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i\RSTRACT. A model for g lacier Aow is developed which incorpora les 
longitudinal deviatoric stress contributions to th e field equations. The un­
derlying assumptions may be applied to develop mod els for various situ­
alions. Here, they a re developed for steady-stale and non-steady-slate 
sliding g laciers in plane Aow. The models reduce to a proper generalization 
of pl a ne-now pseudo-hydrostatic theory if longitudinal deviatoric stresses 
arc neglec ted in comparison to basal shea r stresses. Solution of this simpl er 
redu ced model allows an estim ale to be made o f lhe magnitude of the 
long itudinal deviatoric stress to test if it is neglig ible or, more generally, 
inves ti gate under what cond itions it ca n be neglected. The stead y-state 
model predicts that longitudinal deviatoric stresses a re negligible for very 
arbitra ry non-uniform sliding-law distributions provided that the following 
cond iti ons ex ist: the region must be distant from an ice divide or terminus 
and subj ec t to normal (no t extreme) accumulation or ablation. On the 
other ha nd , examples are produced where, und er non-steady conditio ns, 
lo ng itudin al dcviatoric stresses arc im portal1l and even dominant. 

R ESUME. UTi modtle d'tcoulemen( de glacier preTlont en comple le divjaleur des 
cOTllrajTlles longitudinales. Le modcle d'ecoulement de g lacier deveioppe intro­
duit les effets de la composante longitudinale du deviateur des con traintes 
dans les equa tions. Les hypotheses sous-jacentes pellvent etre appliquees all 
developpement de modeles pour des cas de fi gures vari ees. Ici, e1les sonl 
envisagees po ur des glaciers g lissan t en ccoulement plan, a I'ctat statio n­
naire e l non stationnaire. Le modele se ramene it une generalisa tion ade­
quate de la theorie pseudo-hydrostatique en eco ulement plan si la 
contrainte longitudinale deviatricc est negligee dcvant la contrainte de 
cisai llement basale. V ne sol ution de cc modele plus simpl e permet une 
estimation de I'amplitude de la conlrainlc devialrice lo ngitudinale en tant 
que test de son importance, DU de fac;on plus gene-fa le, en tant qu e recherche 
des conditi ons qu i la rendent negligeable. Le modele d 'eta t sta tionna ire 

INTRODUCTION 

A number of attempts have been made to incor~orate 
the effects of longitudinal deviatoric stresses ln 
models of glacier flow. The deviatoric stress! and 
Cauchy stress Q are rel ated by! = \1 - (tr 0 !1!3, and 
so have common shear components. In plane flow, in 
Oxy (Fig. 1) with Ox parallel to the bed inclined at 

y b(x) 

o 
~ b 

x 
Fi g . 1. A section of a glacier or ice sheet sliding 

over a flat inclined bed . positive directions are 
shown for accumulation b(x), velocity components 
(u ,v ) , and stress components . 
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condu it a des contraintes longitudinales negligeables pour de tres arbitrai res 
lois non uniformes de glissement sous reserve de "existence des conditions 
suivantes: les regions doivent etre elo ignees d 'une diffluence ou d 'un front 
et soumises it. des accumulations o u ablaLions normales (extrema exclus). 
D'autres part des exemples produ its montrent que clans des conditions non 
stationnaires des contraintes longitudinal es deviatrices ant un effet im­
portant et meme dominant. 

Z USA MMENFASSU NG. Ein Modell Jur den GlelscherJIuss unler Berucksichligung 
ablenkender Druckkriifie. Es wird ein Modell fUr den GletscherAuss entwickeit , 
das Hingsgerich tete, ablenkende Druckkomponenten in die Feld­
gleichungen einfUhrt. Die getroffenen Annahmen k6nnen zur AufSlellung 
van Modell en fLir verschiedene Situationen verwendel werden; hier werden 
Modelle fUr d en stationaren und nich t-sta tionaren ebenen Fluss gleitender 
Gletscher dargestellt. Die Modelle vereinlachen sich zu einer geeignelen 
Verallgemeinerung der pseudoh ydrosta tischen Theorie fUr ebenen Fluss, 
wenn ablenkende Normaldrucke gegeniiber der Scherspannung am Un­
tergrund vernachliissigt werden. Die L6sung dieses einfacheren Modells 
erlaubt eine Beurteilung der Frage, ob das Ausmass des lii ngsge richteten, 
ablenkenden Druckes vernachliissigba r ist, oder allgemeiner, eine Un­
tersuchung, unter welchen Bedingungen dieser vernachliissigbar werden 
kann. Das sta tion;;re Modell lass t erkennen , dass bei ko nstantem Fluss 
ablenkende Normaldrucke gegeniiber d er Scherspann ung am Untergrund 
rur weitgehend willkiirliche Verteilungen im nicht-gleichformigen Gl eitge­
setz vernachl iissigt werden diirfen, wenn folgende Bedingungen erru llt sind : 
Das Gebiet muss entfernt von einer Eisscheide oder einem Gletscherende 
liegen und darfnur normale (nicht a ussergew6hnliche) Akkumu lalion oder 
Abla tion a ufweisen. Andrerscits werden Beispiele angefUhrt, wo unter nicht­
stationaren Bed ingungen die ablenkenden La ngsdrucke wichtig und sagar 
bestimmend sind . 

