ(r)
1 for s > 0,

where ξ(r) is a smooth, positive and nondecreasing function which equals r for r � ξ(0) and
which equals ξ(0) for r 6 ξ(0)/2. It is easy to check that this is an admissible homotopy of
homotopies from H0 to H1 if we choose ξ(0) to be sufficiently large.

Fixing regular Floer data sets F 0 = (H0, J0), F 1 = (H1, J1) and FG = (G, JG), we extend
these to Floer continuation data sets

F s0 = (Hs
0 , J

s
0) ∈ Fs(F 0, FG)

and

F s1 = (Hs
1 , J

s
1) ∈ Fs(FG, F 1),

which we use to form the Floer homotopy data set

F r,s0#1 =

{
F
s+ξ(r)
0 for s 6 0,

F
s−ξ(r)
1 for s > 0

in Fr,s(F 0, F 1). Perturbing these, if necessary, we may assume that the three previous data sets
are all regular.

Proposition 2.19. Suppose that AH0(X0)−AH1(X1) + cost(Hr,s) < Tmin(λ0). If X0 and X1

are both simple and cost(Hr,s
0#1) < −AH(X0), then the manifold

M1
r,s(X

0, X1;F r,s0#1)

admits a compactification

M1
r,s(X

0, X1;F r,s0#1)

which is a one-dimensional manifold whose boundary is

M0
s(X

0, X1;F 0,s
0#1)

∪
⋃

Z∈P−R/Z(G)

M0
s(X

0, Z;F s0 )×M0
s(Z,X

1;F s1 )

∪
⋃

Y 0∈P−R/Z(H0)

M0(X0, Y 0;F 0)×M0
r,s(Y

0, X1;F r,s0#1)

∪
⋃

Y 1∈P−R/Z(H1)

M0
r,s(X

0, Y 1;F r,s0#1)×M0(Y 1, X1;F 1).

2.7 Floer theory for finely tuned Hamiltonians
Throughout this section we consider a fixed nondegenerate rigid constellation Cλ0,α(T ).
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2.7.1 Homology. To every Hamiltonian H which is finely tuned to Cλ0,α(T ) and every regular
Floer data set F = (H,J) ∈ Freg, we associate a version of Floer homology. Let P−α,R/Z(H) be

the set of R/Z-families of closed 1-periodic orbits of H which have negative action and which
represent the class α. Since H is tuned, each family X in P−α,R/Z(H) corresponds to a unique

R/Z-family of closed Reeb orbits ΓX in Cλ0,α(T ) and vice versa. Since each family ΓX in Cλ0,α(T )
is simple, so are the families X in P−α,R/Z(H).

Define the chain group by

CF(H;α) = SpanZ/2Z{X : X ∈ P−α,R/Z(H)}

and the corresponding boundary map ∂F : CF(H;α) → CF(H;α) to be the linear operator
defined on generators by

∂F (X) =
∑

Y ∈P−
α,R/Z(H)

#M0(X,Y ;F )Y.

Here, and in what follows, for any finite set M the notation #M will denote the number of
elements modulo 2. By the definition of finely tuned, we have ∆(H) < Tmin(λ0) (see Lemma 2.7).
It then follows from Proposition 2.15 that ∂F is well defined and satisfies ∂F ◦ ∂F = 0. Standard
arguments imply that the resulting homology is independent of the choice of regular J ∈ J (H)
and so we denote this homology by HF(H;α).

2.7.2 Continuation maps. Let H0 and H1 both be finely tuned to Cλ0,α(T ). We now
construct tools which allow us to compare HF(H0;α) and HF(H1;α). Let

∆s(H
0, H1) = min

{
Tmin(λ0, α)

2
, Tmin(λ0)−∆(H0, H1)

}
. (34)

By Lemma 2.7, ∆s(H
0, H1) > 0. Consider an admissible homotopy Hs from H0 to H1 such that

cost(Hs) < ∆s(H
0, H1). (35)

Perturbing Hs if necessary, we choose regular Floer continuation data F s = (Hs, Js) between
regular Floer data F 0 = (H0, J0) and F 1 = (H1, J1) and define the linear map

θF s : CF(H0;α)→ CF(H1;α)

on generators by

θF s(X
i) =

∑
Y j∈P−

α,R/Z(H1)

#M0
s(X

i, Y j ;F s)Y j .

Proposition 2.16 implies that θF s is a well-defined chain map. The usual arguments again imply
that the resulting map in homology is independent of the choice of Js and so we denote this
map by

ΘHs : HF(H0;α)→ HF(H1;α).

A convex combination of two homotopies that satisfy (35) also satisfies the same bound.
Hence, the usual homotopy of homotopies argument in Floer theory can be used to show that
the map ΘHs does not depend on the choice of homotopy Hs with cost less than ∆s(H

0, H1).
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Lemma 2.20. If Hs and H̃s are two admissible homotopies from H0 to H1 with cost less than
∆s(H

0, H1), then the maps ΘHs and Θ
H̃s are equal.

In the present setting, the usual composition rule for continuation maps has the following
form.

Lemma 2.21. Suppose that H0, H1 and H2 are Hamiltonians that are finely tuned to Cλ0,α(T )
and that Hs

10 is an admissible homotopy from H0 to H1 and Hs
21 is an admissible homotopy

from H1 to H2. If

cost(Hs
10) < ∆s(H

0, H1), (36)

cost(Hs
21) < ∆s(H

1, H2) (37)

and
cost(Hs

10) + cost(Hs
21) < ∆s(H

0, H2), (38)

then there is an admissible homotopy Hs
20 from H0 to H2 with cost at most cost(Hs

10)+cost(Hs
21)

such that
ΘHs

20
= ΘHs

21
◦ΘHs

10
.

With these tools in place we can now begin the process of identifying the Floer homology
groups associated to different finely tuned Hamiltonians. As above, the arguments we use are
standard, but are complicated by the need to manage the cost of homotopies at each step.

Given a function G : R×M → R, set

‖G‖ = max
R×M

G− min
R×M

G. (39)

Corollary 2.22. Suppose that the Hamiltonians H0 and H1 are finely tuned to Cλ0,α(T ). If

max
R×M

(H1 −H0) < ∆s(H
0, H1), (40)

max
R×M

(H0 −H1) < ∆s(H
1, H0) (41)

and
‖H1 −H0‖ < ∆s(H

0, H0), (42)

then HF(H0;α) and HF(H1;α) are isomorphic.

Proof. Fix a smooth nondecreasing step function step : R→ R such that

step(τ) =

{
0 for τ 6 −1,

1 for τ > 0.

Let
Hs = (1− step(s))H0 + step(s)H1.

We then have
cost(Hs) = max

R×M
(H1 −H0)

and
cost(H−s) = max

R×M
(H0 −H1).
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By Lemma 2.21, there is an admissible homotopy H̃s from H0 to H0 with

cost(H̃s) 6 max
R×M

(H1 −H0)− min
R×M

(H1 −H0) = ‖H1 −H0‖ < ∆s(H
0, H0) (43)

such that

Θ
H̃s = ΘH−s ◦ΘHs : HF(H0;α)→ HF(H0;α).

By Lemma 2.20, the map Θ
H̃s is the same as that corresponding to the constant homotopy from

H0 to itself and so Θ
H̃s is an isomorphism. Thus, ΘHs is injective. Applying the same argument

to the composition ΘHs ◦ΘH−s, we see that ΘHs is also surjective. 2

Corollary 2.23. If H0 and H1 are finely tuned to Cλ0,α(T ) and H1 is sufficiently C1-close to
H0, then HF(H0;α) is isomorphic to HF(H1;α).

Proof. This follows easily from Corollary 2.22 since the hypotheses of the theorem are met for
all H1 sufficiently C1-close to H0. For example, if Hk is a sequence of finely tuned Hamiltonians
converging to H0 in the C1-topology, then maxR×M (Hk − H0) → 0 whereas ∆s(H

0, Hk) →
∆s(H

0, H0) > 0. 2

Corollary 2.24. Suppose that the Hamiltonians H0 and H1 are finely tuned to Cλ0,α(T ) and
that Hs is an admissible homotopy from H0 to H1 such that for each s the Hamiltonian Hs is
also finely tuned to Cλ0,α(T ). Then the following statements hold.

(i) The groups HF(Hs;α) are isomorphic to one another for all s.

(ii) If, in addition, cost(Hs) = 0, then the map

ΘHs : HF(H0;α)→ HF(H1;α)

is an isomorphism.

