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On the stability of a pair of vortex rings
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The growth of perturbations subject to the Crow instability along two vortex rings of equal
and opposite circulation undergoing a head-on collision is examined. Unlike the planar
case for semi-infinite line vortices, the zero-order geometry of the flow (i.e. the ring radius,
core thickness and separation distance) and by extension the growth rates of perturbations
vary in time. The governing equations are therefore temporally integrated to characterize
the perturbation spectrum. The analysis, which considers the effects of ring curvature and
the distribution of vorticity within the vortex cores, explains several key flow features
observed in experiments. First, the zero-order motion of the rings is accurately reproduced.
Next, the predicted emergent wavenumber, which sets the number of secondary vortex
structures emerging after the cores come into contact, agrees with experiments, including
the observed increase in the number of secondary structures with increasing Reynolds
number. Finally, the analysis predicts an abrupt transition at a critical Reynolds number
to a regime dominated by a higher-frequency, faster-growing instability mode that may be
consistent with the experimentally observed rapid generation of a turbulent puff following
the collision of rings at high Reynolds numbers.
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1. Introduction

Vortical flows comprise a vast range of fluid mechanics including propeller and turbine
wakes (Vermeer, Sørensen & Crespo 2003; Kumar & Mahesh 2017; Wei et al. 2021),
mixing from the interaction of a shock wave with a material interface (Zabusky 1999;
Zhou 2017a,b; Wadas & Johnsen 2020) and turbulent transition (Zhou et al. 1999; Duong,
Nguyen & Nguyen 2021; Yao & Hussain 2022). Understanding the dynamics of isolated or
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a small number of vortices is essential for successful operation of engineering applications
in propulsion and energy generation (Saffman 1995) and elucidates naturally occurring
flows involving, for example, jellyfish mobility (Dabiri 2009; Nawroth et al. 2012) or
cardiac hemodynamics (Gharib et al. 2006; Mittal et al. 2016). The interactions between
such vortices are governed in part by the growth of unstable perturbations causing the
vortices to stretch and bend, rapidly increasing the complexity of the flow (Leweke, Le
Dizes & Williamson 2016). Two instability mechanisms are primarily responsible for
this growth: the Crow instability (CI) (Crow 1970) and the elliptic instability (Moore &
Saffman 1975; Tsai & Widnall 1976; Leweke & Williamson 1998; Kerswell 2002; Meunier
& Leweke 2005). The present work concerns the former, which often develops in isolation
before stimulating the later (Leweke et al. 2016).

The CI was originally considered in the context of wingtip vortices shed into the
wakes of large aircraft (Crow 1970). These highly coherent and violent fluid structures
pose a safety hazard for small crafts as well as ground structures near runways;
expediting the dissipation of wing-tip vortices remains an active area of research
(Crouch 2005; Breitsamter 2011; Hallock & Holzäpfel 2018; Morris & Williamson 2020).
Perturbations along such pairs of line vortices grow under the influence of their mutual
and self-induction until they come into contact, triggering a complex vortex reconnection
process that can ultimately result in the formation of a series of vortex rings (Fohl &
Turner 1975; Kida & Takaoka 1994; Hussain & Duraisamy 2011; van Rees, Hussain
& Koumoutsakos 2012; Yao & Hussain 2022). The original stability analysis, based on
planar, irrotational vortex cores, generally yields three distinct wavenumbers with locally
maximal growth rates. Two of these wavenumbers are associated with a symmetric mode,
where perturbations on one core appear as a reflection of those along the other core, and
the third is associated with an antisymmetric mode of in-phase perturbations. While the
classical analysis predicts faster-growing antisymmetric and high-frequency symmetric
modes, these high-frequency modes were shown to be spurious for elliptically loaded
wings (Widnall, Bliss & Tsai 1974; Leweke & Williamson 2011; Leweke et al. 2016), and
the low-frequency symmetric mode therefore emerges in practice. Following the original
analysis, extensions to general core vorticity distributions and axial flow (Widnall, Bliss
& Zalay 1971; Moore & Saffman 1972), stratified surrounding fluids (Saffman 1972;
Sarpkaya 1983) and alternate geometries including vortex arrays and corotating cores
(Jimenez 1975; Robinson & Saffman 1982) were made.

Later, the CI and the formation of secondary vortex rings were observed in experiments
of colliding coaxial vortex rings of equal strength (Lim & Nickels 1992), spurring
subsequent studies of the phenomenon examining the evolution of enstrophy during
different stages of the ring collision (Chu et al. 1995), compressibility (Minota, Nishida
& Lee 1998) and numerical requirements for accurate simulation (Mansfield, Knio &
Meneveau 1999). More recently, this canonical flow was used to study vortex interactions
and the generation of scales leading up to the transition to turbulence, in particular the
emergence of a turbulent puff beyond a critical Reynolds number, in a variety of theoretical
(Lu & Doering 2008; Brenner, Hormoz & Pumir 2016), experimental (Lu & Doering 2008;
Brenner et al. 2016; McKeown et al. 2018, 2020) and computational studies (Mishra, Pumir
& Ostilla-Mónico 2021; Nguyen et al. 2021; Arun & Colonius 2023).

Since the original modal analysis was performed (Crow 1970), stability theory has
matured significantly to include a wide array of non-modal techniques that describe the
evolution of the flow prior to the asymptotic behaviour predicted by the least-stable
eigenvalue (Schmid 2007). Such techniques are critical for accurately characterizing
transient behaviour, including turbulent transition, in a wide variety of confined shear
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flows (e.g. Poiseuille, Couette and pipe flow) and boundary layers (Schmid, Henningson &
Jankowski 2002; Drazin & Reid 2004). Furthermore, recent resolvent-based analysis of the
receptivity of such flows to external forcing has led to enormous insight into the behaviour
of coherent structures (McKeon & Sharma 2010; Towne, Schmidt & Colonius 2018;
Sengupta 2021). For problems with time-dependent base flows, like colliding vortex rings,
non-modal techniques must be augmented with an additional set of adjoint equations (Hill
1995) or a fundamental solution operator (Farrell & Ioannou 1996; Iserles, Marthinsen &
Nørsett 1999), which requires a known unsteady base flow. Although one could envision
constructing an unsteady base flow using irrotational vortices and potential theory, such a
solution is known to break down when adjacent vortices come into close contact (Leweke
et al. 2016), which occurs when vortex rings collide. A meaningful non-modal analysis of
colliding vortex rings would therefore require computationally expensive adjoint methods
or a priori simulations.

Instead, traditional eigenvalue analysis has proven successful in quantifying both the
temporal (i.e. growth rate) and spatial (i.e. wavelength) scales associated with the CI
(Crow 1970; Leweke & Williamson 2011). Existing analyses applied to colliding vortex
rings, however, ignore the effects of ring curvature and zero-order motion of the flow,
instead applying the existing planar analysis once the perturbation amplitudes are visible
in experiments and the rings have expanded to large radii (Crow 1970; Lim & Nickels
1992). By this point in the flow evolution, however, the linear growth of the perturbations
is nearly saturated, and such treatment is therefore unable to capture the details of the prior
instability growth through orders of magnitude originating from the initial perturbation.
This instability growth could be determined, however, if the perturbation equations are
recast in cylindrical geometry and integrated in time as the zero-order motion evolves.
For the purpose of such an eigenvalue analysis, a model for the zero-order motion need
only reproduce the vortex core separation distance, radius and thickness rather than the
entire flow field, which would be required for non-modal analysis (Farrell & Ioannou 1996;
Iserles et al. 1999). Although the ring collision results in small core separation distances,
this may be possible with an accurate description of the vorticity distribution within the
cores (Widnall 1975; Leweke et al. 2016).