an angl e et to the hori zonta 1, T xx is termed the longi­
tudinal deviatoric stress, and Tb i s the shear traction 
T liY = 0 xy ~n th~ bed. Weert~an (19~1) was concerned 
wlth the sltuatlon near an lce dlvlde where the longi­
tudinal deviatoric stress ITxxl may be larger than 
basal shear stress Tb. Robin (1967), Collins (1968), 
and Budd (1971) were concerned with the effect of bas­
al undulations upon surface profile; both Robin and 
Co llins assumed that ITxxl dominated Tb. Robin showed 
by calculation that to the south of Camp Century, 
North Greenl and, IT xxi 1 i es between 0.9 and 1.5 bars 
wlthTb less than 0.8 bars. Nye (1969) considered 
the effect of TXX in the equilibrium equations. 
These earl ier papers incl uded longitudinal deviatoric 
stresses in an ad hoc manner so that even for the 
case of plane flow there does not exist a general 
model which incorporates longitudinal deviatoric 
s t res ses. 

There are other situations not treated in the 
above papers for which a more general model is re­
quired. The common assumptions are that IT xxh bl » 
for float~ng ice shelves whereas ITxx!Tbl <;<; 1 for 
grounded lce sheets. It is clear that a transition 
region exists near the grounding line where both terms 
are important. As another example, Shoemaker (1981) 
found it necessary to invoke the assumption IT xx/T b./» 1 
ln studying transient creep slump in glacier reser-
v oi rs. In genera 1, non- s teady- state cond it ions mi ght 
be expected to produce values of h xx/T b I at 1 east 
of order unity, for example the values cited by Robin 
above; however there has been no analytical evaluation 
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of such situations. Steady-state problems might pro­
duce val ues of I, xxi, bl of order uni ty under con­
ditions of high accumulation or ablation or when basal 
slope or sliding conditions change rapidly. 

The conventional pseudo-hydrosttic theory arising 
when, xx is negl ected in compa ri son wi th 'b' so termed 
by Robin (1967), is shown by Morland and Johnson (1980, 
1982) to be the lead-order approximation on the global 
scale for steady plane flow over a slowly undulating 
bed. The surface slope relative to the mean bed line 
provides a small parameter for a perturbation series 
sol ution. 

We use the abbreviation p-h for this approximate 
theory. Since the full plane-flow equations do not 
allow significant analytic progress, there is need 
for a less restrictive approximation which incorpor­
ates effects of the deviatoric stress 'xx, This 
paper presents a simplified model which incorporates 
the deviatoric stress 'xx in conjunction with Glen's 
flow law for the viscous shear response of ice and the 
incompressibility approximation. The model satisfies 
the field equations in an average sense, and reduces 
to p-h theory as a limiting case. It is developed here 
only for isothermal plane flow of a sliding glacier 
over a plane inclined bed, but could be extended to 
a slowly undulating bed. A shape-factor approximation 
for side drag (Nye, 1965) could be included, and 
effects of a prescribed temperature profile can be 
incorporated. 

It should be remarked that application of the 
model does require extensive and delicate numerical 
calculation even though only a single independent 
variable is involved. 

STEADY-STATE FORMULATION 

In rectangular Cartesian axes OXi (i = 1,2,3), 
with the equivalences xl = x, x2 = y, in the flow 
plane Oxy (Fig. 1), Glen's flow law for the shear 
response and the incompressibility approximation are 
given by 

(1 ) 

where eij are the strain-rate components and, is 
the second invariant of the deviatoric stress given 
by 

, 2 =, i j' i j , 'i j =: a i j - a k kO i j /3. (2) 

Henceforth, we adopt n = 3, although the model can be 
developed for any arbitrary positive integral value 
of n. The factor A is significantly temperature de­
pendent, particularly near melting. Let (u,v) denote 
the velocity components in Oxy. We assume that 
lau/ayl ? > lav/axl and henceforth neglect av/ax. 
In the p-h theory longitudinal gradients are much 
smaller than gradients through the thickness and 
Iv 1« lu I in the mean (Morland and Johnson, 1980), 
and lion-negligible 'xx should not annul both these 
strong inequalities. This assumption does not apply 
!O flo~ting ~helves. Hence for plane flow, where 
e33 = e23 = e13 = 0, '33 = '23 = '13 = 0, 
'11 = - '22, and Equations (l) reduce to 

au 
2e xy 4A(, xi + , x/ )T xY' 

ay 
(3) 

av au 
exx eyy = 2A(, xi + 'x/ )Txx' 

ay ax 

The average down-slope velocity U(x) is defined by 

h 
U(x) = (l/h)f u(x,ddc 

o 
h eau 

ub(x) + (l/h)f J (x,T) )dndc 
o 0 an 

(4 ) 
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where ub(x) is the basal sl iding velocity and h(x) is 
the glacier thickness. 

We retain the assumptions that the gradient of 
each stress component in the longitudinal direction 
is much smaller than its gradient through the thick­
ness, and that the surface slope h'(x) is small. If 
'xx = 0(, xy), then by Equations (3) the longitud­
inal veloclty u must have comparable gradients in 
both directions, and then by incompressibility 
av/ay = O(a u/ay). These comparisons do not follow from 
the global coordinate and variable scallngs of Morland 
and Johnson (1980, 1982), but are expected to arise 
only on a local scale where more rapid longitudinal 
changes are initiated. With a surface slope magnitude 
as a small parameter, the free surface conditions 
correct to lead and first order are given by (Morland 
and Johnson, 1982) 

y = h : 0 y y = 0, 'xy = 2h' , x x • (5) 

Inertia terms are negligible so momentum balance is 
given by the equilibrium equations 

ao yy a, xx a, xy 
--+2--+ <-- +pgsina 0, 
ax ax ay 

(6) 

a, xy aO yy 
+ -- - pg cos a = O. 

a x ay 

In the p-h theory, I'xxl « I'xyl, integrating the 
equilibrium equations (6) subject to surface con­
ditions (5), with an x-derivative yielding a lower 
order of magnitude than a y-derivative, gives the 
lead-order stress distribution (Morland and Johnson, 
1982) 

0yy = - pg cos a (h-y( 
(7) 

'xy = pg(sin a - h'cos a)(h-y), 

which show that 'xy = O(h'oyy) if a = O(h'), but 
'xy = O(Oyy) if a = 0(1). 

