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AssTrRACT. A model for glacier flow is developed which incorporates
longitudinal deviatoric stress contributions to the field equations. The un-
derlying assumptions may be applied to develop models for various situ-
ations. Here, they are developed for steady-state and non-steady-state
sliding glaciers in plane flow. The models reduce to a proper generalization
of plane-flow pseudo-hydrostatic theory if longitudinal deviatoric stresses
are neglected in comparison to basal shear stresses. Solution of this simpler
reduced model allows an estimate to be made of the magnitude of the
longitudinal deviatoric stress to test if it is negligible or, more generally,
investigate under what conditions it can be neglected. The steady-state
model predicts that longitudinal deviatoric stresses are negligible for very
arbitrary non-uniform sliding-law distributions provided that the following
conditions exist: the region must be distant from an ice divide or terminus
and subject to normal (not extreme) accumulation or ablation. On the
other hand, examples are produced where, under non-steady conditions,
longitudinal deviatoric stresses are important and even dominant.

Risumé. Un modele découlement de glacier prenant en comple le déviateur des
contraintes longitudinales. Le modéle d’écoulement de glacier developpe intro-
duit les effets de la composante longitudinale du déviateur des contraintes
dans les équations. Les hypothéses sous-jacentes peuvent étre appliquées au
développement de modéles pour des cas de figures variées. Ici, elles sont
envisagées pour des glaciers glissant en écoulement plan, a I'état station-
naire et non stationnaire. Le modéle se ramene a une généralisation adé-
quate de la théorie pseudo-hydrostatique en écoulement plan si la
contrainte longitudinale déviatrice est negligée devant la contrainte de
cisaillement basale. Une solution de ce modéle plus simple permet une
estimation de 'amplitude de la contrainte déviatrice longitudinale en tant
que test de son importance, ou de fagon plus générale, en tant que recherche
des conditions qui la rendent négligeable. Le modéle d’état stationnaire

conduit 4 des contraintes longitudinales négligeables pour de trés arbitraires
lois non uniformes de glissement sous réserve de 'existence des conditions
suivantes: les régions doivent étre éloignées d’une diffluence ou d'un front
et soumises 4 des accumulations ou ablations normales (extrema exclus).
D'autres part des exemples produits montrent que dans des conditions non
stationnaires des contraintes longitudinales déviatrices ont un effet im-
portant et méme dominant.

ZUSAMMENFASSUNG. Ein Modell fiir den Gletscherfluss unter Beriicksichtigung
ablenkender Druckkrifte. Es wird ein Modell fiir den Gletscherfluss entwickelt,
das lingsgerichtete, ablenkende Druckkomponenten in die Feld-
gleichungen einfithrt. Die getroffenen Annahmen konnen zur Aufstellung
von Modellen fir verschiedene Situationen verwendet werden; hier werden
Modelle fiir den stationdren und nicht-stationiiren ebenen Fluss gleitender
Gletscher dargestellt. Die Modelle vereinfachen sich zu einer geeigneten
Verallgemeinerung der pseudohydrostatischen Theorie fiir ebenen Fluss,
wenn ablenkende Normaldrucke gegeniiber der Scherspannung am Un-
tergrund vernachlissigt werden. Die Lisung dieses einfacheren Modells
erlaubt eine Beurteilung der Frage, ob das Ausmass des langsgerichteten,
ablenkenden Druckes vernachlissighar ist, oder allgemeiner, eine Un-
tersuchung, unter welchen Bedingungen dieser vernachlissigbar werden
kann. Das stationire Modell lisst erkennen, dass bei konstantem Fluss
ablenkende Normaldrucke gegeniiber der Scherspannung am Untergrund
fiir weitgehend willkiirliche Verteilungen im nicht-gleichfoimigen Gleitge-
setz vernachlissigt werden diirfen, wenn folgende Bedingungen erfiillt sind:
Das Gebiet muss entfernt von einer Eisscheide oder einem Gletscherende
liegen und darf nur normale (nicht aussergewdhnliche) Akkumulation oder
Ablation aufweisen. Andrerseits werden Beispiele angefiihrt, wo unter nicht-
stationiren Bedingungen die ablenkenden Lingsdrucke wichtig und sogar
bestimmend sind.

an angle a to the horizontal, t,, is termed the longi-
tudinal deviatoric stress, and 'E(b 1's)the shear traction
been made to incorporate Txy = Oxy On the bed. Weertman (1961) was concerned
the éf?:?:lt?sro?flg:;??ﬁé?nglavgev?atoric stresses i with theys1!;uat19n near an ice divide where the longi-
models of glacier flow. The deviatoric stress z and tudinal deviatoric stress |tyy| may be larger than
Cauchy stressg are related byt =g - (tro)l/3, and basal shear stress tp. Robin (1957), Collins (1968),
so have common shear components. In plane flow, in and Budd (1971) were concerned with the effect of bas-

: : d inclined at al undulations upon surface profile; both Robin and
Oxy (Fig. 1) with Ox parallel to the be Collins assumed that |t | dominated t,. Robin showed

by calculation that to the south of Camp Century,
North Greenland, [txx| Ties between 0,9 and 1.5 bars
with 1 less than 0.8 bars. Nye (1969) considered
the effect of tyy in the equilibrium equations.
These earlier papers included longitudinal deviatoric
stresses in an ad hoe manner so that even for the
case of plane flow there does not exist a general
model which incorporates longitudinal deviatoric
stresses.

