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Abstract

Accurate and reliable disaster forecasting is vital for saving lives and property. Hence, effective disaster
management is necessary to reduce the impact of natural disasters and to accelerate recovery and reconstruction.
Typhoons are one of the major disasters related to heavy rainfall in Korea. As a typhoon develops in the far ocean,
satellite observations are the only means to monitor them. Our study uses satellite observations to propose a deep-
learning-based disaster monitoring model for short-term typhoon rainfall forecasting. For this, we consider two
deep learning models: a video frame prediction model, Warp and Refine Network (WR-Net), to predict future
satellite observations and an image-to-image translation model, geostationary rainfall product (GeorAln) (based on
the Pix2PixCC model), to generate rainfall maps from predicted satellite images. Typhoon Hinnamnor, the worst
typhoon case in 2022 in Korea, is selected as a target case for model verification. The results show that the predicted
satellite images can capture the structures and patterns of the typhoon. The rainfall maps generated from the
GeorAln model using predicted satellite images show a correlation coefficient of 0.81 for 3-hr and 0.56 for 7-hr
predictions. The proposed disaster monitoring model can provide us with practical implications for disaster alerting
systems and can be extended to flood-monitoring systems.

Impact Statement

The development of a deep-learning-based disaster monitoring model using satellite observations has the
potential to significantly improve disaster response efforts by providing real-time, accurate, and comprehensive
information about affected areas on a global scale.

1. Introduction

Monitoring heavy rainfall is crucial to assess the risk of potential disasters and enable authorities to
alert communities for their safety. Accurate and timely detection of heavy rainfall under the current
weather system has been effective in reducing damage from related disasters such as floods and
storms (Alfieri etal., 2012; Cools et al., 2016). Ground-based radars are highly effective in detecting
heavy rainfall by directly measuring the returned signals from surrounding objects. These radar
systems can measure rainfall intensity according to particle size since radar beams strike raindrops in
the atmosphere. Therefore, most meteorological administrations operate radar systems to detect
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precipitation. However, radar systems have limitations in detecting precipitation over larger areas and
making broader spatiotemporal predictions. Although these systems can predicts the next 0-2 hr of
rainfall pattern changes (e.g., amount, timing, and location) by simple extrapolation methods, their
accuracies decrease over longer periods and they cannot predict the development and dissipation of
the system.

To alleviate these limitations in nowcasting, recent studies have utilized deep-learning (DL) approaches
with satellite images (Shi et al., 2017; Ravuri et al., 202 1; Espeholt et al., 2022; Seo et al., 2022). DL-based
models learn the pattern change of rain events from past datasets and then predict future patterns instead of
extrapolating continuous snapshots. Ravuri et al. (202 1) suggested that a deep generative model improves the
quality of the next 0-2 hr of precipitation nowcasting by inputting only radar images and predicting the
precipitation probability. Other studies used recurrent neural network (RNN)-based models to predict future
precipitation probabilities from satellite images. These state-of-the-art models have shown significant
improvements in short-term weather forecasts in terms of cost and accuracy. However, these models still
rely on ground-based radars as input or target data for training. Their stochastic results can identify the
intensity categories (e.g., high or low) to some extent but cannot provide an accurate rainfall rate. Therefore,
further improvements are required for these prediction tasks.

Countries with satellite systems can complement their entire territories with airborne observations.
However, developing countries may face financial challenges in implementing such systems.
Even in countries with radar systems, they may still suffer from inadequate coverage or lack of sustainable
operation, limiting their effectiveness. In the same manner, observations over oceans are still necessary.
Given this situation, insufficient observational data hinder the use of DL-based models.

We propose a disaster monitoring model combining our DL-based models to predict heavy rainfall
from satellite images, which can help authorities monitor and respond to potential disasters. Our model
can predict rain rates by proxy radar reflectivity for 6 hr without the need for a ground radar. In Sections 2
and 3, we explain the data and models we used. In Section 4, we present the predicted results of our trained
model against Typhoon Hinnamnor, which occurred in 2022 over South Korea, and discuss the findings in
Section 5. Additionally, we conduct tests using the generated satellite images by Warp and Refine
Network (WR-Net), which allow for predicting rain patterns over a longer time than existing nowcasting
approaches. Overall, our study aims to overcome the spatial and temporal limitations of radar-based
forecasting and to contribute to improving disaster response efforts.