Now allow 'xx = O(,xy)' Since a'xx/ax is still a 
lower order of magnitude than a, xy/ay, the 1 ead-order 
expression given by the second of Equations (7) for 
'xy. is sti 11 val id, and, xx only i nfl uences the fi rst­
orQer correction. Integrating the second of Equations 
(6) subject to the surface given by the fi rst of Equa­
tions (5) to include first-order terms requires only 
a lead order,xy ina'xy/ax, significant when a = 0(1). 
Then 

0yy = - pg(h-y)(cos a - h'sin a). (8) 

which is again a p-h result, not influenced by 'xx' 
and the sin a term is only a first-order contribution 
when a = 0(1). We cannot obtain an expression for 'xx 
independent of the flow solution, but a lead-order re-
1 ation for the mean longitudinal deviatoric stress is 
given by integrating the longitudinal balance given 
by the first of Equations (6) over the thickness, 
using the second of Equations (5) and the first of 
Equations (7). For TXX = O(.p), with Tb ~ pgh sin a 
ifa = O{l) and 'b = O(pghh') if a = O(h'), the sin a 
term in Equation (8) does not contribute to the lead­
order terms in either Cdse . Define 

1 h 
txx(x) = - f T xxdy , 

h 0 

h aT xx 
(ht xx)' = f -- dy + h' ('xx)y h, 

o ax 

then, to O(h"b), 

2(ht xx )' ='b +pgh(h'cosa - sinal 

(9) 
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JournaL of GLacioLogy 

The basal shea r traction Tb must be related to 
the sliding velocity ub by a prescribed sliding law. 
Following Nye (1959). we adopt. for illustration. 

Tb = A(X)Ub 1/3. (11) 

with variable coefficient A(X) to allow for a varia­
tion of basal conditions. An explicit exponent 1/3 is 
introduced for subsequent calculations . Finally. in­
tegrating the incompressibility relation ekk = 0 
through the thickness gives the mass-balance result 
for steady conditions. 

(Uh) I = b (12) 

where b is the net accumulation (surface accumulation 
less any basal drainage). that is. the volume of ice 
added per unit time per unit horizontal cross-section. 

Reduction of the system of differential equations 
in x and y to a problem in one independent variable x 
requires integration of the constitutive equations 
(3) through the thi ckness. In p-h theory where .T xx is 
absent to zero and first order. the zero-order integ­
ration using the linear Txy expression in Equations 
(7) is simple provided that A is assumed constant; 
that is. for temperature-independent ice or isothermal 
Conditions. With typical temperature profiles in a 
cold glacier there will be significant variation of 
A with depth. particularly in the regions near melt­
ing. and use of the average value for the integrand 
factor is not then a convincing approximation. Given 
an empirical temperature profile. a realistic varia­
tion of A with y can be prescribed. For the present 
illustration we assume A is constant. which is appro­
priate to a near-temperate glacier. It is not possible. 
hQwever. to prescribe the actual variation of TXX with 
y. since this requires solution of the equations in 
x and y. so to evaluate the mean velocity integrals 
in Equation (4) we replace TXX in the velocity 
gradients in Equations (3) by its mean value t xx • 
Thi s is exact only if T xx is independent of y. There 
is no evidence. however. to suggest an alternative 
real istic variation of T xx which could be used to 
evaluate these integrals. Since the model delivers 
only mean values. the approximation cannot be tested 
for consistency. so this assumption of the y varia-
t i on of T xx must be noted as the basi c weakness of 
the approximation. 

Now integration of the velocity gradient in the 
first of Equations (3) gives Us - ub. where 
Us = u(x.h) is the longitudinal velocity at the sur­
face. and the repeated integral on the right-hand 
side of Equation (4) gives U(x). Differentiation of 
the integral in the middle of Equation (4) yields an 
integral of the velocity gradient in the second of 
Equations (3). The results are 

1 
us(x) = ub + 2AhT b(t x/ + ~ b2 ). 

1 1 
U(x)=ub+4AhTb(-t 2+-rb2 ) 3 xx 5 • 

1 
hU ' (x) = h' (us - U) + 2Aht xx (t x/ + 3T b2). 

(13) 

when the lead-order expansion in the second of Equa­
tions (7) is written Txy = Tb(1 - y/h) . Note that 
the second and third together with the first of Equa­
tions (13) are two independent relations between the 
five variables U. ub. Tb. TXX' h. since they result 
from the two independent constitutive relations in the 
first and second of Equations (3). These. together 
with the sliding relation (11). mass-balance equation 
(12). and the longitudinal equilibrium equation (10). 
comp 1 ete the system of fi ve equat ions. whi ch wi 11 now 
be considered in various situations. 