There are other situations not treated in the
above papers for which a more general model is re-
quired. The common assumptions are that |t yy,/tpl »> 1
for floating ice shelves whereas |tyx/tp| << 1 for
grounded ice sheets. It is clear that a transition
region exists near the grounding line where both terms
are important. As another example, Shoemaker (1981)

X found it necessary to invoke the assumption [tyyx/tp|>> 1
in studying transient creep slump in glacier reser-

voirs. In general, non-steady-state conditions might

be expected to produce values of |tyu/tp| at least

of order unity, for example the values cited by Robin

above; however there has been no analytical evaluation

INTRODUCTION

Fig. 1. A section of a glacier or ice sheet gliding
over a flat inclined bed. Positive directions are
shown for accumulation b(z), velocity components
(u,v), and stress components.
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of such situations. Steady-state problems might pro-
duce values of 'TXX”Tbl of order unity under con-
ditions of high accumulation or ablation or when basal
slope or sliding conditions change rapidly.

The conventional pseudo-hydrosttic theory arising
when t is neglected in comparison with T, SO termed

by Robin (1967), is shown by Morland and Johnson (1980,

1982) to be the lead-order approximation on the global
scale for steady plane flow over a slowly undulating
bed. The surface slope relative to the mean bed line
provides a small parameter for a perturbation series
solution.

We use the abbreviation p-h for this approximate
theory. Since the full plane-flow equations do not
allow significant analytic progress, there is need
for a Tess restrictive approximation which incorpor-
ates effects of the deviatoric stress tyy. This
paper presents a simplified model which incorporates
the deviatoric stress t,, in conjunction with Glen's
flow law for the viscous shear response of ice and the
incompressibility approximation, The model satisfies
the field equations in an average sense, and reduces
to p-h theory as a limiting case. It is developed here
only for isothermal plane flow of a sliding glacier
over a plane inclined bed, but could be extended to
a slowly undulating bed., A shape-factor approximation
for side drag (Nye, 1965) could be included, and
effects of a prescribed temperature profile can be
incorporated.

It should be remarked that application of the
model does require extensive and delicate numerical
calculation even though only a single independent
variable is involved.

STEADY-STATE FORMULATION

In rectangular Cartesian axes Ox; (i = 1,2,3),
with the equivalences xj = x, xp = y, in the flow
plane Oxy (Fig. 1), Glen's flow law for the shear
response and the incompressibility approximation are
given by

éi_] =ATn_lT-ij, ékk=0, (1}

where éi' are the strain-rate components and t is
the second invariant of the deviatoric stress given
by

ST TijE 04 - oyl i /3. (2)

Henceforth, we adopt n = 3, although the model can be
developed for any arbitrary positive integral value
of n. The factor A is significantly temperature de-
pendent, particularly near melting. Let (u,v) denote
the velocity components in Oxy. We assume that
laufay| »> ]yavlaxl and henceforth neglect 3v/ax.

In the p-h theory longitudinal gradients are much
smaller than gradients through the thickness and

Ivl << |u] in the mean (Morland and Johnson, 1980),
and non-negligible t,, should not annul both these
strong inequalities. This assumption does not apply
to floating shelves. Hence for plane flow, where

B33 =83 =813 = 0, 133 Hfj’ =793 = 0,

T]] = - t22, and Equations (I) reduce to

au 5 5
Zéxy =— = 4A(t s +1xy )Txy’
3y
(3)
v du
Sy == 8 == =i Gt o ey
X XY 3y e Y

The average down-slope velocity U(x) is defined by

h
U(x) = (1/h)] u{x,e)de
0
he au
=up(x) + (1/h)) | — (x,n)dhee (4)
00 3n
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where up(x) is the basal sliding velocity and h{x) is
the glacier thickness.

We retain the assumptions that the gradient of
each stress component in the longitudinal direction
is much smaller than its gradient through the thick-
ness, and that the surface slope h'(x) is small. If
Txx = 0(x Jw), then by Equations (3) the longitud-
inal velocity u must have comparable gradients in
both directions, and then by incompressibility
av/ay = 0(3u/ay). These comparisons do not follow from
the glaobal coordinate and variable scalings of Morland
and Johnson (1980, 1982), but are expected to arise
only on a local scale where more rapid longitudinal
changes are initiated. With a surface slope magnitude
as a small parameter, the free surface conditions
correct to lead and first order are given by (Morland
and Johnson, 1982)

Y = h: Oyy = 0, TXy — zthxx. (5)
Inertia terms are negligible so momentum balance is
given by the equilibrium equations

9T xx

a0
Yy £
X 99X ay

AT xy
+ +pg sina =0,

(6)

