ON A POINTWISE CONSTRUCTION OF THE LEMNISCATE

Richard Blum

(received Oct. 20, 1957)

The writer of the following lines is aware of the possibility that the property discussed below is not a new discovery. He will, of course, be grateful to any reader who will provide him with bibliographical references.

It is well known that the nine point circle of a triangle is tangent to the 4 contact (i.e. the inscribed and the ascribed) circles. Given two tangent circles \mathcal{N} and \mathcal{J} we propose to find the locus of vertices of the triangles (Δ) which admit \mathcal{N} as their nine point circle and \mathcal{T} as one of their contact circles.

Let η be the common tangent of \mathcal{N} and \mathcal{J} where they touch, and A the point of contact. Let ξ be one side of a triangle \triangle, intersecting \mathcal{N} in B, B^{\prime} and η in Ω (see Fig. 1). In the variable oblique cartesian coordinate system $\xi \Omega \eta$ we have $A(0, \alpha)$, $B(\beta, 0), B^{\prime}\left(\alpha^{2} / \beta, 0\right)$ and $\angle \xi \Omega \eta=\theta$. It can be seen that the parameters $\alpha, \boldsymbol{\beta}, \theta$ satisfy the following conditions:
(1) $\alpha=T \cot \frac{1}{2} \theta$
(2) $\alpha^{2}-2 \alpha \beta \cos \theta+\beta^{2}=2 R \beta \sin \theta$
where r and R are the radii of \mathcal{J} and \mathcal{N}, respectively.
In the triangle \triangle, one of the points B, B^{\prime}, say B, is the foot of the altitude on ξ and the other, say B^{\prime}, the mid-point. Let $\mathrm{V}_{0}\left(\xi_{0}, \eta_{0}\right)$ be the vertex of Δ opposite to ξ. Then V_{0} must be located on the perpendicular through B to ξ, which gives
(3) $\xi_{0}+\eta_{0} \cos \theta=\beta$

Can. Math. Bull., vol. 1, no. 1, Jan. 1958

The equation of \mathcal{J} is

$$
\vec{J}(\xi, \eta) \equiv \xi^{2}+2 \xi \eta \cos \theta+\eta^{2}-2 \alpha \xi-2 \alpha \eta+\alpha^{2}=0
$$

The equation of the pair of tangents through V_{0} to \tilde{J} (which are, of course, the other two sides of the triangle Δ), is

$$
\sigma(\xi, \eta) \mathcal{T}\left(\xi_{0}, \eta_{0}\right)-\mathcal{T}^{2}\left(\xi, \eta \mid \xi_{0}, \eta_{0}\right)=0,
$$

 ties $V_{1}\left(\xi_{1}, 0\right)$ and $V_{2}\left(\xi_{2}, 0\right)$ of \triangle which are located on ξ, will be obtained by intersecting the last equation with $\eta=0$. Since B^{\prime} is the mid-point of $V_{1} V_{2}$, we have

$$
\left(\xi_{1}+\xi_{2}\right) / 2=\alpha^{2} / \beta
$$

When (3) is taken into account, this condition leads to

$$
\begin{equation*}
\eta_{0}-\xi_{0}=2 \alpha \tag{4}
\end{equation*}
$$

This straight line is parallel to the line ΩF, where F is the center of J, and passes through the fixed point 0 symmetrically situated to F with respect to A. Equations (3) and (4) provide us, therefore, with a pointwise construction, using compass and straight edge, of the required locus.

We choose now the fixed orthogonal cartesian coordinate system $x 0 y$, such that $0 x$ is $0 F$, and $0 y$ is parallel to η, as indicated in Fig. 1. The transformation formulae leading from $\xi \Omega \eta$ to $x 0 y$ are
(5) $\xi_{0}=(x-\tau) \csc \theta$,
(6) $\eta_{0}=-(x-T) \cot \theta+(y+\alpha)$.

Eliminating $\alpha, \beta, \theta, \xi_{0}, \eta_{0}$ from the equations (1) to (6) we obtain
(7) $\left(x^{2}+y^{2}\right)^{2}-4(r+R) x\left(x^{2}+y^{2}\right)+4 r\left[(r+3 R) x^{2}+(r-R) y^{2}\right]=0$.

The locus is, therefore, a rational bicircular quartic having a double point at 0 . It should be noted that, if we choose always $r>0$, then \mathscr{J} and \mathcal{N} will be tangent internally if $R>0$ and dexterally if $R<0$.

If we put in (7) $R=-r$, we obtain
(8) $\left(x^{2}+y^{2}\right)^{2}-8 r^{2}\left(x^{2}-y^{2}\right)=0$
i.e. the lemniscate with center 0 and a focus F.

We have therefore the result: The locus of the vertices of the triangles which admit the two tangent circles \mathcal{N} and \mathcal{J} of equal radius as the nine point circle and a contact circle, respectively, is the lemniscate having its center at the center of \mathcal{N} and one of its foci at the center of \mathcal{J}.

This and the remarks made in connection with equations (3) and (4) lead to the following pointwise construction, by compass and straight edge, of the lemniscate (see Fig. 2):

Let 0 be the center and F one focus of the lemniscate to be constructed. Draw two circles \mathcal{N} and \mathscr{J} of equal radius and tangent externally having their centers at 0 and F, respectively. Let η be their common tangent and ξ a (variable) tangent to \mathcal{J}, intersecting η in Ω and \mathcal{N} in B. The straight line through 0 parallel to $\Omega \mathrm{F}$ intersects the perpendicular through b to ξ in a point V of the lemniscate.

Fig. 2