It is cl ear from the construction that having TXX 
of order T xy does not change the 1 ead-order p-h 
stress distributions. but influences the velocity 

336 

field given by Equations (3). If TXX is neglected 
in compari son with T xy (one order of magnitude small­
er in p-h theory. then the first of Equations (3) is 
the lead order p-h relation. while the second of 
Equations (3). and hence the third of Equations (13). 
are superfluous to the lead-order solution . The re­
quired system is Equations (10). (11). (12). and the 
second of Equations (13). for four variables U. ub. 
Tb. h. though the p-h equations can be solved dir­
ectly for both x and y variation. not just in an aver­
age sense (Morland and Johnson. 1980. 1982) . Thus the 
present model is consi stent with p-h theory when T xx 
is negligile. but allows the magnitude of TXX' as 
measured by the mean stress t xx• to be estimated. 

DIMENSIONLESS VARIABLES 

We are concerned primarily with effects induced 
by changes over longitudinal scales of order the 
thickness. so we introduce dimensionless coordinates 
based on a thickness h(O). The origin. in the region 
of interest. is supposed not to be at a divide. so 
that ub(O) * o. T b(O) * O. and U(D) is a non-zero 
measure of longitudinal velocity. Define 

x = h(O)C h = h(O)H(E;). ub U(O)ub(E;). 

b U(O)l5(E;). Tb = T b(O)Tb(E;). (14) 

txx = Tb(O)Txx(E;), A(D)I"(E;). 

Thus E;. H. ub. Tb. and Txx. when TXX = O(Txy)._are 
order-unity variables. but away from a diviae b is 
small. A(t;) describes a prescribed variation of slid­
ing conditions over a thickness length scale. Typical 
smooth variations of accumulation b over this length 
scale will not induce longitudinal deviatoric stres­
ses. so we adopt uniform b for our examples (which 
would not be realistic over the scale of the span); 
thus b is a constant dimensionless parameter measur­
ing the accumulation magnitude relative to the mean 
longitudinal velocity. The other natural dimension-
1 ess parameters are a and 

pgh(O)cos a txx(O) 
q To=Txx(O) 

T b(O) T b(O) 

ub(O) 
(15) 

Uo Ub(O) 
U(O) 

which measure the ratios of the overburden pressure 
and mean longitudinal deviatoric stress to the basal 
shear stress. and basal sliding velocity to mean 
longitudinal velocity. respectively, at the chosen 
origin. Away from a margi~. q will normally be a large 
parameter. Note that 0 < Uo < 1 since the longitudinal 
velocity increases towards tne surface. 

We can now el iminate U and ub from the steady­
state equations in dimensionless variables to obtain 
three equations for Tb. Txx. and H. The constants 
Ah(Oh'h(o) and A (0) are el iminated in favour of 
the parameters lIo and To by eval uating the second of 
Equations (13). and Equation (11) at E; = O. Integrat­
ing the mass-balance Equation (12) and el iminating U 
between the second of Equations (13) and Equation (11) 
gives an algebraic relation 

_ _ (Tb)3 HlTb(l-uo) (5Th + 3rt) 
1 + bE; = Huo -= + • (16) 

A 5Tt + 3 

Eliminating U' between the third of Equations (13) 
and Equation (12) with Us given by the first of Equa­
tions (13). and then U by the integral of Equation 
(12), gives the slope expression 
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H(b(20"% + 12} - 10H(1-uo} (3-rx x + T1,)Txx} 
H' = • (17) 

4(1 + DE; )(5"%+3) + If- (1-uo) (10-rxx+3T1,)Tb 

Fi na 11 y, the 1 ongi tudi na 1 balance Equat i on (10) be­
comes 

T' = xx .:. {Tb - Hq tan a + H' (qH - 2T xx)} 
2H 

(18) 

where H' can be eliminated by Equation (17). A steady­
state solution will not eXist for all choices of para­
meters defining conditions at F,; = O. For example 
To < 0 and 15 > 0 impl ies positive accumul ation and 
compressive flow near F,; = 0 which would require H to 
increase with time. Such situations are reflected by 
rapid growth or instability of the numerical solution 
of Equations (16) - (18). No numerical instabilities 
have arisen with sensible choices of the parameters. 

The restriction to steady state lies solely in 
the mass balance equation (12), which incorporates 
the surface accumulation condition for h stationary 
in time. The constitutive equations (3), equilibrium 
equations (6), and sliding relation (11), apply 
equally to non-steady flow. Thus the system of four 
Equations (1), (11), and second and third of (13) 
with the ,first of Equations (13) may be applied to 
non-steady conditions, but cannot determine the five 
variables U, ub, Tb, t xx , and h, nor any actual time 
variation of the solution. However, if a profile h( x} 
is prescribed for some fixed time, these four equa­
tions determine the instantaneous distributions of 
U, ub, Tb, and t xx, and in particular the magnitude 
of txx reI ative to Tb. Such estimates naturally de­
pend on the choice of h(x} and the parameters defin­
ing conditions at x = o. An application which starts 
from a steady-state profile determined with a given 
basal sliding condition, and investigates the new 
velocity and stress distributions induced by a change 
of the sI iding function >:"( F,; }, is presented later. 
Since the time scale of change between steady states 
will be many hundreds of years or more, there will 
be a fi n ite peri od foIl owi ng the chan ge of >:"(F,; } dur­
ing which H(F,;} remains approximately at the initial 
steady profi 1 e. 