AT yy N 30 yy

-pg cosa = 0.
ax ay

In the p-h theory, |tyx| << [14y| , integrating the
equilibrium equations (6) subject to surface con-
ditions (5), with an x-derivative yielding a lower
order of magnitude than a y-derivative, gives the
1eadsorder stress distribution (Morland and Johnson,
1982

oyy = =pg cosa (hy), -
ti
Txy = pg(sina - h'cos a)(h-y),

which show that Tyy = D(h'oyy) ifa =0(h'), but
rxy=0(<: jf) ifa =0(1). )

Now allow T4y = O(tyy). Since dtyy/ax is still a
lower order of magnitude than at,,/ay, the lead-order
expression given by the second of Equations (7) for
Txy 18 still valid, and T4y only influences the first-
order correction. Integrating the second of Equations
(6) subject to the surface given by the first of Equa-
tions (5) to include first-order terms requires only
a lead order Ty in arxy/a X, significant whena = 0(1).
Then

oyy = - pg(h-y)(cos « - h'sina). (8)

which is again a p-h result, not influenced by Tyys
and the sin o term is only a first-order contribution
when o = 0(1). We cannot obtain an expression for T xx
independent of the flow solution, but a lead-order re-
lation for the mean longitudinal deviatoric stress is
given by integrating the longitudinal balance given
by the first of Equations (6) over the thickness,
using the second of Equations (5) and the first of
Equations (7). For tyy = O(tp), with tp = pgh sina
ifa =0(1) and 1y = O(pghh'F ifa =0(h"), the sina
term in Equation ?8) does not contribute to the lead-
order terms in either case. Define

1 h
txx(x) ==/ 1 xxdy,
h o
RURLE" (9)
(htxx)" =] dy + h'(txx)y = h»
o ax

then, to O(h'typ),

2(htyx)" =1y +pgh(h'cosa - sina) = O(h'tp).
(10)
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The basal shear traction tp must be related to
the sliding velocity up by a prescribed sliding law.
Following Nye (1959), we adopt, for illustration,

T, =A(x)ub1/3, (11)

with variable coefficient A (x) to allow for a varia-
tion of basal conditions. An explicit exponent 1/3 is
introduced for subsequent calculations. Finally, in-
tegrating the incompressibility relation ékk =0
through the thickness gives the mass-balance result
for steady conditions,

(Uh)' = b (12)

where b is the net accumulation (surface accumulation
less any basal drainage), that is, the volume of ice
added per unit time per unit horizontal cross-section,

Reduction of the system of differential equations
in x and y to a problem in one independent variable x
requires integration of the constitutive equations
(3) through the thickness. In p-h theory where 1,y is
absent to zero and first order, the zero-order integ-
ration using the linear 7, expression in Equations
(7) is simple provided tha{ A is assumed constant;
that is, for temperature-independent ice or isothermal
conditions. With typical temperature profiles in a
cold glacier there will be significant variation of
A with depth, particularly in the regions near melt-
ing, and use of the average value for the integrand
factor is not then a convincing approximation. Given
an empirical temperature profile, a realistic varia-
tion of A with y can be prescribed. For the present
illustration we assume A is constant, which is appro-
priate to a near-temperate glacier. It is not possible,
however, to prescribe the actual variation of t4x with
¥, since this requires solution of the equations in
x and y, so to evaluate the mean velocity integrals
in Equation (4) we replace tyy in the velocity
gradients in Equations (3) by its mean value tyy.
This is exact only if T4y is independent of y. There
is no evidence, however, to suggest an alternative
realistic variation of 7,y which could be used to
evaluate these integrals. Since the model delivers
only mean values, the approximation cannot be tested
for consistency, so this assumption of the y varia-
tion of T,y must be noted as the basic weakness of
the approximation.

Now integration of the velocity gradient in the
first of Equations (3) gives ug - up, where
ug = u(x,h) is the longitudinal velocity at the sur-
face, and the repeated integral on the right-hand
side of Equation (4) gives U(x). Differentiation of
the integral in the middle of Equation (4) yields an
integral of the velocity gradient in the second of
Equations (3). The results are

1
ug(x) = up + 2Ahe p(ty,? + ?bz)-
1 1
U(x) = up + 4Aht b(atxxz +'§tb2), (13)

1
hu'(x) = h'(ug - U) + 2Ahtyy(te,@ + —3Tb2)=

when the lead-order expansion in the second of Equa-
tions (7) is written Txy = th(l - y/h). Note that
the second and third together with the first of Equa-
tions (13) are two independent relations between the
five variables U, up, tp, Txxs N, since they result
from the two independent constitutive relations in the
first and second of Equations (3). These, together
with the sliding relation (11), mass-balance equation
(12), and the longitudinal equilibrium equation (10),
complete the system of five equations, which will now
be considered in various situations.

It is clear from the construction that having tyy
of order tyy does not change the lead-order p-h
stress distributions, but influences the velocity
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field given by Equations (3). If t,, is neglected

in comparison with tyy (one order of magnitude small-
er in p-h theory, then the first of Equations (3) is
the lead order p-h relation, while the second of
Equations (3), and hence the third of Equations (13),
are superfluous to the lead-order solution., The re-
quired system is Equations (10), (11), (12), and the
second of Equations (13), for four variables U, up,
Ths h, though the p-h equations can be solved dir-
ectly for both x and y variation, not just in an aver-
age sense (Morland and Johnson, 1980, 1982). Thus the
present model is consistent with p-h theory when T4y
is negligile, but allows the magnitude of tyx, as
measured by the mean stress tyy, to be estimated.