Proof. Reparameterizing if necessary, we may assume that Hs = H0 for all s 6 0 and Hs = H1

for all >1. It follows from Corollary 2.22, and continuity, that for each s′ ∈ [0, 1] there is a δs′ > 0
such that HF(Hς ;α) is isomorphic to HF(Hs′ ;α) for all ς ∈ (s′ − δs′ , s′ + δs′). Covering [0, 1] by
finitely many such intervals, it follows that for all s ∈ [0, 1] the groups HF(Hs;α) are isomorphic
to one another.

To prove the second assertion of the corollary, it suffices (by Lemma 2.20) to find an
admissible homotopy H̃s from H0 to H1 with cost(H̃s) < ∆s(H

0, H1) such that Θ
H̃s :

HF(H0;α) → HF(H1;α) is an isomorphism. We will use Hs and Lemma 2.21 to construct
this H̃s.

Arguing as above, and invoking the proof of Corollary 2.22, we can find numbers s0 = 1 <
s1 < · · · sN = 1 such that for k = 0, . . . , N − 1, each linear homotopy

Gsk = Hsk(1− step(s)) +Hsk+1step(s)

induces an isomorphism ΘGsk
: HF(Hsk ;α)→ HF(Hsk+1 ;α). From Hs, we can also construct a

homotopy

Hs
k = H(sk+(sk+1−sk)step(s))

from Hsk to Hsk+1 which is admissible and cost free. It follows from Lemma 2.20 that ΘHs
k

= ΘGsk
,

so that each ΘHs
k

is an isomorphism. On the other hand, since each Hs
k is cost free and each
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∆s(H
sk , Hsk+1) is positive, we can invoke Lemma 2.21 N+1 times to obtain a cost-free admissible

homotopy H̃s from H0 to H1 such that

Θ
H̃s = ΘHs

N−1
◦ · · · ◦ΘHs

0
.

This completes the proof. 2

Now we get to our main invariance result.

Proposition 2.25. The rank of HF(H;α) is the same for every Hamiltonian H that is finely
tuned to the rigid constellation Cλ0,α(T ).

Proof. We first observe that for all sufficiently small ε > 0, every Hamiltonian in the space

Hε(T ) = Hε,T+ε,3(T+ε)/ε,0

is finely tuned to Cλ0,α(T ). Moreover, there is an ε0 > 0 such that for any ε, ε′ < ε0 and any
Hamiltonians Hε ∈ Hε(T ) and Hε′ ∈ Hε′(T ), we have

∆s(Hε, Hε′) > (Tmin(λ0) + Tmin(λ0, α)− T )/2 > 0.

It then follows from Corollary 2.22 that for all ε < ε0 and every Hamiltonian Hε in Hε(T ), the
rank of HF(Hε;α) is the same.

By Corollary 2.24, it now suffices to show that given any finely tuned Hamiltonian H there
is an admissible homotopy Hs which consists of finely tuned Hamiltonians and connects H to
some Hε ∈ Hε(T ) with ε < ε0. The starting point of Hs, H, belongs to Ha,b,c,κ for some h in
ha,b,c. For the end point Hε, we choose ε < ε0 small enough so that the following inequalities
hold:

ε < a, T + ε < b and 3(T + ε)/ε > c.

We now view h as belonging to a smooth family of functions h(A,B,C) such that h(A,B,C)
belongs to hA,B,C . The segments of the path Hs will then be defined by varying the parameters
A, B, C and κ one at a time.

We begin with κ. The distinction between a tuned and a finely tuned Hamiltonian involves
only the relationship between a and κ and, if a works for κ, then it also works for all smaller
values of κ. So, the first segment of the path Hs will be

s ∈ [0, 1] 7→ h(a, b, c)(eτ−(1−s)κ).

The next segment increases C from c to 3(T + ε)/ε. Again it follows easily from the definitions
that the intermediate Hamiltonians remain finely tuned. Continuing in this way, we decrease B
from b to T + ε and finally decrease A from a to ε. By joining these four segments in order and
reparameterizing to smooth the transitions between them, we obtain the desired homotopy Hs.

2

3. The proof of Theorem 1.12

In the set-up of Theorem 1.12, we are given a nondegenerate rigid constellation Cλ0,α(T ) and a
pinched contact form λ = fλ0 such that the function f is positive. By rescaling, we may assume
that min(f) = 1 and so the pinching condition becomes

max(f) < min

{
T+

T
,
Tmin(λ0) + Tmin(λ0, α)

T

}
.
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Rigid constellations of closed Reeb orbits

We also have the condition that every closed Reeb orbit of λ in the class α and with period in
[Tmin(λ0, α), T max(f)] is nondegenerate.

Define T̂ by
T̂ = min{T+, Tmin(λ0) + Tmin(λ0, α)}.

Every b in the open interval (T max(f), T̂ ) is not the period of a closed Reeb orbit of λ0. Choose
such a b which also lies in the complement of T (λ, α). For a profile h in ha,b,c, we set

G(τ, p) = h(eτ/f(p)).

While G is admissible, it is clearly not radial. However, for the diffeomorphism Ψλ : R ×M →
R×M defined by

(τ, p) 7→ (τ + f(p), p)

we have
Ψ∗λ(eτλ0) = eτλ (44)

and
Ψ∗λG(τ, p) = h(eτ ). (45)

Thus, Ψ∗λG is radial. By our choice of b above, we may therefore assume that for all sufficiently
small a and sufficiently large c, the Hamiltonian Ψ∗λG is dividing (see Lemma 2.2). More precisely,
by (44), the Hamiltonian Ψ∗λG is dividing for λ and not for λ0 (see Remark 2.5). As a consequence,
there is a bijection between P−α (Ψ∗λG) and Rbα(λ) and so between P−α,R/Z(Ψ∗λG) and Rbα,R/Z(λ),

as well.
By (44) and the fact that Ψλ is isotopic to the identity (and so preserves [R/Z,R×M ]), we

also know that Ψλ maps P−α,R/Z(Ψ∗λG) bijectively onto P−α,R/Z(G) and preserves actions. Thus,

every family in P−α,R/Z(G) also corresponds to a unique family in Rbα,R/Z(λ).

Milepost 1. To prove the first assertion of Theorem 1.12, it suffices to find at least rank(Cλ0,α(T ))
elements of P−α,R/Z(G) which correspond to distinct closed Reeb orbits of λ with periods in

[Tmin(λ0, α), T max(f)].

We now refine this task. For the constant a from the definition of the profile function h,
consider the following subset of P−α,R/Z(G):

Paα,R/Z(G) = {Y ∈ P−α,R/Z(G) : AG(Y ) ∈ (−(1 + a)T max(f),−Tmin(λ0, α) + a2)}.

Lemma 3.1. If a > 0 is sufficiently small, then every family Y in Paα,R/Z(G) is nondegenerate

and the corresponding family ΓY in Rbα,R/Z(λ) has period in the interval

[Tmin(λ0, α), T max(f)].

Proof. Consider a family Y ∈ Paα,R/Z(G) and the corresponding family ΓY in Rbα,R/Z(λ). As

described above, the preimage Ψ−1
λ (Y ) is an R/Z-family in P−α,R/Z(Ψ∗λG) with the same action.

So,
AΨ∗λG

(Ψ−1
λ (Y )) = AG(Y ) ∈ (−(1 + a)T max(f),−Tmin(λ0, α) + a2).

Since the Hamiltonian Ψ∗λG is dividing, we also have

AG(Y ) = AΨ∗λG
(Ψ−1

λ (Y )) = −eτY TΓY + h(eτY ),
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where TΓY is the common period of the family ΓY and eτY is in (1, 1 + a). Thus,

TΓY ∈
(
Tmin(λ0, α)− a2

1 + a
, (1 + a)T max(f) + a2

)
. (46)

So, if the assertion of the lemma does not hold, then for every small a > 0 there is a Y in
Paα,R/Z(G) such that (46) holds but TΓY lies outside the closed subinterval

[Tmin(λ0, α), T max(f)] ⊂
(
Tmin(λ0, α)− a2

1 + a
, (1 + a)T max(f) + a2

)
.

Thus, there is sequence of closed Reeb orbits of λ in class α whose periods are monotonically
converging to one of the end points Tmin(λ0, α) or T max(f) as a → 0. By Arzela–Ascoli, a
subsequence of these orbits must converge to a closed Reeb orbit of λ in class α with period
equal to either Tmin(λ0, α) or T max(f). This contradicts our assumption that every closed Reeb
orbit of λ in class α and with period in [Tmin(λ0, α), T max(f)] is nondegenerate (and hence
isolated). 2

Henceforth we will assume that a > 0 is sufficiently small in the sense of Lemma 3.1.