El iminating Ah(O)Tt(O} and A (O) by the second 
of Equations (13) and Equation (11) as before, and ub 
by Equation (11), and comparing U given by the second 
of Equations (13) and the integral of the third of 
Equations (13), gives the integral equation 

F,; 
(1 - uo)J {H'T b(10rL + 3rt} + 

Integrati ng 
equation 

To 
T xx = - + 

H 

o 

, ::::,(:~:)' :)6)~ -1 \ ' 

+ 4(1 - uo}HTb(5'J2x x + 3rt}. (19) 

Equatlon (18) gives a second integral 

q(1f- -I} 1 F,; 
+ - f (Tb - Hq tan alE: dE:.(20) 

4H 2H 0 

The two integral equations (19) and (20) for Tb and 
Txx are preferred for numerical calculation. First­
order differential relations can be obtalned by com­
paring the third of Equations (13) with the deriva­
tive of the second of Equations (13) and rewriting 
Equation (10) as an expression for T~x' 

If we set T xx " 0, then Equation (18) reduces to 
the p-h result for Tb, given by y = 0 in the second 
of Equations (7), whicb involves both Hand H'. 
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Then Equation (16) is a first-order ordinary differ­
ential equation for H(F,;} in a region of constant 
accumulation, subject to H(O} = I, which is a special 
case of the equati on for arbitrary b(x} (MorI and 
and Johnson, 1982). That is, Equation (16) determines 
the profile predicted by p-h theory. Given a valid 
small surface-slope profile, the full perturbation 
solution (MorI and and Johnson, 1980, 1982) now auto­
matically predicts a longitudinal stress TXX one 
order of magnitude small er than T xy for a bounded 
viscosity law; there are singularities at the free 
surface if a power law with exponent greater than 
unity is used. With the present model, which retains 
the integrated stress Txx in comparison with Tb, we 
have Equation (17) which determines Txx(F,; } in terms 
of H(F,; }. Thus, given the p-h profile H(F,; }, we can use 
Equation (17) to test the underlying approximation 
ITxxl « Tb, and confirm, or reject, in this mean 
sense, the appl icability of the p-h theory. Sol ution 
of the compl ete set of Equati ons (16) - (18) for 
steady state is necessary when Txx is not everywhere 
negligible in comparison with Tb, and will show in 
particular how the p-h profile is modified. The same 
approximations also provide an estimate of Txx in the 
non-steady-state case. However, in the non-steady­
state applications of the model illustrated later, 
Txx does not remain negligible and p-h theory is in­
a ppropri ate. 

STEADY-STATE ILLUSTRATION S 

To obtain a 10% change from the p-h results, the 
constit utive equations (3) and slope expression (17) 
suggest that (T xx/Tb}2 should exceed 0.1 and 0.3 re­
spectively in the region of interest, say Txx/Tb ;' 0.2. 
We will first take To = 0 as the initial condition for 
T xx' at F,; = 0, to avoid imposi ng a si gnifi cant longi­
tudinal deviatoric stress artificially, and investi­
gate the possible build-up of Txx o~er a region 
o < ~ < 10 for different values of ub and q. Bed in­
cllnation 0. will not have any significant effect on 
Txx' so for simpl icity we take a = O. Two values of 
the ratio of the initial overburden pressure to basal 
shear stress are considered; q = 400 which corresponds 
to ice-sheet thickness 1.6 km and basal shear stress 
0.36 x 105 N m-2 , and q = 25 which corresponds to thick­
ness 100 m at the same basal shear stress. A range 
1/10 to 1/1.001 for the ratio Llo of initial basal 
velocity to mean longitudinal velocity is considered. 

First we el iminate possible influence of accumula­
tion (small b) and variation of sliding coefficient 
>:"( F,; } by taking b = 0, f = 1. Table I gives a summary 
of the solution of the initial-value problem defined 
by Equations (16) - (18). In all cases the arbitrarily 
selected initial condition To = 0 causes Txx to in­
crease rapidly in a narrow boundary layer of dimen­
sionless width H*. (The values shown in Table I were 
chosen subjectively, but the layer is rather promin­
ently del ineated if q = 400, rather less so if q = 25.) 
Outside the boundary layer Txx/Tb enters a plateau 
region where it increases slowly at an almost constant 
but increasing slope. Average values of Txx/Tb outside 
the boundary layer are shown in Table I as well as 
average values of the slope (Txx/Tb) '. The results 
show that H* increases rapidly as uo " 1 or as q .. O. 
This is to be expected since internal adjustment to 
an arbitrary initial condition, in this case To = 0, 
can be accomplished only through internal deforma-
tion which vanishes asuo " 1 or q .. O. The same 
reasoning explains the increase in (Txx/Tb), with 
increasing Ub(O}/U(O} or decreasing q. Table I shows 
that plateau values of Txx/Tb in excess of 0.2 are 
possible, but only under conditions of very low slid­
ing resistance (uo " I), very thin ice, or some com­
bination of these two limiting conditions. Certainly, 
near the terminus both of these limiting situations 
exist. On the other hand, near an ice divide where 
~ would be large, it is not clear what magnitude 
Uo = ub(O}/U(O} would approach. 
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TABLE I DIMENSIONLESS WIDTH H* OF BOUNDARY LAYER. AVERAGE PLATEAU VALUE OF Txx/Tb 
OUTSIDE'BOUNDARY LAYER OVER INTERVAL (0.10) AND SLOPE (Txx/Tb) ' IN PLATEAU REGION. 
ALL FOR a = b = To = 0, A = 1 

Llo=ub(O)/U(O) 1/10 liS 

H* " 0.1 < 0.1 

q 400 T xx/Tb 0.0016 0.0017 

(T xx/T b) , < 10-5 < 10-5 

H* 0.4 0.5 

q 25 0.032 0.034 

(T xx/Tb) ' <0.003 0.003 

1/3 

< 0.1 

0.0019 

< 10-5 

0.6 

0.042 

0.01 

* Value not meaningful on interval (0,10). 