DIMENSIONLESS VARIABLES

We are concerned primarily with effects induced
by changes over longitudinal scales of order the
thickness, so we introduce dimensionless coordinates
based on a thickness h(0). The origin, in the region
of interest, is supposed not to be at a divide, so
that uy(0) # 0, t(0) # 0, and U(0) is a non-zero
measure of longitudinal velocity. Define

h(0)e, h=nh(0)H(E), up=U(0)up(e),
U(O)BE), 1 = TH(0)Th(E), (14)
tiew = th{0)TexlE)s N (OIX(E )<

Thus £, H, Up, Th, and Tyy, when Ty, = 0(ty,),_are
order-upity variables, but away from a divide b is
small. A(g) describes a prescribed variation of slid-
ing conditions over a thickness length scale. Typical
smooth variations of accumulation b over this length
scale will not induce longitudinal deviatoric stres-
ses, so we adopt uniform b for our examples (which
would_not be realistic over the scale of the span);
thus b is a constant dimensionless parameter measur-
ing the accumulation magnitude relative to the mean
longitudinal velocity. The other natural dimension-
less parameters area and

n

X

b

pgh(0)cos a txx(0)
s, Ty @ Tp{8) = ,
©5(0) t5(0)
(15)
- up(0)
uo = ub(o) P E— ’
u(o)

which measure the ratios of the overburden pressure
and mean longitudinal deviatoric stress to the basal
shear stress, and basal sliding velocity to mean
longitudinal velocity, respectively, at the chosen
origin. Away from a margin, q will normally be a large
parameter. Note that 0 < ugy < 1 since the longitudinal
velocity increases towards the surface.

We can now eliminate U and up from the steady-
state equations in dimensionless variables to obtain
three equations for Ths Tyxs and H. The constants
Ah(0)t}(0) and A (0) are eliminated in favour of
the parameters ugy and Ty by evaluating the second of
Equations (13), and Equation (11) at £ = 0. Integrat-
ing the mass-balance Equation (12) and eliminating U
between the second of Equations (13) and Equation (11)
gives an algebraic relation

_ _ [ Tp\? HTR(1-up) (5T + 373)
— +

X 5T% + 3

. (16)

Eliminating U' between the third of Equations (13)
and Equation (12) with ug given by the first of Equa-
tions (13), and then U by the integral of Equation
(12), gives the slope expression
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H{B(207 + 12) - 10H(1-U,) (3%y + T3)Tyxt
A(1 + B )(5T#3) + HR (1) (L0, #3T3) Ty,

(17)

Finally, the longitudinal balance Equation (10) be-
comes

1
Tyx = E—H{Tb - Hg tana + H'(gH - 2T.4)} (18)

where H' can be eliminated by Equation (17). A steady-
state solution will not exist for all choices of para-
meters defining conditions at & = 0. For example
To< 0 and B> 0 implies positive accumulation and
compressive flow near £ = 0 which would require H to
increase with time. Such situations are reflected by
rapid growth or instability of the numerical solution
of Equations (16) - (18). No numerical instabilities
have arisen with sensible choices of the parameters,

The restriction to steady state lies solely in
the mass balance equation (12), which incorporates
the surface accumulation condition for h stationary
in time. The constitutive equations (3), equilibrium
equations (6), and sliding relation (11), apply
equally to non-steady flow. Thus the system of four
Equations (1), (11), and second and third of (13)
with the first of Equations (13) may be applied to
non-steady conditions, but cannot determine the five
variables U, up, th, tyy, and h, nor any actual time
variation of the solution. However, if a profile h(x)
is prescribed for some fixed time, these four equa-
tions determine the instantaneous distributions of
U, up, th, and tyy, and in particular the magnitude
of tyy relative to tp. Such estimates naturally de-
pend on the choice of h(x) and the parameters defin-
ing conditions at x = o. An application which starts
from a steady-state profile determined with a given
basal sliding condition, and investigates the new
velocity and stress distributions induced by a change
of the sliding function x(£), is presented later.
Since the time scale of change between steady states
will be many hundreds of years or more, there will
be a finite period following the change of A (g) dur-
ing which H(g ) remains approximately at the initial
steady profile.

Eliminating Ah(0)c%,(0) and A (0) by the second
of Equations (13) and Equation (11) as before, and up
by Equation (11), and comparing U given by the second
of Equations (13) and the integral of the third of
Equations (13), gives the integral equation

5 :
(1 - Up)f (H'TH(107%, + 313) +

+ 10Ty (3T%x + 1)1 (e )k
Tp\3

= (ZOTZO : 12) UO ezl 1 +
A

+ 4(1 - UHT(5T8, + 33). (19)
Integrating Equation (18) gives a second integral
equation

Tg &q{F =1) 1 g%

— + —— +— [ (Tp - Hg tan a)e
H 4H 2H o

Txx o dE.(ZD)

The two integral equations (19) and (20) for Tp and
Tyx are preferred for numerical calculation. First-
order differential relations can be obtained by com-
paring the third of Equations (13) with the deriva-
tive of the second of Equations (13) and rewriting
Equation (10) as an expression for Ty,.