2. Data

2.1. GEO-KOMPSAT-2A4

GEO-KOMPSAT-2A (GK2A) is the second generation of meteorological geostationary (GEO) satellite
launched in 2018 to capture meteorological phenomena by the Korean Meteorological Administration
(KMA). The GK2A employs the Advanced Meteorological Imager (AMI) sensor, which provides
16 visible (VIS) and infrared (IR) channels with a high spatial resolution of 0.5 to 2 km. In this study,
we trained our model using VIS, water vapor (WV), and IR channels, respectively. As an example,
Figure 1 shows slightly different cloud features for each of the three channels.

The VIS products, which are produced by reflecting sunlight from the earth’s surface and clouds, are
available only during the daytime. We selected 0200-0600 UTC (1100-1500 KST) images of 0.64 um
VIS channel, considering the data quality over the South Korean region. As shown in Figure 1a, the darker
areas in the image represent land and water surfaces, whereas clouds typically appear as bright pixels. The
high spatial resolution of the VIS channel (0.5 km) enables us to distinguish small clouds and cloud shapes
with high accuracy.

Next, the WV products show the amount of WV in the atmosphere. GK2A provides products at three
different altitudes, and we used a high-level WV channel with a wavelength of 6.03 um for this study.
Similarly, high-moisture regions appear on the brighter pixels in Figure 1b. It is used to monitor severe
weather potential with turbulence existence or to estimate wind direction.
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(a) VIS006 2022/09/05 0500 UTC (b) WV063 2022/09/05 0500 UTC (c) IR105 2022/09/05 0500 UTC

Figure 1. Model input satellite channels. (a) is 0.64 um visible channel, (b) is 6.03 um water vapor
channel, and (c) is 10.5 um infrared channel. In common, bright areas indicate clouds or high-moisture
areas. Each channel shows different characteristics associated with cloud states.

Finally, the 10.5 gm IR channel is known as a “clean” window channel, which is less sensitive to
atmospheric gas absorption. This channel measures the emitted radiation as heat from the earth or clouds,
and we can estimate clouds top height and particle properties using this brightness temperature. IR
channels provide images day and night by using thermal radiation. Therefore, they can be utilized to
identify convective severe weather events anytime.

2.2. KMA weather radar

We use weather radar data from the KMA as a prediction target. A weather radar is a general detection
equipment for monitoring severe weather events. Previous studies (Seed, 2003; Pulkkinen et al., 2020)
widely used the constant altitude plan position indicator (CAPPI) product for precipitation nowcasting
and flood prediction. However, CAPPI observations tend to underestimate the gauge rainfall, as reported
by Yoon et al. (2014). Recently, several studies (Bellon et al., 2010; Yoon et al., 2014) have shown the
composited column maximum (CMAX) provides a more accurate prediction for flood forecasting.
CMAX represents the maximum precipitation possible in a column and is used to detect severe
thunderstorms. Therefore, we select CMAX radar data to represent the rainfall in this study.

2.3. Data preprocessing

We performed data preprocessing to align the input images to the same spatial resolution. As the VIS
channel has a higher resolution than IR and WV channels, we utilized bilinear interpolation to reduce the
image resolution from 0.5 to 2 km, which is the same as the other channels. We normalized all data within
the [—1, 1] range for model training. In the training process, we used 10-min interval data from October
2019 to July 2021 and evaluated the model’s performance on Typhoon Hinnamnor, a category-5 strength
Super Typhoon that significantly impacted South Korea and Japan in the first week of September 2022.
Among the typhoon season, we selected the closest case to South Korea, which occurred on September
9,2022, between 0100 and 0700 UTC. The model generated predictions for the rain rate for the next 6 hr
without tracking the typhoon movement, and our results are compared with weather radar and other
precipitation products (Figure 2).

We also performed qualitative comparisons with climate reanalysis data and satellite-based precipi-
tation products. For this, we used the hourly total precipitation parameter provided by the ERAS5 from
ECMWEF (European Centre for Medium-Range Weather Forecasts), which is the accumulated water that
falls to the earth’s surface. We also used the IMERG (Integrated Multi-satellitE Retrievals for GPM)-Late
Run data from GPM (Global Precipitation Measurement), which is calibrated precipitation based on the
multi-satellite microwave estimates. It should be noted that while the KMA radar and our results represent
hourly precipitation (mm/hr), the compared datasets show cumulative rainfall. The ERAS data have a
resolution of 25 km and are hourly, while the IMERG data have a resolution of 10 km and are half-hourly.
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Figure 2. Track of Super Typhoon Hinnamnor. htips://www.weather.go.kr/w/typhoon/typ-history.do.