Near an ice divide (U(O) ... 0), b becomes 1 arge, 
and the present dimensionless formulation is not satis­
factory. It can be seen that in the slope expression 
(17), the terms involving b become dominant if ITxxl 
is order unity or less. Calculations were made cor­
responding to finite non-zero b and it was verified 
that values of Txx/Tb of order unity can easily arise 
under steady-state conditions near ice divides. This 
was the situation which Weertman (1961) studied. 

As earlier remarked, these conclusions concerning 
the order of magnitude of deviatoric stresses near 
glacier termini and ice divides were expected. The 
conclusion that ITxx/Tbl <~ 1 in regions removed from 
ice divides and termini, provided there is an 
"appreciable" sliding resistance and Ih'I « 1, is in 
agreement with the global perturbation analysis 
(Morland and Johnson, 1980, 1982). 

The next question is whether a rapid change in 
~(s) can produce values of TxxlTb of order unity. 
The situation corresponding to a central reservolr 
with a constant reduction of sliding resistance A 
was examined for a wide range of other parameter val­
ues. The results are in line with Table I. That is, 
the effect of an elevated step in ~ is to produce a 
transition boundary layer with a wide of order H* 
where variables change rapidly and continuously in 
adjusting to plateau values of TxxlTb similar to 
those given in Table I. Note that the boundary layers 
also show up clearly in Figures 2 and 3 and in the 
corresponding Figure 4 for non-steady-state cases to 
be discussed. Thus, the model predicts that under 

q = 25 -­
q = 400 ----

1.5 

------- -~~----______________ 1 

1 .4 

1.3 ,Txx 
------------------------

~::~ -
0.5 I 

" o iij 

>-~ 
·0.5 

· 1 

1.!.'--~-~-~--.__-_,--._-,__-__+ ·1 .5 
02356 B 

(; 

Fig . 2. ILLustrations of the effeat of q and To upon 
the dimensionLess variabLes H, Txx , and Tb in steady­
state fLow . The Txx aurves start from (0,-1) and the 
Tb aurves ~tart from (0,1). Two a~ses shown correspond 
to a = 0, b = 0, A " 1 , To = -1, uo = O. 5 , 
with (i) q = 400 and (ii) q = 25. 
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1/2 

< 0.1 

0.0023 

~ 10-5 

0.9 

0.05 

0.01 

! o,,:t 
I 0 .950 I 

0 .925 
0 .0 

1/1.5 

<0.1 

0.003 

< 10-5 

1.0 

0.07 

0.02 

0' 1 

1/1.1 

0.3 

0.0092 

< 10-4 

1.5 

0.2 

0.04 

1/1.01 

2.0 

0.077 

10-3 

3.5 

0.7 

0.07 

1/1.001 

4 

0.47 

< 10-3 

8 

1.6 

* 

H 

Fig. 3. The effeat of a sudden reduation in sLiding 
coeffiaient in a centraL region upon dimension Less 
variabLes Tb and fLux F. Height H and the pseudo­
hydrostatia basaL shear str§ss Tph resuLt from a 
steady-state soLution with A " 1, q = 400, 
Uo = 0.2, a = b = o. Tb and F resuLt from steady­
state H input to non-steady-state equations with 
A = 1/5 on 0.25 < s < 0.5. Arrows indiaate 
a near-jump disaontinuity. 

steady-state conditi ons and for fi xed q and Llo' the 
order of magnitude of the maximum values of ITxx/Tbl 
in a region of length of order the thickness is 
determined primarily by the value of ~ in the region 
rather than by the di stribution of A (s) outside the 
region, except when the boundary layer spreads over 
that distance. Moreover, discontinuities in sliding 
resistance do not by themselves produce large longi­
tudinal deviatoric stresses. 

The effect of starti ng from an order unity T xx is 
illustrated by Figure 2 for the situation of a uniform 
sl iding coefficient X- = 1 on (0,8) with To = -1, 
b = a = O. The glacier profile corresponding to q = 
400 is very fl at and T xx is close to zero except in a 
very narrow boundary layer where it increases rapidly 
from To = -1 to a small positive value. Similarly, Tb 
increases rapidly to a constant level 1.13. To affects 
this plateau value of Tb however; if To = 0, for ex­
ample, the plateau value is very close to unity. The 
case when q = 25 corresponds to a position near the 
terminus. With H' ~ -0.06 the assumption IH'I« 1 
begins to be in question and if integration is carried 
out sufficiently far this assumption fails entirely. 
The magnitude of H' near a termi nus is 1 argely a r~­
sult of the sliding law and initial parameters, malnly 
b. The wi de boundary 1 ayer is evi dent. Whi 1 e T xx i n­
creases, Tb al so increases so that the profi 1 e is 
affected primarily by Tb rather than by a build-up of 
T xx , 

NON-STEADY-STATE ILLUSTRATION 

In this section we present results for a glacier 
which is initially in steady state and which suddenly, 
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by which we mean on a time-scale short compared to the 
characteristic creep slump time of the central region 
(Shoemaker, 1981), has its sliding resistance lowered 
in a central sub-regi on of dimensi onl ess 1 ength ;;. For 
convenience, we take;; to be of order unity, except 
for extreme cases where H* is also of order unity; 
nothing is lost by such a choice. A reduced sliding 
resistance could result from water injection onto the 
base of the central region. The physical situation is 
closely analogous to the phenomenon of creep slump in 
central galcier reservoirs (Shoemaker, 1981). 