If we set Tyy= 0, then Equation (18) reduces to
the p-h result for Ty, given by y = 0 in the second
of Equations (7), which involves both H and H'.
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Then Equation (16) is a first-order ordinary differ-
ential equation for H(¢) in a region of constant
accumulation, subject to H(0) = 1, which is a special
case of the equation for arbitrary b(x) (Morland

and Johnson, 1982), That is, Equation (16) determines
the profile predicted by p-h theory. Given a valid
small surface-slope profile, the full perturbation
solution (Morland and Johnson, 1980, 1982) now auto-
matically predicts a longitudinal stress ty, one
order of magnitude smaller than tyy for a bounded
viscosity law; there are singularities at the free
surface if a power law with exponent greater than
unity is used. With the present model, which retains
the integrated stress Ty, in comparison with Ty, we
have Equation (17) which determines Tyyx(¢) in terms
of H(g). Thus, given the p-h profile H(£), we can use
Equation (17) to test the underlying approximation
|Txx| << Tp, and confirm, or reject, in this mean
sense, the applicability of the p-h theory. Solution
of the complete set of Equations (16) - (18) for
steady state is necessary when T,, is not everywhere
negligible in comparison with Ty, and will show in
particular how the p-h profile is modified. The same
approximations also provide an estimate of Ty, in the
non-steady-state case. However, in the non-steady-
state applications of the model illustrated later,
Txx does not remain negligible and p-h theory is in-
appropriate.

STEADY-STATE ILLUSTRATIONS

To obtain a 10% change from the p-h results, the
constitutive equations (3) and slope expression (17)
suggest that (Tyy/Tp)? should exceed 0.1 and 0.3 re-
spectively in the region of interest, say Ty,/Ty > 0.2.
We will first take Ty = 0 as the initial condition for
Tyx, at & = 0, to avoid imposing a significant longi-
tudinal deviatoric stress artificially, and investi-
gate the possible build-up of T,, over a region
0 <& < 10 for different values of up and q. Bed in-
clination a will not have any significant effect on
Tyx: 50 for simplicity we take o = 0. Two values of
the ratio of the initial overburden pressure to basal
shear stress are considered; g = 400 which corresponds
to ice-sheet thickness 1.6 km and basal shear stress
0.36 x 105N m=, and q = 25 which corresponds to thick-
ness 100 m at the same basal shear stress. A range
1/10 to 1/1.001 for the ratio U, of initial basal
velocity to mean longitudinal velocity is considered.

First we eliminate possible influence of accumula-
tion (small B) and variation of sliding coefficient
A(E) by taking b = 0, A = 1., Table I gives a summary
of the solution of the initial-value problem defined
by Equations (16) - (18). In all cases the arbitrarily
selected initial condition T, = 0 causes Tyy to in-
crease rapidly in a narrow boundary layer of dimen-
sionless width H*. (The values shown in Table I were
chosen subjectively, but the layer is rather promin-
ently delineated if q = 400, rather less so if g = 25.)
Outside the boundary layer Ty,/Tp enters a plateau
region where it increases slowly at an almost constant
but increasing slope. Average values of Ty, /Ty outside
the boundary layer are shown in Table I as well as
average values of the slope (Tyxx/Tp)'. The results
show that H* increases rapidly as Uy+ 1 or as g+ O.
This is to be expected since internal adjustment to
an arbitrary initial condition, in this case To = 0,
can be accomplished only through internal deforma-
tion which vanishes as uy+ 1 or g+ 0. The same
reasoning explains the increase in (Tyy/Tp)' with
increasing up(0)/U(0) or decreasing q. Table I shows
that plateau values of Ty, /Ty in excess of 0.2 are
possible, but only under conditions of very Tow slid-
ing resistance (u,+ 1), very thin ice, or some com-
bination of these two limiting conditions. Certainly,
near the terminus both of these limiting situations
exist. On the other hand, near an ice divide where
q would be large, it is not clear what magnitude
Uy = up(0)/U(0) would approach.
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TABLE I. DIMENSIONLESS WIDTH H* OF BOUNDARY LAYER. AVERAGE PLATEAU VALUE OF T, /Tp
OUTSIDE BOUNDARY LAYER OVER INTERVAL (0.10) AND SLOPE (Tyx/Tp)' IN PLATEAU REGION.