Although the resolution is low, the reanalysis data combined with ground observation are useful for
confirming accuracies in satellite-based precipitation. We chose the GPM product because IMERG is a
well-known product that provides a satellite-based global precipitation map.

3. Method

The short-term forecasting model for typhoon rainfall consists of a two-step process (see Figure 3). First,
we used a DL-based video frame prediction model (Seo et al., 2022) to predict future sequences of GK2A
satellite imagery. Then, we applied an image-to-image translation model (Jeong et al., 2022) to the
generation of a radar reflectivity map from predicted satellite images.

VIS 0.06 um
GK2A
Satellite e N
WV 6.03 um
Radar Reflectivity Map
Generation
IR10.5 pm
Prediction (PIR) _

KMA
Radar

_ J

Figure 3. Architecture of the proposed disaster monitoring model, which consists of the two-step models.
The WR-Net, a video frame prediction network, predicts future satellite images based on cloud
movements. Using the generative adversarial network, the geostationary rainfall product (GeorAln)
generates the proxy radar reflectivity map from the satellite images.
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3.1. Video frame prediction network—WR-Net

Satellite imagery has mainly served as a means of near-real-time monitoring of atmospheric conditions or
as auxiliary data to improve the initial condition of the numerical forecasting model. However, recent
advances (Espeholt et al., 2022; Seo et al., 2022) in DL-based video frame prediction techniques have
enabled us to predict future satellite images. The objective of this study was to leverage these techniques to
generate future satellite images to better prepare for typhoon-related disasters in advance.

To achieve this objective, we employ the WR-Net model, proposed by Seo et al. (2022). WR-Net is a
DL-based model that generates future images from two consecutive past images. Initially developed for
frame interpolation to increase the temporal resolutions of GEO satellite observations, WR-Net comprises
a two-step network: a warping component that uses manually extracted optical flow and a refinement
component that adjusts the intensity changes of each pixel. In the weather and climate community, optical
flows have traditionally been used for short-term precipitation forecasting by extrapolating the movement
of precipitation systems from weather radar observations. However, the extrapolation method has a
limitation in predicting the development and disappearance of clouds. To address this issue, WR-Net
includes a learning-based refinement network. The results from WR-Net demonstrate significantly
improved skill scores compared to WR-Net without a refinement network.

3.2. Generative adversarial network—GeorAln

Meteorological GEO satellites provide rain rate information based on the reflectivity or brightness
temperature observed from the VIS and IR channels. While these satellites offer relatively high spatial
and temporal resolutions, the physical relationship between rain rate and brightness temperatures (7'g) is
highly complex and nonlinear due to the different characteristics of each channel. This makes precipi-
tation measurement from the GEO satellite challenging. However, DL-based precipitation retrieval
algorithms can handle these complex relationships by using multiple hidden layers to model the nonlinear
interactions between input (7'g) and output (radar reflectivity or rain rate).

In this study, we apply the Pix2PixCC model to a rainfall map from GK2A satellite images, which we
named the GeorAln. Pix2Pix is one of the popular methods of image-to-image translation using a
Conditional Generative Adversarial Network (¢cGAN). GAN is known to produce high-quality image
generation models using an adversarial training process between the generator and the discriminator.
However, the early version of Pix2Pix has a limitation when generating high-resolution images. To solve
this, Pix2PixHD (Wang et al., 2018) was proposed to handle high-resolution images. Despite its success in
generating high-resolution images, GAN is known for its lack of interpretability, as they generate images
that are often inconsistent with the input data. To address this challenge, Jeong et al. (2022) improved the
Pix2PixHD, adding an inspector that guides the generator to create physically consistent images by
calculating the correlation coefficient between real and generated images. They named the model
“Pix2PixCC.” By doing so, we can produce more accurate precipitation maps from GK2A satellite
images, which can aid in better understanding and predicting weather patterns.

4. Results and Discussion: Hinnamnor Case Study
4.1. Predicting satellite images from WR-Net
We predict future satellite images with a video frame prediction model (as explained in Section 3.1).
Figure 4 shows a case of the IR channel. Using two continuous IR images (0000 and 0100 UTC), WR-Net
predicts the future 6-hr (until 0700 UTC) IR images with an hour interval, iteratively. Figure 4a shows the
original GK2A IR images, (b) shows the WR-Net-predicted results, and (c) shows the difference map
between them. The WR-Net-predicted images preserve the location and shape of the clouds to some
extent. However, as the prediction time increases, the predicted clouds become divided and dimmed.
Figure 4c shows that errors accumulate gradually and the image differences increase.