Milepost 2. To prove the first assertion of Theorem 1.12, it suffices to find at least rank(Cλ0,α(T ))
distinct elements of Paα,R/Z(G).

To achieve this, we now use the Floer-theoretic machinery developed in the previous section.
We will argue as in [Ker08] by adapting a technique introduced by Chekanov in [Che98].

Starting with the profile h used to define G, we set

H0 = h(eτ )

and
H1 = h(eτ/max(f)).

By our choice of b ∈ (T max(f), T̂ ), both H0 and H1 are finely tuned to Cλ0,α(T ) for all sufficiently
small a and sufficiently large c. Since h is nondecreasing and min(f) = 1, we also have

h(eτ ) > h(eτ/f(p)) > h(eτ/max(f))

for all (τ, p) ∈ R×M and thus
H0 > G > H1. (47)

Using, again, the simple function step, we define two admissible homotopies:

Hs
0 = (1− step(s))H0 + step(s)G

from H0 to G and
Hs

1 = (1− step(s))G+ step(s)H1

from G to H1. Inequality (47) implies that

∂s(H
s
0), ∂s(H

s
1) 6 0 (48)

and so
cost(Hs

0) = cost(Hs
1) = 0.
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Rigid constellations of closed Reeb orbits

Consider the Z/2-vector space spanned by the elements of Paα,R/Z(G),

V a(G;α) = SpanZ/2{Y ∈ Paα,R/Z(G)}.
For regular Floer continuation data sets F s0 = (Hs

0 , J
s
0) and F s1 = (Hs

1 , J
s
1), we define two linear

maps. The first,
χF s0 : CF(H0;α)→ V a(G;α),

is defined on generators by

χF s0 (X0) =
∑

Y ∈Pa
α,R/Z(G)

#M0
s(X

0, Y ;F s0 )Y

and the second map
χF s1 : V a(G;α)→ CF(H1;α)

is defined on generators by

χF s1 (Y ) =
∑

X1∈P−
α,R/Z(H1)

#M0
s(Y,X

1;F s1 )X1.

Since the elements of P−α,R/Z(H0) and P−α,R/Z(H1) are all simple, it follows from Proposition 2.16

that the maps χF s0 and χF s1 are well defined.
Note that no claim is being made that χF s0 and χF s1 are chain maps. Indeed, the relevant

version of Floer homology can only be defined for G by imposing prohibitively restrictive
assumptions on it and hence on λ. This reflects one of the important observations of Chekanov
in [Che98]. We now prove the following result.

Proposition 3.2. The composition χF s1 ◦ χF s0 : CF(H0;α)→ CF(H1;α) is a chain map which
induces an isomorphism in homology.

Proof. To prove this, we return to the setting of Proposition 2.19. For the homotopies Hs
0 and

Hs
1 above, consider the half-open homotopy of homotopies

Hr,s
0#1 =

{
H
s+ξ(r)
0 for s 6 0,

H
s−ξ(r)
1 for s > 0,

where ξ(r) is a smooth, positive and nondecreasing function which equals r for r� 2 and which
equals 2 for r 6 0. It follows from (47) and the choices above that

cost(Hr,s
0#1) = 0. (49)

Fixing regular Floer data sets F 0 = (H0, J0), F 1 = (H1, J1) and FG = (G, JG), we extend
these to Floer continuation data sets

F s0 = (Hs
0 , J

s
0) ∈ Fs(F 0, FG),

F s1 = (Hs
1 , J

s
1) ∈ Fs(FG, F 1),

which we use to form the Floer homotopy data set

F r,s0#1 =

{
F
s+ξ(r)
0 for s 6 0,

F
s−ξ(r)
1 for s > 0

in Fr,s(F 0, F 1). Perturbing again, if necessary, we assume that these data sets are all regular.
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Given X0 ∈ P−α,R/Z(H0) and X1 ∈ P−α,R/Z(H1), Proposition 2.19 implies that the boundary

of the compactification M1
r,s(X

0, X1;F r,s0#1) can be identified with the elements of the following
four sets:

(I) M0
s(X

0, X1;F 0,s
0#1);

(II)
⋃
Z∈P−

α,R/Z(G)M0
s(X

0, Z;F s0 )×M0
s(Z,X

1;F s1 );

(III)
⋃
Y 0∈P−

α,R/Z(H)M0(X0, Y 0;F 0)×M0
r,s(Y

0, X1;F r,s0#1);

(IV)
⋃
Y 1∈P−

α,R/Z(H1)M0
r,s(X

0, Y 1;F r,s0#1)×M0(Y 1, X1;F 1).

By definition, the number of elements in set (I), modulo 2, is the coefficient of X1 in the
image of X0 under the map

θ
F 0,s
0#1

: CF(H0;α)→ CF(H1;α),

which is well defined by (49). If we can show that every Z which contributes a term to the set
(II) must belong to the subset Paα,R/Z(G) of P−R/Z(G;α), then the number of elements in set (II),

modulo 2, will be the coefficient of X1 in the image of X0 under the map

χF s1 ◦ χF s0 : CF(H0;α)→ CF(H1;α).

With this, the fact that θ
F 0,s
0#1

and χF s1 ◦ χF s0 are chain homotopic will follow from the usual

arguments.
Suppose then that Z ∈ P−R/Z(G;α) contributes a nontrivial term to the set (II). In this case

both M0
s(X

0, Z;F s0 ) and M0
s(Z,X

1;F s1 ) must be nonempty. By (29) and (48), we then have

AH0(X0) > AG(Z) > AH1(X1)

and so, by (20), the following holds:

−(1 + a)T max(f) < AG(Z) < −Tmin(λ0, α) + a2.

Thus, Z belongs to Paα,R/Z(G), as desired.

Since χF s1 ◦ χF s0 is chain homotopic to θ
F 0,s
0#1

, it only remains to show that Θ
H0,s

0#1
(the map

that θ
F 0,s
0#1

induces in homology) is an isomorphism. Consider the admissible homotopy

Hs(τ, p) = h

(
eτ

1− step(s) + step(s) max(f)

)
from H0 to H1. For all small enough a and large enough c, each function Hs is finely tuned to
the rigid constellation Cλ0,α(T ). Moreover, ∂s(H

s) 6 0 and so Corollary 2.24 implies that the
map

ΘHs : HF(H0;α)→ HF(H1;α)

is an isomorphism. Lemma 2.20 then implies that

Θ
H0,s

0#1
= ΘHs ,

which concludes the proof. 2
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Rigid constellations of closed Reeb orbits

At this point we can complete the task described in Milepost 2 and thus the proof of the
first assertion of Theorem 1.12.

Lemma 3.3. There are at least rank(Cλ0,α(T )) distinct elements of Paα,R/Z(G).

Proof. Let V0 be a subspace of CF(H;α) that represents the homology HF(F 0;α). By
Proposition 3.2, the restriction of χF sR ◦ χF sL to V0 has no kernel. Thus, the restriction of χF sL to
V0 also has no kernel. We therefore have

dim(V a(G;α)) > dim(χF sL(V0)) = dim(V0) = rank(HF(F 0;α)).

With this we are done. 2

Finally, we prove the second assertion of Theorem 1.12.

Lemma 3.4. If the class α is either primitive or of infinite order, then the closed Reeb orbits of λ
corresponding to the distinct elements of Paα,R/Z(G) are geometrically distinct. Otherwise, they
are geometrically distinct if there are no closed Reeb orbits of λ with period at most

1

|α|(T max(f)− Tmin(λ0, α))

that represent a class β in [S1,M ] such that βk = α for some integer k > 1.

Proof. Let Y and Y ′ be distinct elements of Paα,R/Z(G) and let ΓY and ΓY ′ by the corresponding

(distinct) elements of Rbα,R/Z(λ). Assume that ΓY and ΓY ′ are not geometrically distinct. Then

there must be an R/Z-family ΓR of closed Reeb orbits of λ and integers k > 1 and l > 1 such
that

ΓY = (ΓR)k and ΓY ′ = (ΓR)k+l. (50)

Let β be the class in [R/Z,M ] represented by ΓR. By (50), we then have

βk = βk+l = α. (51)

This implies that βl is equal to the trivial element e ∈ [R/Z,M ] and so

αl = (βk)l = (βl)k = e. (52)

In this case the class α can be neither primitive, by (51), or of infinite order, by (52). This implies
the first statement of the lemma.