While complex fluid mechanisms are expected to affect the collision of two coaxial
vortex rings (e.g. vortex reconnection, other instabilities and turbulent transition),
especially at late times, the CI serves as the backbone on which the flow initially develops.
Our objective is therefore to analyse the linear stability of the cylindrical CI for colliding,
coaxial vortex rings while considering the effects of ring curvature, zero-order motion and
realistic core vorticity distributions. The present focus is on rings of equal and opposite
strengths, but the analysis can be readily extended to asymmetric vortex ring interactions.
Similar to the classical stability analysis, our model enables an analytical solution for the
eigenvalues that directly yields the growth rates for all wavenumbers. Unlike the classical
planar case, the growth rate of the most unstable mode varies due to the zero-order
motion of the flow. Despite this difficulty, our analysis correctly predicts the emergent
wavenumber in experiments, corresponding to the number of observed secondary vortex
rings, and, furthermore, provides an additional explanation for the emergence of the
low-frequency symmetric mode even for flows where the higher-frequency symmetric
and antisymmetric modes may not be spurious. Finally, our analysis demonstrates a
mechanism by which viscosity affects the number of secondary rings that emerge and
the onset of a turbulent cloud beyond a critical Reynolds number. The article is organized
as follows: § A2 outlines our model flow and the corresponding linear stability analysis;
§ A3 reports on the results of the analysis alongside validation with existing experimental
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data; § A4 discusses important implications of the present work; results are summarized
and conclusions are drawn in § A5.

2. Linear stability analysis

We consider the stability of perturbations dn along two coaxial counter-rotating vortex
rings of radius R and thickness c separated by a distance b of equal circulation magnitude
Γ , as depicted in figure 1. We begin by extending the classical analysis of Crow (1970),
where the rings are modelled as irrotational vortices in an incompressible, inviscid fluid.
The velocity at any point along either ring is then given by the Biot–Savart law,

Un =
2∑

m=1

Γm

4π

∫
Dmn × dLm

|Dmn|3 = exun + eyvn + ezwn, (2.1)

where Dmn is the displacement vector directed to a point on ring m from a point on ring
n; dLn is the differential tangent vector; ex, ey and ez are Cartesian unit vectors in the x, y,
z directions, respectively. Mathematically,

dn = exhn(θn, t) cos θn + eyhn(θn, t) sin θn + ezsn(θn, t),

Dmn = exR(cos θm′ − cos θn) + eyR(sin θm′ − sin θn) + ez(zm − zn) + (dm′ − dn),

dLn =
(

−exR sin θn + eyR cos θn + ∂dn

∂θn

)
dθn,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(2.2)

where θn = tan−1(yn/xn); hn(θn, t) is the perturbation amplitude in the x–y plane; sn(θn, t)
is the perturbation amplitude in the z direction. The m′ subscript applies when m = n
(i.e. when evaluating the influence of one ring at a point on the same ring). Perturbations
evolve under the constraint that they move at the local fluid velocity,

∂dn

∂t
+ un

∂dn

∂xn
+ vn

∂dn

∂yn
+ wn

∂dn

∂zn
= exun + eyvn + ezwn. (2.3)

Up to this point, the analysis accurately describes the system as long as the ratio between
the core separation distance and the core thickness, b/c, remains large. However, as the
rings approach, this condition is violated. We therefore model the cross-section of each
ring as a Lamb–Oseen vortex core with azimuthal vorticity

ω(r, t) = Γ

4πν(t − t0)(c/c0)2 exp
[
− r2

4ν(t − t0)(c/c0)2

]
, (2.4)

where r is the distance from the vortex core centre; t is time; t0 is the initial time; ν

is the fluid viscosity; c0 is the initial core thickness. The c/c0 factor is a consequence
of mass conservation and accounts for the concentration of vorticity due to changes
in the vortex core thickness. The Lamb–Oseen core given in (2.4) is incorporated into
the analysis by means of an effective core separation distance for the velocity in both
the vertical and radial directions, bef ,z and bef ,rad, respectively, similar to Widnall et al.
(1971). Physically, the effective core separation distance is the separation distance of an
irrotational vortex core that induces the same velocity at the centre of the other core as
given by a Lamb–Oseen vortex core at the separation distance. For example, the vertical
velocity at the top core imparted by a bottom irrotational core separated by bef ,z is the same
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z1
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dL1
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z2

c
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Figure 1. The set-up for the stability analysis showing two perturbed circular vortex cores with radius R, core
thickness c and separation distance b of equal and opposite circulation Γ .

as that for a Lamb–Oseen vortex core separated by b. The effective separation distances
are computed by equating the components of the following vector equation expressing the
aforementioned velocity equivalence,

Γ2

4π

∫
DIR × dLIR

|DIR|3 = 1
4π

∫ R0.99Γ

0

∫ 2π

0

∫ 2π

0
ω(r, t)

DLO × dLLO

|DLO|3 r dσ dr, (2.5)

where

DIR = exR(cos θ2 − cos θ1) + eyR(sin θ2 − sin θ1) + ez(−bef ),

dLIR = (−exR sin θ2 + eyR cos θ2) dθ2,

DLO = ex[R(cos θ2 − cos θ1) + r cos σ cos θ2] + ey[R(sin θ2 − sin θ1)

+ r cos σ cos θ2] + ez(−b + r sin σ),

dLLO = [−ex(R + r cos σ) sin θ2 + ey(R + r cos σ) cos θ2] dθ2,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.6)

σ is the angle within the core, R0.99Γ =
√

−4νt(c/c0)2 ln(1 − 0.99) is the radius
that encloses 99 % of the Lamb–Oseen vortex circulation, which is sufficient for the
convergence of the integral in (2.5), and θ1 can be any angle. We choose θ1 = 0, and
bef is understood to be bef ,z or bef ,rad for the vector component equations in the vertical,
ez, or radial, ex, directions, respectively.

With the effective separation distances calculated, the analysis proceeds by equating
(2.1) and (2.3) with substitutions from (2.2). The resulting equations are then linearized
in the reference frame of the zero-order motion of the flow under the assumption that
the zero-order motion is quasisteady compared with the first-order motion, which is
verified later. A normal modes ansatz is assumed for the perturbations, dn = d̃n eat+ikθn ,
where a = α + iμ, α is the growth rate, μ is the temporal frequency and k is the integer
wavenumber of the perturbation, resulting in an eigenvalue system of the form

a

⎡
⎢⎢⎣

h̃1
s̃1
h̃2
s̃2

⎤
⎥⎥⎦ =

⎡
⎢⎣

M1,1 M1,2 M1,3 M1,4
M2,1 M2,2 M2,3 M2,4
M3,1 M3,2 M3,3 M3,4
M4,1 M4,2 M4,3 M4,4

⎤
⎥⎦

⎡
⎢⎢⎣

h̃1
s̃1
h̃2
s̃2

⎤
⎥⎥⎦ , (2.7)
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Figure 2. The cutoff parameter as a function of the core thickness.

where the matrix coefficients are provided in the Appendix. General eigenvalues can be
computed directly from (2.7), including for interactions that are asymmetric (e.g. rings
with different radii, core thicknesses, strengths and lines of axisymmetry). However, due
to the symmetry of the colliding rings in the present case, M3,1 = M1,3, M3,2 = −M1,4,
M3,3 = M1,1, M3,4 = −M1,2, M4,1 = −M2,3, M4,2 = M2,4, M4,3 = −M2,1 and M4,4 =
M2,2. These coefficients may include integrals from (2.1), which are evaluated along
the length of the vortex cores. For the planar case examined by Crow (1970), where the
vortex cores are infinite lines extending in the x direction, the integrals are evaluated from
x ∈ (−∞, ∞). In the cylindrical case examined here, the integrals are evaluated from
θn ∈ (0, 2π) when m /= n. The cutoff model is used to represent the finite core thickness
by evaluating the integral from θn ∈ (d/R, 2π − d/R) when m = n, circumventing the
singularity in (2.1) when |Dmn| → 0 as in Crow (1970). In the classical analysis, the cutoff
distance, d, is found by matching the translational velocity of a thin-core vortex ring to that
predicted by the cutoff method (Kelvin 1880; Crow 1970). However, because the cores of
rings that emerge from piston–cylinder devices relevant to experiments are not necessarily
thin, we use a cutoff parameter that is a function of the core thickness calibrated to the
translational velocity of the Norbury family of vortex rings (Norbury 1973), as shown in
figure 2.