Regarding the other channels, the histograms between the GK2A original image and the WR-Net-
predicted image are compared in Figure 5. The figure shows that the two histograms have similar
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Figure 4. IR images from (a) GK2A IR 10.5 um channel, and (b) the results of WR-Net with the optical
flow between 00 and 01 UTC on September 9, 2022. The bright pixels in both images indicate the presence
of cloud areas. (c) is the difference map between (a) and (b). Each color bar means temperature (K).

(@

(®)

©

108

VI006_202209050100

. ori
=3 pred

WV063_202209050100

= ori
=3 pred

00 200 20 2%

20 230
Temperature (K]

IR105_202209050100

== ori
== pred

200 220 210 20 20 20
Temperature [K]

VI006_202209050300

. ori
=3 pred

WV063_202209050300

= ori
=3 pred

S0 200 20 220 230
Temperature (K]

IR105_202209050300

== ori
== pred

00 220 260

2
Temperature (K]

VI006_202209050500

. ori
== pred

WV063_202209050500

= ori
== pred

10 200 2 20 230

0 20 230
Temperature (K]

IR105_202209050500

== ori
== pred

0 20 220 20 w0 20

20 260
Temperature (K]

VI006_202209050700

. ori
== pred

6 s 100 120

o 0 4

Abedo

WV063_202209050700

= ori
=3 pred

0 210 20 230

20 230
Temperature K]

IR105_202209050700

== ori
== pred

200 20 200 20 20 %0 320

Temperature (K]

Figure 5. Comparison between the histogram of the original GK2A4 image (blue bar) and WR-Net-
predicted image (brown bar) at each channel. (a) is 0.64 um visible channel, (b) is 6.03 um water vapor
channel, and (c) is 10.5 um infrared channel. All values are calculated on a log scale.
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distributions of albedo and brightness temperature. However, as the prediction time increases, the
differences in distribution extremes become more noticeable. Cloud pixels in satellite image generally
have high albedo and low temperatures, representing cloud areas in the tails of the distribution.
Unfortunately, the training dataset lacks a sufficient number of cloud pixels in these tail regions to
capture cloud development features. Therefore, this result indicates that the image predicted by WR-Net
lacks cloud areas and information. To address this issue, we conduct additional experiments by replacing

only the IR channel that can mostly identify convective clouds among the three channels with the WR-Net
results.

4.2. Monitoring Typhoon rainfall by GeorAln

We generate the radar reflectivity maps from three satellite images using the GeorAln model and then
compare it with the KMA radar products. Figure 6 is a 2D histogram representing the correlation between
the GeorAln model results obtained from the three original input channels of GK2A and the two original
channels combined with one WR-Net-predicted IR channel. Since images were normalized within the
[—1, 1] range for model training, prediction results include negative values during reconstruction.
Generally, radar reflectivity above 35 dBZ indicates moderate to heavy precipitation. In this figure, most
pixel values appear near 0 dBZ, which means clean-sky pixels. This is because satellite imagery has a
much higher percentage of non-cloud pixels than cloud pixels. The black line means two results have a
perfect prediction. In the prediction after the first hour (0100 UTC), the results of the after 2 hr show a high
correlation of about 0.89 and decrease as the prediction time increase. Despite this decrease, it still offers a
significant correlation of about 0.75 until 5 hr later (0500 UTC). This means that after 5 hr, the WR-Net-
predicted satellite images could effectively replace the original satellite image, and they can show similar
proxy radar reflectivity results.

For comparison, the predicted radar reflectivity (Z) data are converted to rain rate (R) by using the Z-R
relationship (Marshall and WMK, 1948) as follows: z=aR’. The coefficients, a and b, are empirically
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Figure 6. A 2D histogram of the radar reflectivity results from the GeorAIn model, depending on the
combination of the input channel. ‘ori_radar_reflectivity’ is the result of original GK2A three channels
(VIS, WV, and IR), and ‘gen_radar_reflectivity’ means the results of the combination of GK24 two
channels (VIS, WV) and the WR-Net-predicted IR image. The ‘coeff” in the subtitle means the correlation

coefficient between two results in each graph. The color bar means the frequency of data, and it was
calculated with a log scale.
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determined depending on the precipitation types and regions. We use the most commonly used coeffi-
cients, @ = 200 and b = 1.6, for stratiform precipitation which are applicable to the Korean region
following the Marshall-Palmer equation.