To model this non-steady-state problem the steady­
state equations were first solved using a uniform 
sl iding law f" 1. The resulting H(t,;) was then sub­
stituted into the non-steady-state equations (19) and 
(20) with f" const. < 1 in the central region and 
unity outside. It is supposed that H(t,;) remains 
approximately steady for a period which is small in 
comparison with the slump time but suffiCiently long 
for stress and velocity distributions to adjust to the 
new basal conditions. Figure 3 illustrates an example 
where ex = b = To = 0, q = 400, U = 0.2, andf = 1/5 
on the central region 0.25 < I; < 0.5. Here F repre­
sents a dimension1ess flux HU/U\O), which is uni­
formly unity in the steady state since b = 0, and 
Tph is a dimension1ess form of the p-h basal shear 
stress given by the second of Equations (7) with 
y = 0 and ex = 0: 

T ph = -p ghh' /T b(O) = -qHH'. (21) 

Except for a transition zone adjoining the orlgln 
where it increases rapidly from zero, T pfLis almost 
unity. Note that from Equation (17) with b = 0, 
H' (0) = 0 results from the artificially imposed init­
ial condition TO = O. Because steady-state conditions 
apply on 0 < I; < 0.25, F is unity there but decreases 
to the right. Because of the reduced sliding resist­
ance in the central region, Tb' which is unity to 
four figures on 0 < t,; < 0.24, changes almost discon ­
tinuously to another plateau value, constant to three 
figures, on 0.25 < t,; < 0. 5 and then at t,; = 0.5 to a 
final plateau where it decreases slowly from unity. 
The behaviour of T xx may be deduced from the appro­
priate I Txx/Tb I curve of Figure 4. It is noted that 
Txx changes sign within the boundary layer adjoining 
I; = 0. 25; that is, the flow changes from extensiona1 
to compressi ve. 

The ITxx/Tb I curves in Figure 4 are very nearly 
1 i near in the central region outside the boundary 
layer; the slopes of these lines are labelled in 
Tables 11, Ill, and IV as T' for various examples. 
Calculations also show that in jumping to a region of 
increases sliding resistance f, the thickness of the 
transition boundary layer is negligible as compared 
with the thickness corresponding to a decrease of ~ 
by the same factor. We find that the plateau values 
of ITxx/Tbl to the right of the central region also 
increase with;; and can be of order one or larger. 
From this, it can be seen that for a boundary-value 
problem where, in general, the entire glacier would 
be in a non-steady state, ITxx/Tbl could be of order 
unity throughout, except near a zero of Txx. 

Fig. 4. The effect of a sudden reduction in sLiding 
coefficients from unity in a centraL region 
0 .25 < I; < 0.5 upon Txx/ Tb . Cases shown are q = 100, 
A 1/ 8 (---J, q = 400, A = 1/5 (-J, q = 100, 
A = 1/ 2 ( ...• J, aLL for Uo = 0.2. 

Shoemaker and MorLand: A gLacier fLow modeL 

The effects of parameter variations are shown in 
Tables 11, Ill, and IV and are summarized below. In 
all cases the central region of reduced sliding re­
sistance extends from 0.25 to 0.50; ;; = 0.25. 

TABLE I I. EFFECTS OF uo ON DEVIATORIC STRESS IN NON­
~TEADY-STATE SITUATION. VALUES OF Txx/Tb AT DIFFERENT I; FOR 
A = 1/5 IN CENTRAL REGION, ;; = 0.25, ALL FOR q = 400. T' 
VALUES ARE (T xx/T b)' (NEARLY CONSTANT) I N CENTRAL REGION 
OUTSIDE BOUNDARY LAYER. 

Uo 1/l0 1/5 1/3 1/1.5 

(Txx/Tb) -0.0016 -0.0017 -0.0019 -0.0030 
0.25 

(T xx/Tb) -0.17 -0.24 -0.30 -0.41 
0.50 

(Txx/Tb) -0.072 -0.083 -0.089 -0.094 
0.75 

T' -0.69 -0.98 -1.25 -1.7 

TABLE I I 1. EFFECT OF q UPON DEVIATORIC STRESSES . ALL 
CASES FOR A = 1/2 IN CENTRAL REGION AND UO = 1/3. 
T' VALUE FOR q = 25 IS NOT MEANINGFUL BECAUSE OF 
BOUNDARY LAYER 

q 800 400 100 25 

(Txx/Tb) -O.OOOg -0.0019 -0.0075 -0.0297 
0.25 

(T xx/Tb) -0.060 -0.059 -0.051 -0.018 
0.5 

(T xx/Tb) -0.041 -0.040 -0.035 -0.013 
0.75 

T' -0.25 -0.25 -0.25 

TABLE IV. EFFECTS OF f UPON DEVIATORIC STRESSES . ALL 
CASES FOR q = 200 AND UO = 1/2 

(T xx/Tb) -0.0045 -0.0045 -0.0045 -0.0045 
0.25 

(T xx/Tb) -0.83 -0.36 -0.074 -0.012 
0.5 

(Txx/Tb) -0.11 -0.091 -0.046 -0 .011 
0.75 

T' -3.48 -1.50 -0.33 -0.070 

1/1.1 

-0.007 

-0.44 

-0.091 

-1.9 

(i) Provided only that the length;; is sufficiently 
large, va1 ues of T xx/Tb > 0.3 are encountered for 
practical ranges of parameters q, Ub(O)/U(O), and the 
jump i n ~. * 