Suppose then that ΓY and ΓY ′ are not geometrically distinct and that α is not primitive and
of finite order. By Lemma 3.1, we have

TΓY , TΓY ′ ∈ [Tmin(λ0, α), T max(f)]. (53)

Together with (50), this implies that

kTΓR , (k + l)TΓR ∈ [Tmin(λ0, α), T max(f)]

and so
lTΓR 6 T max(f)− Tmin(λ0, α). (54)

Equation (52) implies that l > |α| and so we conclude from (54) that

TΓR 6 1

|α|(T max(f)− Tmin(λ0, α)).

This implies the second statement of the lemma and concludes the proof. 2
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4. The proof of Theorem 1.6

To begin, we recall the setting and the statement of the theorem. Let (Q,ω) be a symplectic
manifold of dimension 2n such that the class −[ω]/2π ∈ H2(Q;R) is the image of an integral
class e ∈ H2(Q;Z). Let

pQ : M → Q

be an S1-bundle overQ with first Chern class equal to e and let λQ be the corresponding Boothby–
Wang contact form on M . Denote by αf ∈ [S1,M ] the free homotopy class corresponding to the
fibres of the bundle pQ.

Theorem 4.1. Let λ = fλQ for some positive function f . If

max(f)

min(f)
< 2,

then there are at least n + 1 distinct closed Reeb orbits of λ which represent the class αf and
have period in the interval

[2πmin(f), 2πmax(f)].

These orbits are geometrically distinct from one another if the class αf is either primitive or
of infinite order. Otherwise, they are geometrically distinct if there are no closed Reeb orbits of
λ which have period less than or equal to

2π

|αf |
(max(f)−min(f))

and which represent a class β such that βk = αf for some integer k > 1.

The assertions concerning the conditions under which the detected orbits are geometrically
distinct follow as in Lemma 3.4 and so their proof is left to the reader. It remains for us to detect
n+ 1 closed Reeb orbits of λ in class αf which are distinct and whose periods lie in the interval
[2πmin(f), 2πmax(f)].

We may assume that λ has finitely many, say N , distinct R/Z-families of such closed orbits.
We denote them by

Ξ1, . . . ,ΞN .

We may also assume, by a simple rescaling, that min(f) = 1. It remains to prove that N > n+1.

Step 1. First we derive a Morse-theoretic implication of the fact that ωQ is a symplectic form
(Lemma 4.4 below). Let F : Q→ R be a Morse function, let q be a critical point of F with Morse
index index(q) and let g be a Riemannian metric on Q. We denote the stable submanifold of q,
for the negative gradient flow of F with respect to g, by W s(q, (F, g)), or just W s(q) assuming
that the gradient data is clear from the context. For a generic choice of the metric g, each W s(q)
is an embedded submanifold diffeomorphic to R2n−index(q) and admits a compactification as a
manifold with corners whose boundary faces comprise stable submanifolds of critical points of
F with Morse index greater than that of q.

The following result is implied by standard transversality arguments.

Lemma 4.2. For a generic collection of Morse functions F1, . . . , Fn and metrics g1, . . . , gn, the
stable and unstable submanifolds of the critical points of the Fj all intersect transversally as do
all of their repeated intersections. Moreover, for any closed Reeb orbit of ξi(t) of λ belonging to
one of the families Ξi, and any critical point qj of any Fj , we have

W s(qj) t pQ(ξi(t)). (55)
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From now on we fix Morse functions F1, . . . , Fn and metrics g1, . . . , gn as in Lemma 4.2.
We note, for later purposes, the following immediate consequence of condition (55) and the
description of the closure of stable submanifolds above.

Corollary 4.3. If q is a critical point of one of the Fj and index(q) > 2, then for all i = 1, . . . , N
we have

W s(q) ∩ pQ(Ξi) = ∅. (56)

Since ωQ is a symplectic form, its n-fold wedge product

ωQ ∧ · · · ∧ ωQ

is a volume form on Q. When expressed in the Morse-theoretic version of the cup product from
[BC94], for example, the existence of this nontrivial wedge product has the following implication.

Lemma 4.4. Let F1, . . . , Fn and g1, . . . , gn be a collection of Morse functions and metrics as in
Lemma 4.2. There are critical points qj of the Fj such that index(qj) = 2 and

W s(q1) ∩ · · · ∩W s(qn)

is a compact manifold of dimension zero with an odd number of elements.

We will denote the set W s(q1) ∩ · · · ∩W s(qn) by M0 and its elements by

{q̂1, . . . , q̂2K+1}.

Step 2. We now define a useful lift of the set M0 ⊂ Q to M . Since each stable manifold W s(qi)
is contractible, the restriction of the bundle pQ : M → Q to W s(qi) is trivial. Fix such a
trivialization for each W s(qi). Then, given any point q ∈ W s(qi) and any point m ∈ p−1

Q (q),

there is a unique lift of W s(qi) to M which intersects p−1
Q (q) at m. We denote this lift by

[W s(qi)]m

and note that

[W s(qi)]m ∩ [W s(qi)]m′ = ∅ ⇐⇒ m 6= m′ ∈ p−1
Q (q).

Choose an m1 ∈ p−1
Q (q̂1) and consider the set

[W s(q1)]m1 ∩ · · · ∩ [W s(qn)]m1 .

Since it projects to M0, we have

[W s(q1)]m1 ∩ · · · ∩ [W s(qn)]m1 =
⋃

j∈[1,2K+1]

( ⋂
i∈[1,n]

[W s(qi)]m1 ∩ p−1
Q (q̂j)

)
.

In particular, [W s(q1)]m1 ∩ · · · ∩ [W s(qn)]m1 is a finite set of points each of which is a point on
a fibre p−1

Q (q̂j) at which all the [W s(qi)]m1 meet. By construction, m1 is one of these points.
Relabelling the q̂j , if necessary, we may assume that

[W s(q1)]m1 ∩ · · · ∩ [W s(qn)]m1 = {m1, . . . ,mk1−1, }
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where 2 6 k1 6 2K + 2 and
mj ∈ p−1

Q (q̂j).

To proceed we now choose a point mk1 ∈ p−1
Q (q̂k1) and consider the lifts [W s(qi)]mk1 . For a

generic such point, we may assume that

[W s(qi)]m1 ∩ [W s(ql)]mk1 ∩ p
−1
Q (q̂j) = ∅

for all i, l and j. The intersection

[W s(q1)]mk1 ∩ · · · ∩ [W s(qn)]mk1

is again a finite set consisting of points on the fibres p−1
Q (q̂j) at which all the [W s(qi)]mk1 meet.

Since ⋂
1∈[1,n]

[W s(qi)]m1 ∩ p−1
Q (q̂k1) = ∅,

it follows that none of the points in [W s(q1)]mk1 ∪ · · · ∪ [W s(qn)]mk1 lie in the fibres p−1
Q (q̂j) for

j = 1, . . . , k1 − 1. Thus, relabelling again if needed, we may assume that

[W s(q1)]mk1 ∩ · · · ∩ [W s(qn)]mk1 = {mk1 , . . . ,mk2−1}
where k1 + 1 6 k2 6 2K + 2 and again

mj ∈ p−1
Q (q̂j).

Continuing in this way, we obtain a set of points

{m1, . . . ,mk1 , . . . ,mk2 , . . . ,mkL , . . . ,m2K+1}
such that

mj ∈ p−1
Q (q̂j) (57)

for all j = 1, . . . , 2K + 1. Setting k0 = 1 and kL+1 = 2K + 1, we have

[W s(q1)]mkj ∪ · · · ∪ [W s(qn)]mkj = {mkj , . . . ,mkj+1
}

for j = 0, . . . , kL. We may also assume that for d 6= d′,

[W s(qi)]mkd ∩ [W s(ql)]mkd′
∩ p−1

Q (q̂j) = ∅ (58)

for all i, l and j.
We set

[M0] = {m1, . . . ,m2K+1}
and note, for future reference, that

[M0] =
L⋃
j=0

([W s(q1)]mkj ∩ [W s(q2)]mkj ∩ · · · ∩ [W s(qn)]mkj ). (59)

Step 3. Here we identify the set [M0] with a space of solutions to Floer’s equation. Recall that
the Reeb flow of λQ generates the natural S1-action on the bundle M with (minimal) period 2π.
In particular, every q ∈ Q can be identified with the R/Z-family of closed Reeb orbits of λQ of
period 2π whose image is p−1

Q (q). We will denote this family by Γq and will denote an element
of Γq by γq(t).
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To proceed, we now utilize some of the machinery developed in the proof of Theorem 1.12.
The collection CλQ,αf

(2π) is a rigid constellation with

min

{
T+

T
,
Tmin(λQ) + Tmin(λQ, αf )

T

}
= 2.