Figure 7 compares the GeorAln predicted results with various other datasets, including the KMA radar
product, climate reanalysis data (ERAS), and GPM IMERG product over Korea. In the KMA radar image
(Figure 7a), the masked area with gray pixels at the edge represents areas where ground-based radar
observations are unavailable. It means radar has spatial limitations in North Korean and oceanic regions.
Figure 7b,c depict projection maps of the predicted results from the GeorAln. Because the results are
predicted from satellite images, they are not subject to the spatial limitations encountered by ground-based
radar observations. The GeorAln model exhibits promising capabilities in predicting the location and
shape of precipitation, comparable to radar observations. In particular, the results at the input of original
GK2A channels (Figure 7b) successfully capture the heavy precipitation (above 10 mm/hr) in the vicinity
of Jeju Island located in the southern part of the Korean Peninsula. These findings show that the GeorAln
model not only estimates the location, such as the precipitation probability prediction of typical DL-based
models, but also accurately predicts the rainfall intensity. However, the result of Figure 7c of inputting the
predicted image from WR-Net has significantly fewer rain areas and intensity than the other two results.

This discrepancy may be attributed to a gradual decrease in cloud coverage, as discussed in Section 4.1.
Nevertheless, the location of heavy rainfall near the typhoon and the overall cloud distribution is well
predicted. This demonstrates the model’s potential for radar map predictability, thus enhancing its utility
in disaster monitoring applications.

Figure 7d,e is ERAS hourly total precipitation data and the IMERG-Late precipitation from GPM
observations. The ERAS data, with a resolution nearly ten times greater than that of GK2A (25 km versus
2 km), primarily capture the general cloud patterns rather than providing detailed rainfall information.
This accumulated rainfall data show that heavy precipitation appeared in clouds near the central part of the
Korean Peninsula and Jeju Island. However, the detailed location and the pattern are not accurately
represented in this dataset. In contrast to the other datasets, the IMERG product exhibits limited or
negligible precipitation due to its reliance on low-earth-orbit satellites. These satellites have limitations in
observing precipitation systems only when they pass over them.

5. Summary and Conclusion

We utilized our DL-based disaster monitoring model, which combines WR-Net and GeorAln, to predict
rainfall in the case of Typhoon Hinnamnor using geostationary satellite images.

WR-Net is the video frame prediction network to generate future satellite images with optical flow and
refinement methods. GeorAln is a DL-based model to generate proxy radar reflectivity maps from VIS,
WYV, and IR images of GK2A, enabling the production of high-quality target products such as KMA radar
reflectivity. While GeorAln can generate accurate radar maps for input satellite images, it lacks the ability
to forecast future scenes. This limitation is crucial for accurate and extended forecasting in disaster
monitoring models.

To solve this issue, we incorporated the WR-Net results as the input data of the GerAIn model to predict
future heavy rainfall. The generated IR results with WR-Net had shown a high correlation coefficient of
over 0.8 at the future 3 hr and 0.75 at 5 hr with the results from GK2A original channels. Compared with
the rain rate from the KMA radar and other precipitation datasets, our predicted results show a
significantly similar pattern and location of clouds. Moreover, the heavy rainfall area (over 10 mm/hr)
is preserved in future frames. It means our model can predict the timing, location, and intensity of heavy
rainfall events.

We expect that further studies can improve cloud diminishing issues found in WR-Net and explore
cloud cell generation conditions based on underlying physics. In addition, research such as Kim et al.
(2019) can be used to generate images of VIS channels that are not available at night and use them for the
input of our model. In the GeorAln, we plan to apply conditional weighting functions to preserve
characteristics according to the region and precipitation type.
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Figure 7. Comparison of the KMA radar data and predicted results. (a) are the rain rate from the KMA
radar product, (b) from the GeorAIn model with GK2A channels, and (c) from the GeorAIn model with

GK2A and the WR-Net-predicted IR images. (d) is the hourly total precipitation from ERAS, and (e) is the
IMERG precipitation product. The color bar means rain rates (mm/hr).
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Our model has significant potential for utilization in disaster monitoring and forecasting heavy
precipitation. It enables us to generate radar reflectivity and rain rate products for regions where radar
data may be limited or unavailable. We expect that our results can help authorities set up impact-based and
accurate alerting systems. To utilize these results globally, we also plan to produce a global radar map with
this model by using other GEO satellites and adjusting the bias and local characteristics.
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