As in the planar case (Crow 1970), the eigenvalues associated with (2.4) can be
combined into symmetric and antisymmetric modes,

s̃S = s̃2 − s̃1, h̃S = h̃2 + h̃1,

s̃A = s̃2 + s̃1, h̃A = h̃2 − h̃1,

}
(2.8)

respectively, yielding four roots,

aS± = 1
2 {M1,1 + M1,3 + M2,2 − M2,4 ± {(M1,1 + M1,3 + M2,2 − M2,4)

2

− 4[(M1,1 + M1,3)(M2,2 − M2,4) − (M1,2 − M1,4)(M2,1 + M2,3)]}1/2},
aA± = 1

2 {M1,1 − M1,3 + M2,2 + M2,4 ± {(M1,1 − M1,3 + M2,2 + M2,4)
2

− 4[(M1,1 − M1,3)(M2,2 + M2,4) − (M1,2 + M1,4)(M2,1 − M2,3)]}1/2}.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.9)

The coefficients M1,1, M1,3, M2,2, M2,4 → 0 with increasing ring radius, and the planar
case is indeed recovered as R → ∞.
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In addition to the generalized roots in (2.9), a key difference distinguishing the
cylindrical case from the classical planar case is the zero-order motion of the flow. In
the planar case, the constant downward velocity of the vortex cores affects neither the
core separation distance nor the core thickness and therefore does not alter the stability.
In the present work, however, the motion of circular vortex cores causes their separation
distance, radius and thickness to vary in time, resulting in time-dependent growth rates.
The governing equations must therefore be integrated in time to determine the growth of
perturbations along the vortex cores. The zero-order velocity can be determined using
(2.1), substitutions from (2.2) with hn, sn = 0 (i.e. no perturbations) and the effective
separation distance, and the cutoff method (Crow 1970) with the Norbury-calibrated
cutoff parameter. The integration is handled with a simple forward-Euler scheme that
updates the ring radius and separation distance from the calculated radial and vertical
velocities, respectively, at each time step. Since the flow is assumed incompressible, the
core size is then updated to conserve the volume of the ring. The growth rates from
(2.9) are then used to update the amplitudes of the perturbations of both the symmetric
and antisymmetric modes, which are initialized as a uniform spectrum of amplitude√

s̃2
S + h̃2

S =
√

s̃2
A + h̃2

A = q0. The number of vortex rings emerging as a result of the CI
is taken to correspond to the wavenumber of the mode that first reaches an amplitude
of the order of the ring separation distance. Spurious high-frequency unstable modes
(i.e. unstable modes occurring at larger wavenumbers than those of the high-frequency
symmetric and antisymmetric modes) are ignored as in Crow (1970).

Before proceeding to the results of the analysis, a note on viscosity is warranted. As
described, the influence of viscosity is incorporated via the effect of the relaxation of
the core vorticity profile on the zero-order motion of the flow. Although viscous analysis
is not applied directly to perturbations, this treatment maintains the applicability of the
Biot–Savart law, which cannot strictly be applied to enforce the kinematic constraint on
perturbations, (2.3), in a viscous flow (Sengupta 2021). This limitation is demonstrated by
a variety of flows including, for example, a vortex in the vicinity of a boundary layer
(Lim, Sengupta & Chattopadhyay 2004; Sengupta, Bhumkar & Sengupta 2012). Even
when the Reynolds number is high, the Biot–Savart law is insufficient to describe these
vortex dynamics, and considering the viscous term in the vorticity transport equation is
necessary for an accurate description of the flow profile and its receptivity to perturbation
growth (Sengupta 2021). However, nowhere in the present flow involving colliding vortex
rings is there a region where the action of viscosity is as important as that near a no-slip
boundary. The Biot–Savart law is therefore expected to accurately capture the perturbation
growth via the CI that is the subject of the present study, which is validated by comparison
with experiments (McKeown et al. 2018) in the results that follow.

3. Results

After verifying the zero-order motion of the flow, the growth of perturbations is examined
for a collision involving two vortex rings of relatively low strength (i.e. circulation). Later,
a collision of stronger vortex rings is examined in the context of a mechanism that may
contribute to the transition of the flow to a turbulent puff.

3.1. Zero-order motion
We examine a set of initial conditions approximately matching the experiments of
McKeown et al. (2018) where the initial geometry is given by R0 = 17.5 mm, c0 = 7.0 mm
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and b0 = 70.0 mm. The rings in this experiment are generated from a piston–cylinder
device submerged in a water tank with a stroke-to-diameter ratio SR = 2.5, and the
Reynolds number based on the diameter of the cylinder, the piston velocity and the
viscosity of water is Re = 4000. The model of Didden (1979, 1982) can be used to estimate
the ring circulation as

Γ =
(

1.14 + 0.32
SR

)
Re ν, (3.1)

where ν = 1.0 mm2 s−1 and t0 is chosen such that the vorticity profile within the cores
matches experiments at t = 0, see (2.4). Figure 3(a) shows the zero-order motion of the
flow, i.e. the time evolution of the radius, separation distance and core thickness. Initially,
when the separation distance is large, the vortex rings propagate at a nearly constant
velocity with minimal change in their radii or core thicknesses, consistent with the motion
of two isolated, steady vortex rings. As they approach, however, their translational speed
decreases and their radii begin to increase due to the influence of each ring on the other,
as shown in figure 3(b). After a period of rapidly increasing radial velocity, the ring
radii increase at a nearly constant rate as their separation distance approaches a nearly
constant value. After t ≈ 1.0 s, the agreement between the model and the experimental
data diverges slightly. This time, however, corresponding to a ring radius of approximately
80 mm, is consistent with the visible onset of the instability (McKeown et al. 2018), as
evidenced by the sudden shift in the vertical location of the ring cores (figure 3c), and
the increase in the scatter in the experimental core thickness data (figure 3d). Finally,
figure 3(e) shows the values of bef ,z and bef ,rad. Early in time, when the rings are far apart,
the effective separation distance is near the value of the separation distance. Physically,
this behaviour is a result of the velocity field from one ring at the location of the other for
both an irrotational vortex and a Lamb–Oseen vortex being similar. As the rings approach,
however, the velocity field from the Lamb–Oseen core diverges from that of an irrotational
core because of the weighted influence of the vorticity in the core nearer to the other
ring. This discrepancy causes the effective radial separation distance to decrease while
the effective vertical separation distance increases. As the rings continue their approach,
both effective separation distances decrease to a constant value. The agreement between
the model and experiments in figure 3(b–d) demonstrates that the zero-order motion of the
present system adequately represents physical experiments.

Figure 3(b) also shows the ring radius as a function of time assuming bef = b, i.e. the
cores are assumed irrotational, as in the classical analysis. While this model works
well for adequately separated cores, it breaks down as the rings approach, resulting in
erroneously large ring radii. Because the vorticity within an irrotational vortex is confined
to a line, there is no mechanism preventing the separation distance between the cores
from approaching zero, at which point the rate at which the ring radii expand unphysically
approaches infinity. The consideration of a finite-vorticity distribution within the cores is
therefore essential to accurately describe the zero-order motion of this flow. Moreover,
because the zero-order parameters of the flow affect the evolution of perturbations, see
(2.9), their accurate description is required for the linear analysis, which is discussed next.

3.2. First-order motion
The evolution of linear perturbations (i.e. the first-order motion of the flow) is given as a
function of wavenumber and time in figure 4. The analysis considers perturbation growth
only from the CI and neglects instabilities associated with isolated vortex cores (Widnall
1975), including the curvature instability (Fukumoto & Hattori 2005; Blanco-Rodríguez
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Figure 3. The zero-order motion for colliding rings (a), ring radius versus time for irrotational (solid line)
and Lamb–Oseen (dashed line) vortices (b), vertical position of the upper (yellow solid line) and lower (blue
dashed line) rings versus ring radius for Lamb–Oseen vortices (c), core thickness versus ring radius (d) and
the vertical (dashed line) and radial (solid line) effective separation distances (e) for rings with R0 = 17.5 mm,
b0 = 70.0 mm, c0 = 7.0 mm and Re = 4000. Experimental data (orange dots) (McKeown et al. 2018) are
provided for comparison (b–d). In (a), each subsequent image from left to right is 200 ms later in time than the
previous.