Choose a constant b which lies in the open interval (2πmax(f), 4π) and which is not the
period of a closed Reeb orbit of λ. Since max(f) < 2, we can choose a sufficiently small
and c sufficiently large so that for any profile h in ha,b,c, the functions H0(τ, p) = h(eτ ) and
H1(τ, p) = h(eτ/max(f)) are finely tuned to CλQ,αf

(2π) and the function Ψ∗λG(τ, p) = h(eτ ) is
dividing with respect to λ.

The nonconstant 1-periodic orbits of H0 with negative action are of the form

x(t) = (τ0, γ(2πt)), (60)

where τ0 is the unique solution of h′(eτ ) = 2π in the interval (0, ln(1 + a)) and γ(t) belongs to
one of the families Γq for q ∈ Q. We denote the collection of all 1-periodic orbits of the form (60)
by X(H0).

Choosing a J0 in J (H0), we defineM1 to be the set of smooth maps u : R×R/Z→ R×M
such that

∂su+ J0(u)(∂tu− VH0(u)) = 0,

lim
s→±∞u(s, t) = x±(t) ∈ X(H0) (61)

and
pM (u(0, 0)) ∈ [M0], (62)

where pM : R×M →M is the obvious projection.
The set of Floer trajectories M1 is in bijection with [M0]. To see this, let u belong to M1

and suppose that pM (u(0, 0)) = mj ∈ [M0]. Since the action AH0 is constant on X(H0), the
energy identity ∫

R×R/Z
d(eτλ0)(∂su, J

0(u)∂su) ds dt = AH0(x−)−AH0(x+)

together with the limiting conditions (61) imply that ∂su(s, t) = 0 for all (s, t). Thus, u(s, t) = (τ0,
γ(2πt)), where γ(t) belongs to one of the families Γq for q ∈ Q. It then follows from condition
(62) and property (57) that

u(s, t) = (τ0, γq̂j (2πt)),

where γq̂j is the unique element of the family Γq̂j satisfying γq̂j (0) = mj . Conversely, every such
map belongs to M1 and so it is in bijection with M0. In particular, M1 has an odd number of
elements.

Step 4. We now begin to deform the spaceM1 as a set of Floer trajectories. The first deformation
involves moving the orbits that define the right asymptotic limits of the curves of M1. Here we
use the family of Hamiltonians

H%(τ, p) = h

(
eτ

1 + %(max(f)− 1)

)
,

which decreases from H0 to H1 as % goes from zero to one.
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Lemma 4.5. For all ρ ∈ [0, 1], the nonconstant 1-periodic orbits of H% with negative action are
of the form

t 7→ (τ%, γ(2πt)), (63)

where τ% is the unique solution of

h′
(

eτ

1 + %(max(f)− 1)

)
= 2π(1 + %(max(f)− 1))

in the interval (1 + %(max(f)− 1), 1 + %(max(f)− 1) + ln(1 + a)) and γ(t) belongs to one of the
families Γq for q ∈ Q.

Let X(H%) be the collection of all 1-periodic orbits of the form (63). For each %, let H%,s be
the homotopy from H0 to H% of the form

H%,s = [(1− step(s))H0 + step(s)1
2(H0 +H%)](1− step(s)) + step(s)H%.

Each function appearing in this family is finely tuned to CλQ,αf
(2π). So, for each % ∈ [0, 1], we

have
∆(H0, H%) < Tmin(λQ) = 2π. (64)

As is easily checked, ∂s(H
%,s) 6 s and hence for each % ∈ [0, 1] we also have

cost(H%,s) = 0 (65)

for the corresponding homotopy.
Choose a smooth two-parameter family J%,s of almost complex structures such that (H0,s,

J0,s) and (H1,s, J1,s) are regular. Let M1+% be the set of smooth maps u : R× R/Z→ R×M
such that

∂su+ J%,s(u)(∂tu− VH%,s(u)) = 0,

lim
s→−∞u(s, t) ∈ X(H0),

lim
s→+∞

u(s, t) ∈ X(H%)

and
pM (u(0, 0)) ∈ [M0].

By (64) and (65), each M1+% is compact. So too is the collection

M[1,2] = {(%, u) | ρ ∈ [0, 1], u ∈M1+%}.

In a standard way, M[1,2] can also be described as the intersection of the zero section of an
appropriate Banach space bundle with another Fredholm section. As described by Albers and
Hein in [AH16, p. 21], one can then use (compact) abstract perturbations in this setting to
perturb M[1,2], away from the values ρ = 0, 1, to obtain a compact cobordism between the
(zero-dimensional) spaces M1 and M2.

By definition, the space M2 consists of maps u : R× R/Z→ R×M satisfying

∂su+ J1,s(u)(∂tu− VH1,s(u)) = 0,

lim
s→−∞u(s, t) ∈ X(H0),

lim
s→+∞

u(s, t) ∈ X(H1)
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and

pM (u(0, 0)) ∈ [M0].

It follows from the discussion above that M2 also has an odd number of elements.

Step 5. Now we deform M2 by deforming the monotone homotopy which defines it,

H1,s = [(1− step(s))H0 + step(s)1
2(H0 +H1)](1− step(s)) + step(s)H1,

to another monotone homotopy from H0 to H1 that lingers on the Hamiltonian G.
Let

Gr = (1− step(r − 1))1
2(H0 +H1) + step(r − 1)G

and set

STEP(r, s) = step(s− (n+ 1)r + step(r − 1)).

With these pieces, define

Gr,s = [(1− step(s))H0 + step(s)Gr](1− STEP(r, s)) + STEP(r, s)H1.

This is an admissible homotopy of homotopies from H0 to H1 and the following addition
properties of Gr,s are easily verified:

(Gr,s1) G0,s = H1,s;

(Gr,s2) ∂s(G
r,s) 6 0;

(Gr,s3) Gr,s = G whenever r > 1 and s ∈ [0, (n+ 1)r].

Choose a smooth family of almost complex structures J̄r,s on R×M such that for all r 6 0
we have J̄r,s = J1,s, where J1,s is the path of almost complex structures used in the definition
ofM2 and, for r ∈ N, the continuation data set (Gr,s, J̄r,s) is regular. For each r > 0, defineMr

3
to be the space of maps u : R× R/Z→ R×M such that

∂su+ J̄r,s(u)(∂tu− VGr,s(u)) = 0,

lim
s→−∞u(s, t) ∈ X(H0),

lim
s→+∞

u(s, t) ∈ X(H1)

and

pM (u(jr, 0)) ∈ [W s(qj)]mk0 t · · · t [W s(qj)]mkL for all j = 1, . . . , n. (66)

Lemma 4.6. The space M0
3 is identical to M2.

Proof. Since G0,s = H1,s and J̄0,s = J1,s, it suffices to show that when r = 0 condition (66) is
equivalent to pM (u(0, 0)) ∈ [M0]. Condition (66) can be rewritten as

pM (u(0, 0)) ∈
n⋂
j=1

([W s(qj)]mk0 t · · · t [W s(qj)]mkL ).

Distributing the intersections for the set appearing on the right, it becomes the union of sets of
the form

[W s(q1)]mkd0
∩ · · · ∩ [W s(qn)]mkdL

. (67)
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By definition, the projection of any set of this form to Q isM0. Thus, each such set is contained

in p−1
Q (M0). Condition (58) then implies that the set (67) is empty unless

d0 = d1 = · · · = dL.

So, for r = 0, condition (66) becomes

pM (u(0, 0)) ∈
L⋃
j=0

([W s(q1)]mkj ∩ [W s(q2)]mkj ∩ · · · ∩ [W s(qn)]mkj )

and the set on the right equals [M0] by (59). 2

Lemma 4.7. For every ` ∈ N, the space M`
3 is a compact zero-dimensional manifold which is

cobordant to M2 and hence is nonempty.

Proof. Property (Gr,s2) implies that cost(G`,s2) = 0. Compactness then follows from this and

the fact that the common end points of the homotopies, H0 and H1, are finely tuned. For a fixed

` ∈ N, the desired cobordism is again obtained using abstract perturbations of the Fredholm

section of the appropriate Banach space bundle which cuts out the compact set

M[0,`]
3 = {(r, u) | r ∈ [0, `], u ∈Mr

3}. 2

End game. By Lemma 4.7, we can consider a sequence of maps u` inM`
3 for ` ∈ N. The L2-energy

of each u` is bounded by ∆(H0, H1) < Tmin(λQ) = 2π. For j = 1, . . . , n, consider the sequence

of maps

vj` (s, t) = u`(s+ j`, t), ` ∈ N.