ARUL FOR & = B = T 205X =1
Uy=up(0) /U(0) Y10 1/ /3 1/2 /1.5  1/1.1  1/1.01  1/1.001
H* <0.1 <01 <0.1 <0,1 <0,1 0.3 2.0 4
q =400 Tyx/Tp 0,006 0,0017 0,0019 0.0023 0.003 0.0092 0.077 0.47
(Tyx/Tp) ' <105 <1075 <107 <10 <107 <107 1073 <1073
H* 0.4 0.5 0.6 0.9 1.0 1.5 3.5 8
q =25 Ty/Tp 0.032 0,034 0,042 0.05 0.07 0.2 0.7 1.6
(Tyx/Tp) ' <0.003 0.003 0.0l 0.01 0.02  0.04 0.07 ¥
* Value not meaningful on interval (0,10).
_ H
Near an ice divide (U(0) + 0), b becomes large, 1 . 12
and the present dimensionless formulation is not satis- ——T ————— T - ——d e
factory. It can be seen that in the slope expression | F ‘g-i;
(17), the terms involving b become dominant if lTxxI 5 095071 o
is order unity or less. Calculations were made cor- e f—@—? s
responding to finite non-zero B and it was verified 0.925 ; ; . . : v . 0
that values of Tyy/Th of order unity can easily arise EE S v 05‘ 0= o o7 8

under steady-state conditions near ice divides. This
was the situation which Weertman (1961) studied.

As earlier remarked, these conclusions concerning
the order of magnitude of deviatoric stresses near
glacier termini and ice divides were expected, The
conclusion that |Tyy/Tp| << 1 in regions removed from
ice divides and termini, provided there is an
“appreciable" sliding resistance and |h'| << 1, is in
agreement with the global perturbation anaiysis
(Morland and Johnson, 1980, 1982),

_ The _next question is whether a rapid change in
A(g) can produce values of Tyy/Th of order unity.

The situation corresponding to a central reservoir
with a constant reduction of sliding resistance x
was examined for a wide range of other parameter val-
ues, The results are in 1ine with Table I. That is,
the effect of an elevated step in A is to produce a
transition boundary layer with a wide of order H*
where variables change rapidly and continuously in
adjusting to plateau values of T,,/Ty similar to
those given in Table I. Note that the boundary layers
also show up clearly in Figures 2 and 3 and in the
corresponding Figure 4 for non-steady-state cases to
be discussed. Thus, the model predicts that under

q:25 —_—
q=400 — - e
e i ;
144 e ]
05
b =3
1.3 Pk | E
£ TN e L %
= 5
= 1.2 [ e -
——— T =06
SRR T o N e——
e B
1 T T T T T T } 1:6
0 1 2 3 a 5 6 7 3

Fig. 2. Illustrations of the effect of q and To upon
the dimensionless variables H, Tyy, and Tp in steady-
state flow. The Ty, eurves start from (0,-1) and the
Tp eurves start from (0,1). Two cases shoum correspond
to w.=0y b =iy XS 1, To= ~1; iy = 0:6;
with (1) q = 400 and (11) q = 25.
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Fig. 3. The effect of a sudden reduction in sliding
coefficient in a central region upon dimensionless
variables Ty, and flux F. Height H and the pseudo-
hydrostatic basal shear stress T. h result from a
steady-state solution with A = I, q = 400,

Up = 0.2, @ = b = 0. Ty and F result from steady-
state H input to non-steady-state equations with
A= 1/5 on 0.85 < E < (0.5. Arrows indicate

a near-jump discontinuity.,

steady-state conditions and for fixed q and Uo, the
order of magnitude of the maximum values of |Tyyx/Tp|
in a region of length of order the thickness is
determined primarily by the value of X in the region
rather than by the distribution of A (E) outside the
region, except when the boundary layer spreads over
that distance. Moreover, discontinuities in sliding
resistance do not by themselves produce large longi-
tudinal deviatoric stresses.

The effect of starting from an order unity T, is
illustrated by Figure 2 for the situation of a uniform
sliding coefficient X = 1 on (0,8) with Tg = -1,

b =a = 0. The glacier profile corresponding to q =
400 is very flat and T,, is close to zero except in a
very narrow boundary layer where it increases rapidly
from T, = -1 to a small positive value. Similarly, Ty
increases rapidly to a constant level 1.13, T, affects
this plateau value of Tp however; if Ty = 0, for ex-
ample, the plateau value is very close to unity. The
case when q = 25 corresponds to a position near the
terminus. With H' = -0.06 the assumption [H'| << 1
begins to be in question and if integration is carried
out sufficiently far this assumption fails entirely.
The magnitude of H' near a terminus is largely a re-
sult of the sliding law and initial parameters, mainly
b. The wide boundary layer is evident. While T,, in-
creases, Ty also increases so that the profile is
affected primarily by Ty rather than by a build-up of

Txxe
NON-STEADY-STATE ILLUSTRATION

In this section we present results for a glacier
which is initially in steady state and which suddenly,
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by which we mean on a time-scale short compared to the
characteristic creep slump time of the central region
(Shoemaker, 1981), has its sliding resistance lowered
in a central sub-region of dimensionless length 2. For
convenience, we take = to be of order unity, except
for extreme cases where H* is also of order unity;
nothing is lost by such a choice. A reduced sliding
resistance could result from water injection onto the
base of the central region. The physical situation is
closely analogous to the phenomenon of creep slump in
central galcier reservoirs (Shoemaker, 19815’.