& Dizès 2017). Perturbations are initialized as a uniform spectrum with an amplitude
of the order of the mean free path of the flow, q0 = 0.13 nm, which is also enforced
as the minimum perturbation amplitude. Physical quantities are non-dimensionalized
by the vortex ring circulation and initial radius. We examine the growth rates and
perturbation amplitudes for both the symmetric and antisymmetric modes to illustrate the
evolution of perturbations at three different non-dimensional times corresponding to the
initial, intermediate and final stages of perturbation growth, tinit

Re=4000, tinter
Re=4000, tfin

Re=4000,
respectively, as shown in figure 4(c, f ).

After the flow initially becomes unstable, three separate bands of spatial frequencies
experience perturbation growth, as shown in figure 4 at time tinit

Re=4000 = 9.1, indicated
by the line marked by circles. The symmetric mode is excited within a band extending
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Figure 4. The growth rates (a–c) and perturbation amplitudes (d–f ) of the symmetric (a,d) and antisymmetric
(b,e) modes for colliding rings with b0/R0 = 4, c0/R0 = 0.4 and Re = 4000. Lineouts in (c, f ) correspond to
tinit
Re=4000 = 9.1 (circles), tinter

Re=4000 = 13.3 (squares) and tfin
Re=4000 = 16.7 (triangles).

from k = 1 to some k > 1, which we refer to as the low-frequency symmetric band, and
a separate band between two higher frequencies, which we refer to as the high-frequency
symmetric band. The antisymmetric mode is excited within a single range of frequencies,
namely the antisymmetric band, in the vicinity of the high-frequency symmetric band.
At any given time, the wavenumber with the fastest growth rate exists within the
antisymmetric band. The amplitudes of these excited modes increase, with the largest
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growth experienced by the wavenumber associated with the fastest growing mode within
the antisymmetric band.

At time tinter
Re=4000 = 13.3, indicated by the lines marked by squares in figure 4, growth

rates increase primarily because of the decreasing separation distance. Furthermore, as
the cores expand, they can support the growth of increasingly large wavenumbers. The
high- and low-frequency bands of the symmetric mode merge, though there are still two
local growth rate maxima. The fastest growth rate is still experienced by a wavenumber
within the antisymmetric band; however, at this time, the wavenumber with the greatest
amplitude exists within the symmetric band. By this time, the zero-order motion of the
flow, while slow compared with the growth of perturbations, causes the antisymmetric
band to migrate to an entirely different range of wavenumbers than at time tinit

Re=4000.
The low-frequency symmetric band, however, excites a wider range of wavenumbers that
includes those excited at time tinit

Re=4000. As a result, although these wavenumbers are never
growing as fast as the maximally excited wavenumber within the antisymmetric band, they
grow for a longer period of time and therefore reach greater amplitudes.

The final time examined, tfin
Re=4000 = 16.7, indicated by the lines marked by triangles in

figure 4, corresponds to the time when the perturbation amplitude reaches the separation
distance. The growth rates decrease from time tinter

Re=4000 because the separation distance
increases slightly as a result of the viscous relaxation of the Lamb–Oseen vortex core
and a tendency of the colliding rings to rebound. The high- and low-frequency bands
of the symmetric mode separate, and the increasing radii of the expanding cores enable
all three bands to support growth at larger wavenumbers. As before, the antisymmetric
band migrates to a different range of frequencies, along with the high-frequency band
of the symmetric mode, while the low-frequency band of the symmetric mode is still
causing perturbation growth at the lower frequencies excited at earlier times. As a result,
the slower-growing symmetric mode dominates the linear evolution once the perturbations
are large enough to be examined experimentally. The wavenumber with an amplitude that
first reaches the separation distance, which we herein refer to as the emergent wavenumber,
is associated with the symmetric mode and equal to kemerg = 18, which is consistent with
the number of secondary rings observed in the experiments of McKeown et al. (2018). The
dimensional time at which this happens, t ≈ 1 s, is also consistent with the visible onset
of the instability.

Figure 5(a) shows the perturbed vortex cores at time tfin
Re=4000, where perturbations

associated with each wavenumber are added together with a random phase angle. While
the cores here are shown intersecting one another, in reality, a complex vortex reconnection
process occurs when the cores come in contact that results in the original cores breaking
up into a series of smaller, or secondary, vortex structures (Kida & Takaoka 1994; Hussain
& Duraisamy 2011; van Rees et al. 2012; Yao & Hussain 2022). The number of these
smaller structures can be reasonably approximated by the emergent wavenumber. However,
because other wavenumbers also experience significant growth, the number of secondary
structures, and their sizes, may vary, as seen in experiments (Lim & Nickels 1992;
McKeown et al. 2018).

The means by which perturbations grow from their initial amplitudes to those
represented in figure 5(a) is a complex process during which the wavenumber that
grows the fastest, the maximal wavenumber kmax, and the wavenumber with the greatest
amplitude, the dominant wavenumber kdom, vary in time for both the symmetric and
antisymmetric modes, as shown in figure 5(b). The discretized appearance of the data
results from the restriction of all wavenumbers to integer values. Initially, the dominant
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Figure 5. The vortex cores at a time when the amplitude of the emergent wavenumber is of the order of the core
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(teal) symmetric band and the antisymmetric (red) band and the largest amplitude symmetric (yellow) and
antisymmetric (green) wavenumbers (b), and the growth angle of the emergent wavenumber versus time (c).
The thin black vertical dashed lines indicate the time represented in (a) and the thin horizontal black dashed
line in (c) indicates β = 0.86 rad.

wavenumber of the symmetric mode, kdom
S , exists in the low-frequency symmetric band,

lagging behind the maximal wavenumber within that band, kmax
S,lf , due to the expansion

of the ring radius constantly pushing the maximal wavenumber to greater values. The
dominant wavenumber of the symmetric mode abruptly shifts to greater wavenumbers
after approximately tΓ/R2

0 = 10.1, when growth from the high-frequency symmetric
band becomes dominant. For a period of time, the dominant wavenumber of the
symmetric mode experiences perturbation growth from a combination of the low- and
high-frequency bands of the symmetric mode, which merge to excite an unbroken range of
wavenumbers. The gap in the maximal wavenumber of the low-frequency symmetric band
from tΓ/R2

0 = 12.2 to tΓ/R2
0 = 12.5 results from the single maximum in the combined

symmetric band associated with the high-frequency symmetric band. Throughout the
duration of the merged symmetric band, the influence of the high-frequency maximal
wavenumber, kmax

S,hf , wanes while that of the low-frequency maximal wavenumber waxes,
until the growth experienced by the dominant wavenumber of the symmetric mode is once
again controlled by the low-frequency symmetric band after the symmetric bands split
at tΓ/R2

0 = 15.8. At this point, the growing ring radius tends to increase the maximal
wavenumber of the low-frequency symmetric band, and a slight increase in separation
distance, caused by the viscous relaxation of the vortex cores and the tendency of the cores
to rebound slightly after reaching a minimum separation distance, tends to decrease the
maximal wavenumber of the low-frequency symmetric band. These competing influences
cause the maximal wavenumber of the low-frequency symmetric band to decrease slightly
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dotted line) and emergent perturbation amplitude (blue solid line) (a) and the product of the emergent
perturbation amplitude and wavenumber (b) versus time. The thin vertical black dashed line indicates the
time when the amplitude of the emergent wavenumber is of the order of the separation distance, tfin

Re=4000, and
the thin horizontal black dashed line indicates an amplitude–wavenumber product of 0.1.

starting around tΓ/R2
0 = 13.3 before increasing again after tΓ/R2

0 = 18.2. At the time
when the amplitude of the dominant mode reaches the separation distance, tfin

Re=4000, the
dominant wavenumber and the maximal wavenumber of the low-frequency symmetric
band are nearly the same, a coincidence elaborated on in § A4.