By the uniform energy bound above, each of these n sequences converges in C∞loc(R×R/Z,R×M)

after passing to subsequences. Denote the nth limit obtained in this process by vj . It follows

from condition (Gr,s3) that vj satisfies the equation

∂sv
j + J(vj)(∂tv

j − VG(vj)) = 0 (68)

and again has L2-energy less than 2π. Recall that we have assumed that λ = fλQ has finitely

many families of closed Reeb orbits in class αf , Ξ1, . . . ,ΞN . Recall also, from § 3, that the

Hamiltonian Ψ∗λG is dividing for λ, where Ψλ : R×M → R×M is the diffeomorphism defined

by

(τ, p) 7→ (τ + f(p), p).

In particular, we have the following.

Lemma 4.8. The nonconstant 1-periodic orbits of G in class αf with negative action are of the

form

x(t) = (τ i − f(ξi(Tit)), ξi(Tit)) (69)

for i = 1, . . . , N , where τ i is the unique solution of h′(eτ
i
) = Ti in the interval (0, ln(1 + a)) and

ξi(t) belongs to the family Ξi whose common period is Ti.
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Hence, for each j = 1, . . . , n, the limits

lim
s→±∞ v

j(s, t) = xj±(t)

exist and each xj±(t) is a 1-periodic orbit of G of the form (69). If all the limits vj depend
nontrivially on s, then

AG(x1
−) < AG(x1

+) < AG(x2
+) < · · · < AG(xn+)

and the orbits
x1
−, x

1
+, x

2
+, . . . , x

n
+

are all distinct. By Lemma 4.8, the corresponding closed Reeb orbits

ξ1
−, ξ

1
+, ξ

2
+, . . . , ξ

n
+

of λ are also distinct and so we will be done.
Assume then that one of the limits vj does not depend on s. By Lemma 4.8, we then have

vj(s, t) = vj(0, t) = xj(t) = (τk − f(ξk(t+ θ)), ξk(t+ θ)) (70)

for some 1 6 k 6 N and θ ∈ [0, Tk). On the other hand, we have

vj(0, 0) = lim
`→∞

u`(j`, 0) (71)

and
pM (u`(j`, 0)) ∈ [W s(qj)]m1 t [W s(qj)]m2 t · · · t [W s(qj)]mL .

Together, these conditions imply that

ξk(θ) = lim
`→∞

pM (u`(j`, 0)) ∈ ([W s(qj)]m1 t [W s(qj)]m2 t · · · t [W s(qj)]mL)

and so
pQ(ξk(θ)) ∈W s(qj).

Since the Morse index of each qj is two, this contradicts Corollary 4.3. Thus, the limits vj above
all depend nontrivially on s and the proof of Theorem 1.6 is complete.

5. The proof of Theorem 1.19

Recall the statement of Theorem 1.19.

Theorem 5.1. Let (M,λ0) be a contact manifold. For any free homotopy class α ∈ [S1,M ] and
any positive constants c1, c2 > 0, there is a contact form λ = fλ0 on M such that min(f) = 1,
max(f) < 1 + c1 and λ has a closed Reeb orbit in class α of period less than c2.

We will first give the proof for the case when M is three dimensional. Here all the essential
ideas are present and unobscured. We then give the proof for higher dimensional contact
manifolds. In each case there are two steps. The first step involves the construction of a new and
elementary Wilson semi-plug for Reeb flows which inserts fast closed Reeb orbits. In the second
step, the contact form resulting from the insertion of the new plug is deformed into the desired
contact form (in the correct conformal class).
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Dimension three. Suppose that (M,λ0) is three dimensional. Recall that a Legendrian knot in
M is an embedded closed curve which is everywhere tangent to ξ = kerλ0. Recall also that there
is a Legendrian knot arbitrarily C0-close to any closed loop in M . This allows us to start by
fixing a Legendrian knot L in M which represents the class α.

We now consider a flow box for the Reeb flow of λ0 around L using the following normal
neighborhood theorem from [Wei71, Wei91].2

Theorem 5.2. For every small enough ε > 0, there is a neighborhood Pε of L in M of the form

{(t, x, θ) ∈ [−2ε, 2ε]× [−2ε, 2ε]× R/Z}

in which
λ0 = dt+ x dθ.

The Reeb vector field of λ0 in Pε is just ∂t and so Pε is our flow box. Following [Gin95] and
[Cie97], we now consider a deformation of λ0 within Pε of the form

λδ,ε = (1− δA) dt+ B dθ.

Here A and B are smooth functions of t and x described below, and δ is a suitably small positive
constant to be chosen later. Depending on the context, A and B will be considered as functions
on either Pε or the square Qε = [−2ε, 2ε]× [−2ε, 2ε].

We choose A(t, x) so that it has the following simple properties:

(A1) A is supported in Qε;

(A2) −1 < A 6 0;

(A3) Ax(0, ε) = 1 on the rectangle [−ε, ε]× [ε/2, 3ε/2].

The function B(t, x) is constructed as a perturbation of the function (t, x) 7→ x of the form

B(t, x) = (1− T(t))x+ T(t)X(x), (72)

where T : [−2ε, 2ε]→ [0, 1] is a smooth function such that:

(T1) the support of T is [−ε, ε];
(T2) T is an even function;

(T3) T−1(1) = {0}
and X : [−2ε, 2ε]→ [−2ε, 2ε] is chosen so that:

(X1) X(x) > x with equality only outside (ε/2, 3ε/2);

(X2) X′(x) > 0 with equality only at ε;

(X3) X(ε) = ε+ ε2;

(X4) X(x)− x < 2ε2.

For these choices, the function B inherits the following properties:

(B1) (0, ε) is the only critical point of B and the only point where Bx is not positive;

(B2) 0 6 B(t, x)− x < 2ε2 for all (t, x) ∈ Qε.
2 A self-contained and detailed account of the proof is also presented in [Cie97], where the relevant result appears
as Lemma A5.
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By extending λδ,ε as λ0 outside of Pε, we may view it as a one-form on M .

Lemma 5.3. For all sufficiently small δ > 0, the form λδ,ε is contact.

Proof. It suffices to check this in Pε, where we have

λδ,ε ∧ d(λδ,ε) = (Bx(1− δA) + δAxB) dt ∧ dx ∧ dθ.
By property (A2),

Bx(1− δA) + δAxB > Bx + δAxB

and so it suffices to show that for all sufficiently small δ > 0, the function Bx + δAxB is strictly
positive on Qε. In the subrectangle [−ε, ε] × [ε/2, 3ε/2] ⊂ Qε, this follows easily from (A3) and
(B2), which imply that

Bx + δAxB = Bx + δB > δ
ε

2
.

Outside of this subrectangle, we have

Bx + δAxB = 1 + δxAx.

Choosing δ < |min(xAx)|−1, we are done. 2

The crucial feature of the new contact form λδ,ε is the following.

Lemma 5.4. There is exactly one R/Z-family of simple periodic Reeb orbits of λδ,ε, Γδ,ε, which
is contained in Pε. The orbits in the family Γδ,ε represent the class α and their (common) period
is 2π(ε+ ε2).

Proof. The kernel of dλδ,ε in Pε is spanned by the vector field

K = Bx∂t −Bt∂x + δAx∂θ.

Since (0, ε) is the only critical point of B, it follows easily from the formula for K that the
embedded circle Sε = {0} × {ε} × R/Z corresponds to a unique R/Z-family, Γδ,ε, of simple
periodic Reeb orbits of λδ,ε. Since the ∂t-component of K is positive away from Sε, there are no
other closed Reeb orbits in Pε.