To model this non-steady-state problem the steady-
state equations were first solved using a uniform
sliding lawx = 1. The resulting H(£) was then sub-
stituted into the non-steady-state equations (19) and
(20) with X = const., < 1 in the central region and
unity outside. It is supposed that H(g ) remains
approximately steady for a period which is small in
comparison with the slump time but sufficiently long
for stress and velocity distributions to adjust to the
new basal conditions. Figure 3 illustrates an example
wherea =B =T, =0, q=400, u = 0.2, and X = 1/5
on the central region 0.25< & < 0.5. Here F repre-
sents a dimensionless flux HU/U(0), which is uni-
formly unity in the steady state since b = 0, and
Toh is a dimensionless form of the p-h basal shear
stress given by the second of Equations (7) with
y =0 and a = 0:

Toh = ghh' /1p(0) = qHH'. (21)
Except for a transition zone adjoining the origin
where it increases rapidly from zero, T, is almost
unity. Note that from Equation (17) with b = 0,

H'(0) = 0 results from the artificially imposed init-
ial condition Tp = 0. Because steady-state conditions
apply on 0 < £ < 0,25, F is unity there but decreases
to the right, Because of the reduced sliding resist-
ance in the central region, Ty, which is unity to
four figures on 0 < £ < 0,24, changes almost discon-
tinuously to another plateau value, constant to three
figures, on 0.25 < g < 0,5 and then at £ = 0.5 to a
final plateau where it decreases slowly from unity.
The behaviour of Ty, may be deduced from the appro-
priate | Tyy/Tp| curve of Figure 4. It is noted that
Txx changes sign within the boundary layer adjoining
g = 0.25; that is, the flow changes from extensional
to compressive.

The Txx/Tbl curves in Figure 4 are very nearly
linear in the central region outside the boundary
layer; the slopes of these lines are labelled in
Tables II, III, and IV as T' for various examples,
Calculations also show that in jumping to a region of
increases sliding resistance X, the thickness of the
transition boundary layer is negligible as compared
with the thickness corresponding to a decrease of X
by the same factor. We find that the plateau values
of |Txx/Tp| to the right of the central region also
increase withz and can be of order one or larger.
From this, it can be seen that for a boundary-value
problem where, in general, the entire glacier would
be in a non-steady state, lTxx/Tbl could be of order
unity throughout, except near a zero of Tyy.

q=100; X =1, 1/8.1 ; r

044 q=400; % =1, 1/5.1 il H

& 039 g=100; 3 =1,1/21 e ! L

%02 -

£ ol

0.1 s . il
0.0+ - ; = T ' P

0.0 0.1 0.2 0.3 0.4 05 06 0.7 08

Fig. 4. The effect of a sudden reduction in sliding
coefficients from unity in a central region
0.25 < & < 0.5 upon Ty /Ty, . Cases shoum are q = 100,
A= 1/8 (===), q = 400, A = 1/5 ( — ), q = 100,
A /2 (**°°), all foru, = 0.2.
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The effects of parameter variations are shown in
Tables II, III, and IV and are summarized below. In
all cases the central region of reduced sliding re-
sistance extends from 0.25 to 0.50; & = 0.25.

TABLE II. EFFECTS OF u, ON DEVIATORIC STRESS IN NON-

STEADY-STATE SITUATION. VALUES OF Tyx/Tp AT DIFFERENT £ FOR

A =1/5 IN CENTRAL REGION, = 0.25, ALL FOR q = 400, T'
VALUES ARE (T,,/Tp)' (NEARLY CONSTANT) IN CENTRAL REGION
OUTSIDE BOUNDARY LAYER.

Ug 1/10 1/5 1/3 /1.5 1/1.1
(Tux/Tp) -0.0016 -0.0017 -0.0019 -0.0030 -0.007
0.25
(Txx/Tp) -0.17  -0.24  -0.30 -0.41  -0.44
0.50
(Txx/Th) -0.072  -0.083 -0.089  -0.094  -0.091
0.75
7 -0.69  -0.98  -1.25 -1.7 -1.9

TABLE III, EFFECT OF q UPON DEVIATORIC STRESSES. ALL
CASES FOR A 1/2 IN CENTRAL REGION AND u, = 1/3.

T' VALUE FOR q = 25 IS NOT MEANINGFUL BECAUSE OF
BOUNDARY LAYER

q 800 400 100 25
(Txx/Tp) -0.0009  -0.0019 -0.0075  -0.0297
0.25
(il T -0.060  -0,059  -0.051  -0.018
0.5
(Tux/Ts) -0.041  -0.040  -0.035  -0.013
0.75
T -0.25 -0.25 -0.25 -

TABLE IV. EFFECTS OF X_UPON DEVIATORIC STRESSES. ALL

CASES FOR q = 200 AND up = 1/2

(Txx/Tb) -0,0045 -0.0045 -0.0045 -0.0045
0.