The evolution of the antisymmetric mode is more straightforward. Caused primarily
by the expansion of the ring, both the dominant and maximal wavenumbers of
the antisymmetric band, kdom

A and kmax
A , respectively, migrate to larger values as

time progresses. However, at around tΓ/R2
0 = 14.6, the growth rate of the maximal

wavenumber is small enough compared with the rate at which the maximal wavenumber
migrates to greater wavenumbers such that the dominant wavenumber ceases to increase
beyond a value of kdom

A = 40.
As in the planar case, perturbed modes grow at an angle given by β = tan−1(s/h),

shown in figure 5(c) for the emergent wavenumber, β18
S (the subscript ‘S’ indicates the

symmetric mode while the superscript ‘18’ is the emergent wavenumber). In the planar
case, the low-frequency symmetric mode grows at an angle of β = 0.86 rad. The emergent
wavenumber similarly grows at β = 0.86 rad when it is maximally excited, which occurs
at tΓ/R2

0 = 9.0, 12.7, 15.5 and 16.9, but in general, the growth angle varies in time.
The analysis assumes that the zero-order motion is slow compared with the growth of

perturbations, which we now verify. Figure 6(a) shows the radius, separation distance,
core thickness and amplitude of the emergent wavenumber as a function of time. Between
the time when perturbations first become unstable, tΓ/R2

0 = 7.1, and time tfin
Re=4000,

indicated by the thin, vertical black dashed line, the radius increases by a factor of
3.57, the separation distance decreases by a factor of 3.00, the core thickness decreases
by a factor of 1.89, and the amplitude of the emergent wavenumber increases by a
factor of 3.33 × 107. On average, the relevant perturbations therefore evolve 106 times
faster, relative to their initial value, than the zero-order motion of the flow, verifying the
assumption of quasisteadiness.

We further verify that perturbations remain in the linear regime throughout the growth
process. Figure 6(b) shows the amplitude–wavenumber product, q18

S k18, of the emergent
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wavenumber as a function of time. We considered perturbations to be linear so long
as this product remains less than 0.1 (i.e. linear terms are an order of magnitude
larger than leading nonlinear terms), indicated by the horizontal dashed line. The
amplitude–wavenumber product of the emergent wavenumber is equal to 0.1 at time
tΓ/R2

0 = 16.5. This indicates that the linear analysis begins to break down just prior
to time tfin

Re=4000 = 16.7. However, it is unlikely that the dominant wavenumber changes
significantly between these two times. The linear assumption is therefore verified for nearly
the entire duration of the flow leading up to the emergence of secondary vortex structures,
the number of which is expected to be set by the emergent wavenumber.

3.3. Collisions of strong vortex rings
We now examine the collision of two vortex rings with the same initial geometry as the
previous case but with a higher Reynolds number of Re = 24 000, at which a turbulent
puff, as opposed to an array of secondary vortex structures, is expected experimentally
(Lim & Nickels 1992; McKeown et al. 2018, 2020). The initial core vorticity profile, see
(2.4), is set by assuming that the vortex ring reaches the initial separation distance in an
initial time that is inversely proportional to the vortex ring velocity (i.e. t0 is inversely
proportional to Re). As before, the evolution of the first-order motion is given as growth
rates and perturbation amplitudes for both the symmetric and antisymmetric modes as
functions of time and wavenumber in figure 7, and we similarly examine three distinct
non-dimensional times, tinit

Re=24 000, tinter
Re=24 000, tfin

Re=24 000, after the onset of perturbation
growth. Similar to the lower-Reynolds-number case, three separate spatial frequency
bands (low-frequency symmetric, high-frequency symmetric and antisymmetric) initially
experience perturbation growth at time tinit

Re=24 000, indicated by the line marked by circles
in figure 7, when the fastest-growing and greatest-amplitude wavenumbers are those
associated with the antisymmetric mode. Shortly after, the high- and low-frequency bands
of the symmetric mode merge. Moreover, by time tinter

Re=24 000, indicated by the line marked
by squares in figure 7, the symmetric mode has a single maximum. At this point, the
wavenumber with the greatest amplitude is associated with the symmetric mode for the
same reasons as described in the lower-Reynolds-number case.

Beyond time tinter
Re=24 000, however, the nature of the solution changes compared with

the lower-Reynolds-number case. While the increasing radius of the ring still tends
to shift the antisymmetric band to higher wavenumbers, the decreased influence of
the viscous relaxation of the vorticity within the Lamb–Oseen vortex cores yields
relatively thinner cores, resulting in a tendency to excite lower wavenumbers. At the
same time, because the cores are thinner, they can come into closer contact with one
another, decreasing the separation distance, which causes greater growth rates overall
and pushes the bands to higher wavenumbers. The overall effect of this competition
results in the antisymmetric band still migrating towards higher wavenumbers, but exciting
a wider range of wavenumbers and lingering on lower wavenumbers long enough to
cause significantly more growth than the lower-Reynolds-number case. By the time the
perturbation grows to be of the order of the separation distance at time tfin

Re=24 000, indicated
by the line marked by triangles in figure 7, the amplitude of the antisymmetric mode
exceeds that of the symmetric mode and the emergent wavenumber is therefore associated
with the higher-frequency, faster-growing antisymmetric mode.

The variation of the emergent wavenumber with the Reynolds number, shown in
figure 8, has implications relevant to experimental observations. Our analysis correctly
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Figure 7. The growth rates (a–c) and perturbation amplitudes (d–f ) of the symmetric (a,d) and
antisymmetric (b,e) modes for two colliding rings with b0/R0 = 4, c0/R0 = 0.4 and Re = 24 000. Lineouts in
(c, f ) correspond to tinit

Re=24 000 = 8.6 (circles), tinter
Re=24 000 = 11.2 (squares) and tfin

Re=24 000 = 13.3 (triangles).

predicts the increase in the emergent wavenumber with increasing Reynolds number
observed in experiments (Lim & Nickels 1992; McKeown et al. 2018). Physically, the
reason for this behaviour is that the tendency of the expanding ring to excite larger
wavenumbers becomes relatively more important than the tendency of the viscous
relaxation of the vorticity in the cores to excite lower wavenumbers as the Reynolds
number increases. Because the emergent wavenumber at these Reynolds numbers is
associated with the symmetric mode, vortex reconnection causes the separation of a
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Figure 8. The emergent wavenumber (blue solid line) and the amplitude of the symmetric (red dashed line)
and antisymmetric (red dotted line) modes when q = b. The black dashed line indicates Re = 8000.

number of secondary vortex structures roughly equal to the emergent wavenumber, though
some variation will exist due to other wavenumbers also experiencing significant growth.
Specifically, the variation in the number and size of secondary vortex structures will likely
scale with the width of the perturbation amplitude spectrum.

Our analysis also predicts a sharp transition to emergent wavenumbers associated with
the antisymmetric mode that is consistent with the experimentally observed transition to a
turbulent puff (Lim & Nickels 1992; McKeown et al. 2018). In the absence of the vortex
reconnection that terminates the growth of the symmetric mode, the growth and stretching
of this higher-wavenumber, faster-growing antisymmetric mode would rapidly continue
into a nonlinear phase, possibly stimulating the turbulent puff. Furthermore, we note
that while the maximum amplitude of perturbations experiencing antisymmetric growth,
qdom

A , (red dotted line in figure 8) are up to five orders of magnitude smaller than their
symmetric counterparts for the lower-Reynolds-number cases, the maximum amplitude of
the perturbations experiencing symmetric growth, qdom

S , (red dashed line in figure 8) is
only up to one order of magnitude smaller than that of their dominating antisymmetric
counterparts for the higher-Reynolds-number cases. As a result, near and beyond the
Reynolds number where the flow becomes dominated by the antisymmetric mode, there
is significant perturbation growth throughout a broader range of wavenumbers excited by
both modes, further promoting the transition to a turbulent puff.

Experimentally, the transition to a turbulent puff is observed to occur near Re = 8000
(McKeown et al. 2018), indicated by the thin black dashed vertical line in figure 8,
while our analysis predicts the transition to an antisymmetric dominated regime near
Re = 22 000. This discrepancy may be attributed to a number of additional mechanisms
that affect the flow leading up to a turbulent transition, which are discussed next.