Since Sε is C∞-close to {0}×{0}×R/Z in Pε, it is also C∞-close to our original Legendrian
knot L. Hence, orbits in Γδ,ε represent α. Finally, the common periods of these orbits is∣∣∣∣∫

Sε

λδ,ε

∣∣∣∣ = 2πB(0, ε) = 2π(ε+ ε2). (73)

2

Remark 5.5. The deformation of λ0 to λδ,ε within the flow box Pε corresponds to the insertion
of a Wilson semi-plug. Here the semi refers to the fact that our plug fails to have the matching
end point property. This means that a trajectory which enters Pε at (−2ε, x, θ), then follows
our new Reeb flow and exits Pε at t = 2ε and does not need to do so at the point (2ε, x, θ) (as
the trajectories of the original Reeb vector field Rλ0 did). Thus, it is possible, indeed inevitable
in some cases, that we have created new closed Reeb orbits which pass through Pε but are
not contained therein. This cannot be remedied. As shown by Rechtman in her thesis [Rec09],
Sullivan’s characterization of geodesible vector fields from [Sul78] implies that no Wilson plug
is geodesible and hence no Wilson plug is Reeb. In dimension three, a similar conclusion was
also reached by Cieliebak in [Cie97]. There it is observed that if one could construct a Wilson
plug for Reeb flows (centered about an arbitrary Legendrian knot) then one could immediately
construct a counterexample to the following result.
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Theorem 5.6 (Hofer et al. [HWZ96]). Every Reeb vector field on S3 has a periodic orbit which
is unknotted and has self-linking number −1.

Having inserted the desired family of closed Reeb orbits with our semi-plug, we must now
reckon with the fact that the form λδ,ε need not be of the form fλ0 for some positive function f .

Lemma 5.7. For all sufficiently small δ > 0, there exists a diffeomorphism Ψ of M such that Ψ
is isotopic to the identity and Ψ∗λδ,ε = fλ0 for some positive function f such that min(f) = 1
and

max(f) < e2δ+4ε.

Proof. The desired diffeomorphism will be constructed as a composition of two maps. Each of
these will be obtained using Gray’s stability theorem. We begin by refining the standard phrasing
of this result to include some relevant quantitative information, which is easily extracted from
the standard proof.

Theorem 5.8 (Quantitative Gray stability). Let (λs)s∈[0,1] be a smooth family of contact forms
on M . Denote their Reeb vector fields by Rs and set

rs = iRs

(
d

ds
λs

)
.

There exists a one-parameter family of diffeomorphisms (ψs)s∈[0,1] of M which starts at the
identity and satisfies

ψ∗s(λs) = exp

(∫ s

0
rσ ◦ ψσ dσ

)
λ0.

Hence,
ψ∗1(λ1) = f1λ0,

where

min(f1) > exp

(∫ 1

0
min
M

rσ dσ

)
and

max(f1) 6 exp

(∫ 1

0
max
M

rσ dσ

)
.

To obtain the first of our maps, we apply this version of Gray’s theorem to the family of
one-forms

λ̄s = (1− sδA) dt+ x dθ.

Since
λ̄s ∧ dλ̄s = (1 + δs(xAx −A)) dt ∧ dx ∧ dθ,

this is a family of contact forms for all sufficiently small δ > 0. Their Reeb vector fields are given
by

R̄s =
1

1 + δs(xAx −A)
(∂t + sδAx∂θ).

We then have

r̄s = iR̄s

(
d

ds
λ̄s

)
=

−δA
1 + δs(xAx −A)

.
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Property (A2) implies that the numerator in the last expression is in [0, δ). It is also clear that
for all sufficiently small δ > 0, the denominator is greater that 1/2. Thus, for all such small δ,
we have

0 6 r̄s < 2δ

and Gray’s theorem (as stated above) yields a diffeomorphism ψ̄1 such that

ψ̄∗1(λ̄1) = f̄1λ0

and

1 6 f̄1 < e2δ. (74)

To obtain our second map, we now consider the family of one-forms

λ̂s = λ̄1 + s(B− x) dθ = (1− δA) dt+ Bs dθ,

where Bs = x+s(B−x). These forms are contact whenever the functions Bs
x(1−δA)+δAxB

s are
strictly positive. Arguing as in Lemma 5.3, one can easily verify that this holds for all sufficiently
small δ. Assuming this then, the Reeb vector field of λ̂s is

R̂s =
1

Bs
x(1− δA) + δAxBs

(Bs
x∂t −Bs

x∂x + δAx∂θ)

and the relevant family of functions is

r̂s = i
R̂s

(
d

ds
λ̂s

)
=

(B− x)δAx

Bs
x(1− δA) + δAxBs

.

Outside the subrectangle [−ε, ε] × [ε/2, 3ε/2] ⊂ Qε, where B = x, we have r̂s = 0. Inside this
subrectangle, we have Ax = 1 and so

r̂s =
(B− x)δ

Bs
x(1− δA) + δBs

, (75)

which is nonnegative by property (B2). Thus, each function r̂s is nonnegative on all of Qε.
To obtain an upper bound for the r̂s, it suffices to do so inside [−ε, ε]× [ε/2, 3ε/2]. It follows

from (75) and properties (A2) and (B2) that here we have

(B− x)δ

Bs
x(1− δA) + δBs

<
2ε2δ

Bs
x + δBs

.

We also have Bs
x > 0 and Bs > ε/2 in this subrectangle and so

0 6 r̂s < 4ε.

Thus, for all sufficiently small δ > 0, there is a diffeomorphism ψ̂1 such that

ψ̂∗1(λ̂1) = f̂1λ̄1

and

1 6 f̂1 < e4ε. (76)
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To conclude, we set Ψ = ψ̂ ◦ ψ̄. Since both factors are isotopic to the identity, so is Ψ. We
also have

Ψ∗λδ,ε = (ψ̂ ◦ ψ̄)∗(λ̂1)

= ψ̄∗(f̂1λ̄1)

= (f̂1 ◦ ψ̄)f̄1λ0.

By (74) and (76), the function (f̂1 ◦ ψ̄)f̄1 satisfies

1 6 (f̂1 ◦ ψ̄)f̄1 6 e2δ+4ε. 2

At this point we can finish the proof of Theorem 1.19 in the three-dimensional case. Choose
δ and ε so that

2δ + 4ε < c1

and
2π(ε+ ε2) < c2.

Assuming also that δ is small enough for Lemma 5.7 to hold, we set

λ = Ψ∗λδ,ε.

Given an orbit γδ,ε in the family Γδ,ε from Lemma 5.4 the closed curve Ψ−1(γδ,ε(t)) is then a
closed Reeb orbit of λ with (the same) period, 2π(ε+ ε2). Since Ψ is isotopic to the identity, the
periodic orbit Ψ−1(γδ,ε(t)) also represents the class α and, with this, we are done.

Remark 5.9. Rather than looking for specific types of periodic orbits that are forced to exist by
the Reeb condition, as in Theorem 5.6, one might instead ask (in the spirit of [EG00]): what
collections of periodic orbits can be generated by Reeb vector fields on a fixed three-manifold?
In this direction the construction above yields the following result.

Theorem 5.10. For any co-oriented contact three-manifold (M, ξ) and any link type L in M ,
there is a contact form λ ∈ Λ(ξ) whose Reeb vector field has a collection of closed orbits which
represents L.

Higher dimensions. We now show that the proof above for dimension three extends easily to
higher dimensions. In practice, this amounts to showing that the extra variables can be cut off
with no meaningful effects.

Consider then a contact manifold (M,λ0) of dimension 2n − 1 > 3 and let L be a simple
closed curve in M which is everywhere tangent to ξ and represents the class α. Theorem 5.2
generalizes in the obvious way and yields, for small enough ε > 0, a normal neighborhood of L
in M of the form

Pε = {(t, x, θ, z) ∈ [−2ε, 2ε]× [−2ε, 2ε]× R/Z×B2n−4(ε)}

in which
λ0 = dt+ x dθ + κ0.

Here B2n−4(ε) is the open unit ball of radius ε in R2n−4, we have

z = ((q1, p1), . . . , (qn−2, pn−2))
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and κ0 is the standard Liouville form

κ0 =
1

2

n−2∑
i=1

qidpi − pidqi.

In what follows we will only need to consider functions whose z-dependence is radial, i.e.
which depend only on

ρ =
|z|
2

2

.

Our tool to cut off the extra variables will then be a smooth function cut : [0, ε2/2]→ [0, 1] with
the following properties:

(c1) cut = 0 near ε2/2;

(c2) cut(ρ) = 1− ρ near 0;

(c3) −(4/ε2) < cut′(ρ) 6 0.

Given the functions A(t, x) and B(t, x) from the previous section, we set

Â(t, x, ρ) = cut(ρ)A(t, x)

and
B̂(t, x, ρ) = (1− cut(ρ))x+ cut(ρ)B(t, x).

Now (0, ε, 0) is the only critical point of B̂ and the only point at which B̂x fails to be positive.
As before, for δ > 0, we consider deformations of λ0 of the form

λδ,ε = (1− δÂ) dt+ B̂ dθ + κ0.