(Txx/Tb) -0.83 -0.36 -0.074  -0.012
0.5

(Txx/Th) -0.11 -0.091  -0.046  -0.011
0.75

T -3.48 -1.50 -0.33 -0.070

(i) Provided only that the length & is sufficiently
large, values of Ty,/Tp > 0.3 are encountered for
practical ranges of parameters q, up(0)/U{0), and the
jump in X .*

* We will not speculate about the practical range for
jumps in A due, say, to water injection. However, the
present situation is analogous to that of "rapid" bas-
al warming of a central reservoir of an, initially,
cold-based glacier (Shoemaker, 1981), where, in the
context of the present model, A would change "rapidly"
from infinity to a finite value.

339


https://doi.org/10.3189/S0022143000006183

Journal of Glaciology

(i1) Table II shows the effect of Uy on (Tyx/Tp). With
values given at ¢ = 0.25, 0.5, and 0.75, as well as
the average value of (T,/Tp)" on 0.25 < ¢ < 0,50
(shown as T') outside the boundary lf_yer‘, a sketch of
each case can be made. In all cases X

T' values increase with increasing ug, reflecting the
fact that adjustment to the reduced sliding resist-
ance by shear stress is less efficient at the higher
Uy values so that higher values of T,, are induced.
(ii1) Table III illustrates that a change in q does
affect T'. For all cases X = 1/2 and U, = 1/3. (For

q = 25, because H* = 0,6 from Table I, the interval
(0.25, 0.75) lies entirely within the boundary layer.)
This result may be interpreted as follows: for fixed
Ugs A, and h(0), if t,(0) is changed there will be

no change in T' in adjusting to the jump in sliding
resistance. (Note that H(g) changes as q varies.) _
(iv) Table IV shows that, as expected, decreasing A
produces rapidly increasing Tyy/Th values. All cases
are for q = 200 and ug = 1/2.

DISCUSSION

The model consists primarily of a set of assump-
tions which may be applied to produce equivalent
models in situations not addressed here, e.g. those
involving radial flow, non-sliding cold glaciers,
other sliding laws, or other viscous constitutive re-
lations such as a polynomial relation which exhibits
finite viscosity at zero stress.

The plane-flow model developed here is a general-
ization of p-h theory designed to treat mean flow
features when |Txx/T | is of order unity, and reduces
to p-h theory when |Tyy| << Ty everywhere, It does,
however, still incorporate an estimate of the inte-
grated longitudinal deviatoric stress Tyx 1f the pro-
file is determined by the simpler p-h re?ations based
on the approximation |Tyx| < Tp, which can therefore
be used to test the applicability of a p-h solution.
If the estimated Ty, distribution satisfies |Tyy| << Ty
throughout the region of interest, then the p-h solu-
tion is valid, provided of course that the fundamental
assumption of small surface slope, IH'(£)| = 1, 1%
confirmed. When the estimated Ty, is not negiigible in
comparison with Th, then the present model can be used
to determine stresses, velocities, and profile which
are compatible with a significant integrated longi-
tudinal deviatoric stress T,,.

It has been shown that under a wide range of con-
ditions the p-h theory is valid for steady-state
glaciers away from a margin or divide. However, exam-
ples have demonstrated that the p-h theory is not
applicable to a particular class of non-steady prob-
lems in which |T,,/T,| becomes of order unity. It is
conjectured that lTongitudinal deviatoric stresses are
more generally important in transient problems, so
that the estimation procedure for Ty, described above
should always be applied before accepting p-h results.

Because the model employs averaging of various
quantities over the thickness, so that the elliptic
partial differential equations are approximated by
ordinary differential equations, it cannot be applied
to study the y-distribution of velocity or stress re-
sulting, for example, from flow over or around an ob-
stacle, Similarly, it is not expected that the descrip-
tion by the mdoel of the effect of abrupt changes in,
for example, sliding resistance, will be accurate near
the discontinutity. For example, the boundary layers
exhibited here in the ordinary differential-equation
solutions occur down-stream of a discontinuity, while

= 1/5 and q = 400.

an elliptic partial differential equation would pro-
duce a boundary layer on both sides of a discontinuity.
On the other hand, the model should give a reasonable
description of the global effects of such discontin-
uities over span lengths of order the thickness.

A1l of the results were obtained for short lengths
not exceeding ten times the thickness at the starting
place. It was decided not to obtain complete steady-
state glacier profiles for several reasons. First,
the phenomena investigated here do not require con-
sideration of more than a short length. Second, it
can be concluded from results presented that for
reasonable parameter values the condition lTxx/Tb] L |
is satisfied everywhere except at the terminus or
near an ice divide, Finally, the study of profiles
near a terminus is a complex situation which requires
more detailed treatment. We remark that parameters
can be chosen such that the condition |h'| << 1 is
satisfied everywhere, while p-h theory requires a
sliding law such that v, » 0 at the terminus to
maintain bounded slope.

It is believed that greater than six-figure accur-
acy for Ty and H and at Teast two-figure accuracy
for Tyy was obtained for all cases. The arithmetic
operations involved in computing Txx produce a loss
in accuracy. In addition to the usual tests for accur-
acy, the steady-state and non-steady-state systems
must produce identical results if a steady-state pro-
file is used as input to the non-steady-state equa-
tions, allowing a cross-check between two distinct
numerical problems.
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