The present analysis is restricted to circular vortex cores. However, core-shape
deformations result from strain including that which is self-imposed and that imposed by
the other ring, the effect of which increases as the cores approach, leading to deformation
to elliptic or possibly even semicircular cores as seen in experiments (Chu et al. 1995;
McKeown et al. 2018). The failure of irrotational vortices to describe the zero-order
motion in the present analysis, see figure 3(b), is evidence that the distribution of vorticity
within the cores is critical, and extending this work to allow core-shape deformation would
likely improve the characterization of the CI through a more accurate description of the
zero-order motion.

Beyond the CI, core-shape deformations are manifested by additional instabilities.
The curvature instability has been shown to affect vortex rings in excess of Re > 6000
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(Blanco-Rodríguez & Dizès 2017). While the growth rate is smaller than that of the CI
for the cases presently examined, the curvature instability could still excite perturbation
growth that contributes to a turbulent transition near Re = 8000. In addition, strain can
cause the deformation of a single core into a multipolar structure (van Heijst, Kloosterziel
& Williams 1991; Orlandi & van Heijst 1992; Carton & Legras 1994; Sengupta et al. 2012).
While such a structure is not visible in the vortex cores in the experiments of McKeown
et al. (2018, 2020), core deformations that could cause the formation of multiple poles
may be present to an extent which, when coupled with other mechanisms, contributes
to transition. The current analysis also neglects the strain-induced elliptic instability
(Widnall et al. 1974), which is recognized, along with the CI, to primarily dominate
vortex-pair interactions (Leweke et al. 2016), including the direct collision of vortex rings
(Arun & Colonius 2023). A combined stability analysis that simultaneously considers
these additional mechanisms, and possibly others, may be needed for a more complete
description of the transition to a turbulent puff (Fukumoto & Hattori 2005; Leweke et al.
2016; McKeown et al. 2018, 2020).

Lastly, the present analysis cannot accurately capture wavenumbers beyond a critical
wavenumber–core-thickness product (Kelvin 1880; Crow 1970; Widnall et al. 1974), as
discussed in § A4. Despite these limitations, the present analysis provides an accurate
quantitative description of the lower-Reynolds-number case, correctly predicting the
number of secondary vortex structures and the time scales on which they emerge, and
may provide key insight into an additional mechanism, higher-frequency modes, affecting
the transition of the flow to a turbulent puff, which are discussed in more detail next.

4. Higher-frequency modes and experimental implications

We further discuss the effect of the antisymmetric and the high-frequency symmetric
modes on the evolution of the perturbation spectrum of the CI. The original analysis
of Crow (1970) notes that the fastest-growing wavenumber is that associated with
the antisymmetric mode, though the emergent wavenumber in aeroplane wakes is
consistent with the low-frequency symmetric mode. At the time, this was attributed to
the structure of atmospheric turbulence imposing an initial perturbation spectrum that
favours low-frequency modes (Crow 1970). Later, Widnall et al. (1974) pointed out that
the unstable high-frequency antisymmetric mode is spurious due to Crow’s use of the
low-frequency approximation of the dispersion relation describing the propagation of
waves around a columnar vortex to calibrate the cutoff model for the self-induction integral
(Kelvin 1880; Crow 1970). Figure 9 shows the rotation rate for a disturbance, τ , travelling
around a constant-vorticity columnar vortex with rotation rate Ω calculated from the
exact dispersion relation and from the low-wavenumber approximation (Moore & Saffman
1972). The dominant antisymmetric mode in Crow’s analysis for an elliptically loaded
wing (Spreiter & Sacks 1951) is predicted to grow with a wavenumber–core-thickness
product of kc = 3.34, where in the planar case k is the dimensional wavenumber (Crow
1970). As figure 9(a) shows, the rotation rate of the disturbance predicted by the
low-wavenumber approximation is zero when the product of the wavenumber and core
thickness is 1.44. Beyond this value, the low-wavenumber approximation is in complete
disagreement with the exact rotation rate, confirming the assertion that the high-frequency
antisymmetric mode in Crow’s analysis is indeed spurious (Widnall et al. 1974).

In the present work, however, the product of the wavenumber and core thickness
for the emergent wavenumber of the antisymmetric mode for the Re = 24 000 case,
kemerg = 69, never exceeds 0.8. As figure 9(b) shows, the error in the disturbance rotation
rate from the low-wavenumber approximation decreases from 39 % to 5 % while the
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Figure 9. The exact rotation rate of a disturbance propagating about a constant-vorticity column (black
solid line), the rotation rate from the long-wavelength limit (black dashed line) and the per cent difference
between the two (black dotted line) versus the product of the wavenumber and core thickness (a) and the
product of the wavenumber and core thickness (solid lines) and the per cent difference between the exact and
long-wavelength-limit rotation rates (dashed lines) for a wavenumber of k = 69 (red lines) and k = 30 (blue
lines) versus time for the Re = 24 000 case (b). Arrows indicate corresponding axes.

emergent wavenumber is experiencing perturbation growth. For comparison, the error for
the dominant wavenumber of the symmetric mode, kdom

S = 30, decreases from 12 % to
1 %, also shown in figure 9(b). The low wavelength–core-thickness product for the present
cylindrical case, compared with the planar case, is largely caused by the tendency of the
core thickness to decrease as the cores expand. The antisymmetric mode is therefore not
necessarily spurious for colliding vortex rings and may play a role in the experimentally
observed sharp transition to a turbulent puff as described earlier. It is possible that a
stability analysis for colliding vortex rings utilizing the exact dispersion relation may
indeed show that the antisymmetric mode never dominates the low-frequency symmetric
mode, but as figure 9 indicates, the antisymmetric mode may still cause a potentially
significant amount of growth in the perturbation spectrum that may contribute to the
transition to a turbulent puff.

Furthermore, the effect of the zero-order motion of two colliding vortex rings on the
stability provides additional insight for both the planar case and more general flows. While
the vertical translation of two planar cores does not explicitly affect the stability, other
factors may in the applications. For example, wingtip vortices may encounter background
flows causing their separation distance to change, which would suppress the emergence
of instability modes exciting narrow, higher-frequency wavenumber bands (if they are not
already spurious). The viscous relaxation of a vortex core may have the same effect, as
it does in the present work. An accurate characterization of the perturbation spectrum for
any number of interacting vortex cores would generally require such considerations.

The first experiments demonstrating the CI along colliding vortex rings (Lim & Nickels
1992) utilized the radius, core separation distance and core thickness, once perturbations
were visible, in a planar analysis (Crow 1970) and found reasonable agreement between
the fastest growing wavenumber of the low-frequency symmetric mode and the number
of secondary vortex structures. This agreement, however, may be partially coincidental,
i.e. the dominant and maximal wavenumbers for the low-frequency symmetric mode
happen to be similar at the time when the perturbations are visible in experiments,
as shown in figure 5. The present analysis provides a complete description of the
time-dependent growth rate of the emergent wavenumber, and all other wavenumbers,
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from the beginning stages of perturbation growth, enabling a prediction of the fluid
dynamics rather than postexperimental analysis only. Furthermore, integrating these
growth rates in time fully characterizes the modal content of the perturbation spectrum,
on top of which additional instabilities and nonlinearities develop and cause the flow
to transition to a turbulent state. Future studies may therefore examine these nonlinear
dynamics in the context of the present CI-modulated flow and utilize non-modal analysis
to determine what similarities, if any, exist between transition in more thoroughly studied
wall-bounded flows (Schmid 2007; Sengupta, Sundaram & Sengupta 2020) and vortex
core interactions.