* We will not speculate about the practical range for 
jumps in A due, say, to water injection. However, the 
present situation is analogous to that of "rapid" bas­
al warming of a central reservoir of an, initially, 
cold-based glacier (Shoemaker, 1981), where, in the 
context of the present model, A would change "rapidly" 
from infinity to a finite value. 
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(ii) Table 11 shows the ,effect of Uo on (Txx/Tb)' With 
values given at f; = 0.25, 0.5, and 0.75, as well as 
the average value of (T xx/Tb)' on 0.25 < ~ < 0.50 
(shown as T') outside the boundary layer, a sketch of 
each case can be made. In all cases A = 1/5 and q = 400. 
T' values increase with increasing u-;, reflecting the 
fact that adjustment to the reduced sliding resist-
ance by shear stress is less efficient at the higher 
Uo values so that higher values of Txx are induced. 
(iii) Table III illustrates that a change in q does 
affect T'. For all cases A = 1/2 and L10 = 1/3. (For 
q = 25, because H* ~ 0.6 from Table I, the interval 
(0.25, 0.75) lies entirely within the boundary layer.) 
This result may be interpreted as follows: for fixed 
uo' >:, and h(O), if T b(O) is changed there wi 11 be 
no change in T' in adjusting to the jump in sliding 
resistance. (Note that H(f;) changes as q varies.) 
(iv) Table IV shows that, as expected, decreasing >: 
produces rapidly inc~asing Txx/Tb values. All cases 
are for q = 200 and Uo = 1/2. 

DISCUSSION 

The model consists primarily of a set of assump­
tions which may be applied to produce equivalent 
models in situations not addressed here, e.g. those 
involving radial flow, non-sliding cold glaciers, 
other sliding laws, or other viscous constitutive re­
lations such as a polynomial relation which exhibits 
finite viscosity at zero stress. 

The plane-flow model developed here is a general­
ization of p-h theory designed to treat mean flow 
features when !Txx/Tb! is of order unity, and reduces 
to p-h theory when IT xx ! « Tb everywhere. It does, 
however, still incorporate an estimate of the inte­
grated longitudinal deviatoric stress Tx~ if the pro­
f ile is determined by the simpler p-h relations based 
on the approximation IT xx i < Tb, which can therefore 
be used to test the applicability of a p-h solution. 
If the estimated Txx distribution satisfies !Txx! « Tb 
throughout the region of interest, then the p-h solu­
tion is valid, provided of course that the fundamental 
assumption of small surface slope, !H'(f;) I « I, is 
confirmed. When the estimated Txx is not negligible in 
comparison with Tb, then the present model can be used 
to determine stresses, velocities, and profile which 
are compatible with a significant integrated longi­
tudinal deviatoric stress Txx' 

It has been shown that under a wide range of con­
ditions the p-h theory is valid for steady-state 
glaciers away from a margin or divide. However, exam­
ples have demonstrated that the p-h theory is not 
applicable to a particular class of non-steady prob­
lems in which !T xx/Tb! becomes of order unity. It is 
conjectured that longitudinal deviatoric stresses are 
more generally important in transient problems, so 
that the estimation procedure for Txx described above 
should always be applied before accepting p-h results. 

Because the model employs averaging of various 
quantities over the thickness, so that the elliptic 
partial differential equations are approximated by 
ordinary differential equations, it cannot be applied 
to study the y-distribution of velocity or stress re­
sulting, for example, from flow over or around an ob­
stacle'. Similar ly, it is not expected that the descrip­
tion by the mdoe1 of the effect of abrupt changes in, 
for example, sliding resistance, will be accurate near 
the discontinutity. For example, the boundary layers 
exhibited here in the ordinary differential-equation 
solutions occur down-stream of a discontinuity, while 

an elliptic partial differential equation would pro­
duce a boundary layer on both sides of a discontinuity. 
On the other hand, the model should give a reasonable 
descri pt i on of the gl oba 1 effects of such d i scont i n­
uities over span lengths of order the thickness. 

All of the results were obtained for short lengths 
not exceeding ten times the thickness at the starting 
place. It was decided not to obtain complete steady­
state glacier profiles for several reasons. First, 
the phenomena investigated here do not require con­
sideration of more than a short length. Second, it 
can be concluded from results presented that for 
reasonab le parameter values the condition !Txx/Tbl« 
is satisfied everywhere except at the terminus or 
near an ice divide. Finally, the study of profiles 
near a terminus is a complex situation which requires 
more detailed treatment . We remark that parameters 
can be chosen such that the condition I h' ! « 1 is 
satisfied everywhere, while p-h theory requires a 
sliding law such that Tb'" 0 at the terminus to 
maintain bounded slope. 

It is bel ieved that greater than six-figure accur­
acy for Tb and H and at least two-figure accuracy 
for Txx was obtained for all cases . The arithmetic 
operations involved in computing Txx produce a loss 
in accuracy. In addition to the usual tests for accur­
acy, the steady-state and non-steady-state systems 
must produce identical results if a steady-state pro­
file is used as input to the non-steady-state equa­
tions, allowing a cross-check between two distinct 
numerical problems. 
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