Lemma 5.11. For all sufficiently small δ > 0, the form λδ,ε is contact.

Proof. Simple computations yield

dλδ,ε = δÂx dt ∧ dx+ δÂρ dt ∧ dρ+ B̂t dt ∧ dθ + B̂x dx ∧ dθ + B̂ρ dρ ∧ dθ + dκ0

and

(dλδ,ε)
n−1 = (n− 1)(δÂx dt ∧ dx+ B̂t dt ∧ dθ + B̂x dx ∧ dθ) ∧ (dκ0)n−2

+ (n− 1)(n− 2)δ(ÂxB̂ρ − ÂρB̂x) dt ∧ dx ∧ dρ ∧ dθ ∧ κ0 ∧ (dκ0)n−3.

Using the identity
dρ ∧ κ0 ∧ (dκ0)n−3 = ρ(dκ0)n−2,

we then arrive at the following expression for λδ,ε ∧ (dλδ,ε)
n−1:

(n− 1)[((1− δÂ)B̂x + δÂxB̂) + (n− 2)ρδ(ÂxB̂ρ − ÂρB̂x)] dt ∧ dx ∧ dθ ∧ (dκ0)n−2.

The function ((1− δÂ)B̂x + δÂxB̂) + (n− 2)ρδ(ÂxB̂ρ − ÂρB̂x) can be rewritten in the form

B̂x + δE,

where E(0, ε, 0) = B̂(0, ε, 0) = ε+ ε2 > 0. Since B̂x > 0 with equality only at the point (0, ε, 0), it
follows from continuity that for all sufficiently small δ > 0 the form λδ,ε∧(dλδ,ε)

n−1 is nonvanishing
and hence λδ,ε is a contact form. 2
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Lemma 5.12. There is exactly one R/Z-family of simple periodic Reeb orbits of λδ,ε, Γδ,ε which
is contained in Pε. The orbits in the family Γδ,ε represent the class α and their (common) period
is 2π(ε+ ε2).

Proof. For a fixed t and x, let V t,x be the Hamiltonian vector field on (B2n−4(ε), dκ0) defined

by the function z 7→ δÂ(t, x, |z|2/2). That is, V t,x(z) is defined by the equation

dκ0(z)(V t,x(z), ·) = cut′(|z|2/2)δA(t, x) dρ(·).

Let V (t, x, z, θ) be the vector field whose projection to (B2n−4(ε), dκ0) is V t,x and whose other

components are trivial. Define the vector field U by replacing δÂ above by B̂. The kernel of dλδ,ε
is then spanned by the vector field

K = B̂x∂t − B̂t∂x + δÂx∂θ + δÂxU − B̂xV.

To see this, note first that dρ(V ) = dρ(U) = 0 since the corresponding Hamiltonian vector fields
are defined by functions of ρ. A simple computation then yields

iKdλδ,ε = δÂρB̂x dρ− δB̂ρÂx dρ+ i
δÂxU

dκ0 − iB̂xV dκ0

= δÂρB̂x dρ− δB̂ρÂx dρ+ δÂxB̂ρ dρ− δB̂xÂρ dρ

= 0.

The t-component of K vanishes only when (t, x, z) = (0, ε, 0). At this point both B̂x and B̂t

vanish as do V and U since dρ = 0 when z = 0. Thus, λδ,ε has exactly one R/Z-family of simple
closed Reeb orbits in Pε. These orbits all have image

Sε = {0} × {ε} × R/Z× {0}

and period ∣∣∣∣∫
Sε

λδ,ε

∣∣∣∣ = 2π(ε+ ε2). 2

Lemma 5.13. For all sufficiently small δ > 0, there exists a diffeomorphism Ψ of M such that Ψ
is isotopic to the identity and Ψ∗λδ,ε = fλ0 for some positive function f such that min(f) = 1
and

max(f) < e2δ+4ε.

Proof. As in the proof of Lemma 5.7, we first apply the quantitative version of Gray’s theorem
to the family of one-forms

λ̄s = (1− sδÂ) dt+ x dθ + κ0.

These are contact for all sufficiently small δ > 0 and their Reeb vector fields are given by

R̄s =
1

(n− 1)[1− sδÂ + sδÂxx− s(n− 2)ρδÂρ]
(∂t + sδÂx∂θ + sδÂxY −X).

The relevant functions are then

r̄s = iR̄s

(
d

ds
λ̄s

)
=

−δÂ
(n− 1)[1− sδÂ + sδÂxx− s(n− 2)ρδÂρ]

.
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Property (A2) implies that the numerator in the last expression is in [0, δ). It is also clear that
for all sufficiently small δ > 0, the denominator is greater that 1/2. Thus, for all such small δ,
we have

0 6 r̄s < 2δ

and Gray’s theorem (as stated above) yields a diffeomorphism ψ̄1 such that

ψ̄∗1(λ̄1) = f̄1λ0

and
1 6 f̄1 < e2δ. (77)

Next we consider the family of one-forms

λ̂s = λ̄1 + s(B̂− x) dθ = (1− δÂ) dt+ B̂s dθ.

They are also contact for all sufficiently small δ and the Reeb vector field R̂s of λ̂s is equal to

B̂s
x∂t − B̂s

t∂x + δÂx∂θ + δÂxY − B̂s
xX

multiplied by the function

((n− 1)[((1− δÂ)B̂s
x + δÂxB̂

s) + (n− 2)ρδ(ÂxB̂
s
ρ − ÂρB̂

s
x)])−1.

This makes the relevant family of functions

r̂s =
(B̂− x)δÂx

(n− 1)[((1− δÂ)B̂s
x + δÂxB̂s) + (n− 2)ρδ(ÂxB̂s

ρ − ÂρB̂s
x)]
.

Outside [−ε, ε]× [ε/2, 3ε/2]×B2n−4(ε), where B̂ = x, we have r̂s = 0. Inside this region, we have

Âx = cut(ρ) and so

r̂s =
(B̂− x)δcut(ρ)

(n− 1)[((1− δÂ)B̂s
x + δcut(ρ)B̂s) + (n− 2)ρδ(cut(ρ)B̂s

ρ − cut′(ρ)ÂB̂s
x)]
.

Property (B2) implies that this expression is nonnegative and so each function r̂s is nonnegative
on all of Qε ×B2n−4(ε).

To obtain the desired upper bound for the r̂s, it suffices to do so inside [−ε, ε]× [ε/2, 3ε/2]×
B2n−4(ε). Here we have

r̂s =
(B̂− x)δcut(ρ)

(n− 1)[(1− δÂ)B̂s
x + δcut(ρ)B̂s + (n− 2)ρδ(cut(ρ)B̂s

ρ − cut′(ρ)ÂB̂s
x)]

=
(B̂− x)δcut(ρ)

(n− 1)[(1− δÂ(1 + (n− 2)ρcut(ρ)cut′(ρ)))B̂s
x + δcut(ρ)(B̂s + (n− 2)ρB̂s

ρ)]
.

For all sufficiently small δ, we may assume that the coefficient of B̂s
x in the denominator is greater

than 1/2. Using this and the formula defining B̂s, we get

r̂s 6
(B̂− x)δcut(ρ)

(n− 1)
[

1
2B̂

s
x + δcut(ρ)(x+ [cut(ρ) + (n− 2)ρcut′(ρ)]s(B − x))

] .
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By condition (B2), the function B − x (and thus B̂− x) takes values in [0, 2ε2). For sufficiently
small ε > 0, we may therefore assume that

|[cut(ρ) + (n− 2)ρcut′(ρ)](B − x)| < ε

4
.

(Here we have used the fact that (c3) implies that 0 > ρcut′(ρ) > −2.) It then follows that on
the subset of interest, [−ε, ε]× [ε/2, 3ε/2]×B2n−4(ε), where x > ε/2, we have

r̂s <
2ε2δcut(ρ)

(n− 1)
[

1
2B̂

s
x + δcut(ρ) ε4

] .
Using the fact that B̂s

x > 0 and n > 3, we arrive at the upper bound

r̂s < 4ε.

Thus, for all sufficiently small δ > 0 and ε > 0, it follows from Gray’s theorem that there is a
diffeomorphism ψ̂1 such that

ψ̂∗1(λ̂1) = f̂1λ̄1

and
1 6 f̂1 < e4ε.

The desired diffeomorphism is then Ψ = ψ̂ ◦ ψ̄. 2

The rest of the proof of Theorem 1.19 now follows exactly as it did for dimension three.
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