Finally, while the present work concerns the direct collision of two vortex rings
approaching from an initially large separation distance, the analysis for an expanding
vortex dipole formed from a radially diverging annular starting jet is identical, with an
appropriate definition of the vortex cores in the dipole. Given the difficulties associated
with precisely aligning two vortex ring generators for a direct collision, the latter may be a
convenient, and possibly more controllable, experimental set-up for examining the vortex
core interactions that are the subject of many recent studies (Brenner et al. 2016; McKeown
et al. 2018, 2020; Mishra et al. 2021; Nguyen et al. 2021; Qi et al. 2022). Moreover, the
growth of the CI along an annular starting jet may be relevant to certain astrophysical
systems. In particular, the CI may affect mass accumulation along circumstellar tori
emitted from stars such as Sanduleak -69 202 (McCray & Fransson 2016), WeBo 1 (Bond,
Pollacco & Webbink 2003), Wolf-Rayet 140 (Lau et al. 2022) and many others.

5. Conclusion

The linear stability of two colliding coaxial vortex rings of equal strength is examined.
The analysis considers the effects of curvature, the zero-order motion, the distribution of
vorticity in the cores, and viscosity within a framework that enables direct calculation
of the eigenvalues of the system. Unlike the planar case for line vortices, the zero-order
motion of the flow causes the growth rates of the symmetric and antisymmetric modes
to vary. The equations are therefore integrated in time to elucidate the evolution of the
perturbation spectrum.

The analysis is validated by comparison with existing experimental data showing good
agreement with both the zero- and first-order motion of the flow, enabling a prediction
of the number of secondary vortex structures that emerge following the collision of two
vortex rings at low-to-moderate Reynolds numbers, which is found to be approximately
equal to the calculated emergent wavenumber. The analysis additionally captures the
evolution of all other wavenumbers and shows how the zero-order motion causes narrow
unstable wavenumber bands, not necessarily spurious, to migrate. As a result, these bands
stimulate some growth but, for low Reynolds numbers, never enough to be visible in
experiments.

Moreover, the analysis provides key insights into the variation of the emergent
wavenumber with the Reynolds number. In particular, the analysis correctly predicts the
increase in the emergent wavenumber, and therefore the number of secondary vortex
structures that emerge in experiments, with increasing Reynolds number. This behaviour
is a physical consequence of the rings expanding to larger radii, and therefore being able to
support perturbation growth at larger wavenumbers, faster than the time scales on which
their cores relax under the influence of viscosity. Furthermore, the decreased separation
distances at higher Reynolds numbers also cause the wavenumber bands excited by both
the high-frequency symmetric and antisymmetric modes to widen, enabling them to excite
faster growth for a long enough period of time such that the perturbation amplitudes are of
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the order of or exceed those of the low-frequency symmetric mode. This enhanced modal
content may contribute to the experimentally observed transition of the flow to a turbulent
puff.
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Appendix A

Linearizing (2.3) in the reference frame of the zero-order motion of the flow (i.e.
subtracting out zero-order terms) yields

∂dn

∂t
= ex

∂hn

∂t
cos θn + ey

∂hn

∂t
sin θn + ez

∂sn

∂t
= exun + eyvn + ezwn. (A1)

Equating the velocity components of (A1) with (2.1) after substitution of (2.2) and
linearization, again in the reference frame of the zero-order motion, yields

∂hn

∂t
cos θn =

2∑
m=1

Γm

4π

∫ {{
R sin θm′

∂sm′

∂θm′
− R sin θn

∂sm′

∂θm′
− R(sm′ − sn) cos θm′

−(zm − zn)
∂hm′

∂θm′
sin θm′ − (zm − zn)hm′ cos θm′

}/
{[(R cos θm′

− R cos θn)
2 + (R sin θm′ − R sin θn)

2 + (zm − zn)
2]3/2}

+ {3R(zm − zn) cos θm′[Rhm′ cos2 θm′ − R(hn + hm′) cos θm′ cos θn

+ Rhn cos2 θn + Rhm′ sin2 θm′ − R(hn − hm′) sin θm′ sin θn

+ Rhn sin2 θn + (sm′ − sn)(zm − zn)]}/{[(R cos θm′

− R cos θn)
2 + (R sin θm′ − R sin θn)

2 + (zm − zn)
2]5/2}

}
dθm′, (A2)

∂sn

∂t
=

2∑
m=1

Γm

4π

∫ {{
R cos θm′

∂hm′

∂θm′
sin θm′ + 2Rhm′ cos2 θm′ − R cos θn

∂hm′

∂θm′
sin θm′

− Rhm′ cos θn cos θm′ − Rhn cos θn cos θm′ − R sin θm′
∂hm′

∂θm′
cos θm′
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+ 2Rhm′ sin2 θm′ + R sin θn
∂hm′

∂θm′
cos θm′ − Rhm′ sin θn sin θm′

− Rhn sin θn sin θm′

}/
{[(R cos θm′ − R cos θn)

2 + (R sin θm′ − R sin θn)
2

+ (zm − zn)
2]3/2} − {3R2(1 − cos θn cos θm′ − sin θn sin θm′)[Rhm′ cos2 θm′

− R(hn + hm′) cos θm′ cos θn + Rhn cos2 θn + Rhm′ sin2 θm′

− R(hn − hm′) sin θm′ sin θn + Rhn sin2 θn

+ (sm′ − sn)(zm − zn)]}/{[(R cos θm′

− R cos θn)
2 + (R sin θm′ − R sin θn)

2 + (zm − zn)
2]5/2}

}
dθm′, (A3)

noting that due to the problem symmetry, the equation for the velocity in the y direction
is redundant and therefore omitted. Applying normal modes of the form dn = d̃n eat+ikθn

yields

ah̃1 cos θ1 = Γ1

4π

∫ θ1+2π−d/R

θ1+d/R
{{R sin θ1′[−s̃1′k sin(kθ1′)] − R sin θ1[−s̃1′k sin(kθ1′)]

− R[s̃1′ cos(kθ1′) − s̃1 cos(kθ1)] cos(θ1′)}/{[(R cos θ1′

− R cos θ1)
2 + (R sin θ1′ − R sin θ1)

2]3/2}} dθ1′

+ Γ2

4π

∫ 2π

0
{{R sin θ2′[−s̃2′k sin(kθ2′)] − R sin θ1[−s̃2′k sin(kθ2′)]

− R[s̃2′ cos(kθ2′) − s̃1 cos(kθ1)] cos(θ2′) + b[−h̃2′k sin(kθ2′)] sin θ2′

+ bh̃2′ cos(kθ2′) cos θ2′ }/{[(R cos θ1′ − R cos θ1)
2 + (R sin θ1′

− R sin θ1)
2 + b2]3/2} − {3Rb cos θ2′[Rh̃2′ cos(kθ2′) cos2 θ2′

− R(h̃1 cos(kθ1) + h̃2′ cos(kθ2′)) cos(θ2′) cos(θ1) + Rh̃1 cos(kθ1) cos2(θ1)

+ Rh̃2′ cos(kθ2′) sin2 θ2′ − R(h̃1 cos(kθ1) − h̃2′ cos(kθ2′)) sin(θ2′) sin(θ1)

+ Rh̃1 cos(kθ1) sin2 θ1 − b(s̃2′ cos(kθ2′) − s̃1 cos(kθ1))]}/{[(R cos θ1′

− R cos θ1)
2 + (R sin θ1′ − R sin θ1)

2 + b2]5/2}} dθ2′, (A4)

as̃1 = Γ1

4π

∫ θ1+2π−d/R

θ1+d/R
{{−R cos θ1′ h̃1′k sin(kθ1′) sin θ1′ + 2Rh̃1′ cos(kθ1′) cos2 θ1′

+ R cos θ1h̃1′k sin(kθ1′) sin θ1′ − R cos θ1h̃1′ cos(kθ1′) cos θ1′

− h̃1 cos(kθ1) cos θ1R cos θ1′ + R sin θ1′ h̃1′k sin(kθ1′) cos θ1′

+ 2Rh̃1′ cos(kθ1′) sin2 θ1′ − R sin θ1h̃1′k sin(kθ1′) cos θ1′

− R sin θ1h̃1 cos(kθ1′) sin θ1′ − R sin θ1h̃1′ cos(kθ1′) sin θ1′ }/{[(R cos θ1′

− R cos θ1)
2 + (R sin θ1′ − R sin θ1)

2 + b2]3/2} − {3R2(1 − cos θ1 cos θ1′
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− sin θ1 sin θ1′)[Rh̃1′ cos(kθ1′) cos2 θ1′ − R(h̃1 cos(kθ1)

+ h̃1′ cos(kθ1′)) cos(θ1′) cos(θ1) + Rh̃1 cos(kθ1) cos2(θ1)

+ Rh̃1′ cos(kθ1′) sin2 θ1′ − R(h̃1 cos(kθ1) − h̃1′ cos(kθ1′)) sin(θ1′) sin(θ1)

+ Rh̃1 cos(kθ1) sin2 θ1]}/{[(R cos θ1′ − R cos θ1)
2 + (R sin θ1′

− R sin θ1)
2 + b2]5/2}} dθ1′ + Γ2

4π

∫ 2π

0
{{−R cos θ2′ h̃2′k sin(kθ2′) sin θ2′

+ 2Rh̃2′ cos(kθ2′) cos2 θ2′ + R cos θ1h̃2′k sin(kθ2′) sin θ2′

− R cos θ1h̃2′ cos(kθ2′) cos θ2′ − h̃1 cos(kθ1) cos θ1R cos θ2′

+ R sin θ2′ h̃2′k sin(kθ2′) cos θ2′ + 2Rh̃2′ cos(kθ2′) sin2 θ2′

− R sin θ1h̃2′k sin(kθ2′) cos θ2′ − R sin θ1h̃1 cos(kθ2′) sin θ2′

− R sin θ1h̃2′ cos(kθ2′) sin θ2′ }/{[(R cos θ2′

− R cos θ1)
2 + (R sin θ2′ − R sin θ1)

2 + b2]3/2} − {3R2(1 − cos θ1 cos θ2′

− sin θ1 sin θ2′)[Rh̃2′ cos(kθ2′) cos2 θ2′ − R(h̃1 cos(kθ1)

+ h̃2′ cos(kθ2′)) cos(θ2′) cos(θ1) + Rh̃1 cos(kθ1) cos2(θ1)

+ Rh̃2′ cos(kθ2′) sin2 θ2′ − R(h̃1 cos(kθ1) − h̃2′ cos(kθ2′)) sin(θ2′) sin(θ1)

+ Rh̃1 cos(kθ1) sin2 θ1 − b(s̃2′ cos(kθ2′) − s̃1 cos(kθ1))]}/{[(R cos θ2′

− R cos θ1)
2 + (R sin θ2′ − R sin θ1)

2 + b2]5/2}} dθ2′ . (A5)

Complementary equations for h̃2 and s̃2 are obtained from (A4) and (A5), respectively,
by interchanging the subscripts 1 and 2 and by substituting −b for b. The matrix entries
for the eigenvalue problem (2.7) are then formed by collecting terms in (A4)-(A5) in the
perturbation quantities and choosing θ1 = 0, giving

M1,1 = Γ2

4π

∫ 2π

0
dθ2′ {{3R cos θ2′ − 3R − 3R cos(kθ1) sin2 θ1}

bR cos θ ′
2/{[R cos(θ2′) − R]2 + [R sin(θ2′)]2 + b2}5/2}, (A6)

M1,2 = Γ1

4π

∫ 2π−d/R

d/R
dθ1′ {{−R sin(θ1′)k sin(kθ1′) − R cos(kθ1′) cos(θ1′)

+ R cos(θ1′)}/{[R cos(θ1′) − R]2 + [R sin(θ1′)]2}3/2}

+ Γ2

4π

∫ 2π

0
dθ2′ {{R cos(θ2′)}/{[R cos(θ2′) − R]2 + [R sin(θ2′)]2

+ b2}3/2} + Γ2

4π

∫ 2π

0
dθ2′ {−3R[b cos(θ2′)]2/{[R cos(θ2′) − R]2

+ [R sin(θ2′)]2 + b2}5/2}, (A7)
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M1,3 = Γ2

4π

∫ 2π

0
dθ2′ {{−bk sin(kθ2′) sin(θ2′) + b cos(kθ2′) cos θ2′ }/{[R cos(θ2′) − R]2

+ [R sin(θ2′)]2 + b2}3/2} + Γ2

4π

∫ 2π

0
dθ2′ {bR cos(θ2′){−3R cos(kθ2′) cos2(θ2′)

+ 3R cos(kθ2′) cos(θ2′) − 3R cos(kθ2′) sin2(θ2′)}/{[R cos(θ2′) − R]2

+ [R sin(θ2′)]2 + b2}5/2}, (A8)

M1,4 = Γ2

4π

∫ 2π

0
dθ2′ {{−R sin(θ2′)k sin(kθ2′) − R cos(kθ2′) cos(θ2′)}/{[R cos(θ2′) − R]2

+ [R sin(θ2′)]2 + b2}3/2} + Γ2

4π

∫ 2π

0
dθ2′ {{3b cos(kθ2′)}bR cos(θ2′)/{[R cos(θ2′)

− R]2 + [R sin(θ2′)]2 + b2}5/2}, (A9)

M2,1 = Γ1

4π

∫ 2π−d/R

d/R
dθ1′ {{−Rk sin(kθ1′) sin(θ1′) + R cos(kθ1′) cos2(θ1′)

+ R cos(kθ1′) cos2(θ1′) + Rk sin(kθ1′) sin(θ1′) − R cos(kθ1′) cos(θ1′)

− R cos(θ1′) + R sin(θ1′)k sin(kθ1′) cos(θ1′) + R cos(kθ1′) sin2(θ1′)

+ R cos(kθ1′) sin2(θ1′)}/{[R cos(θ1′) − R]2 + [R sin(θ1′)]2}3/2}

+ Γ1

4π

∫ 2π−d/R

d/R
dθ1′ {{−3R cos(kθ1′) cos2(θ1′) + 3R cos(θ1′)

+ 3R cos(kθ1′) cos(θ1′) − 3R − 3R cos(kθ1′) sin2(θ1′)}
× R2[1 − cos(θ1′)]/{[R cos(θ1′) − R]2 + [R sin(θ1′)]2}5/2}

+ Γ2

4π

∫ 2π

0
dθ2′ {{−R cos(θ2′)}/{[R cos(θ2′) − R]2 + [R sin(θ2′)]2 + b2}3/2}

+ Γ2

4π

∫ 2π

0
dθ2′ {{3R cos(θ2′) − 3R} × R2[1 − cos(θ1′)]/{[R cos(θ2′) − R]2

+ [R sin(θ2′)]2 + b2}5/2}, (A10)

M2,2 = Γ2

4π

∫ 2π

0
dθ2′ {−3bR2[1 − cos(θ1′)]/{[R cos(θ2′) − R]2 + [R sin(θ2′)]2 + b2}5/2},

(A11)

M2,3 = Γ2

4π

∫ 2π

0
dθ2′ {{−R cos(θ2′)k sin(kθ2′) sin(θ2′) + R cos(kθ2′) cos2(θ2′)

+ R cos(kθ2′) cos2(θ2′) + Rk sin(kθ2′) − R cos(kθ2′) cos(θ2′)

+ R sin(θ2′)k sin(kθ2′) cos(θ2′) + R cos(kθ2′) sin2(θ2′)

+ R cos(kθ2′) sin2(θ2′)}/{[R cos(θ2′) − R]2 + [R sin(θ2′)]2 + b2}3/2}

+ Γ2

4π

∫ 2π

0
dθ2′ {{−3R cos(kθ2′) cos2(θ2′) + 3R cos(kθ2′) cos(θ2′)
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− 3R cos(kθ2′) sin2(θ2′)} × R2[1 − cos(θ1′)]/{[R cos(θ2′) − R]2

+ [R sin(θ2′)]2 + b2}5/2}, (A12)

M2,4 = Γ2

4π

∫ 2π

0
dθ2′ {{3b cos(kθ2′)}R2[1 − cos(θ1′)]/{[R cos(θ2′) − R]2

+ [R sin(θ2′)]2 + b2}5/2}. (A13)
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