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Abstract

In this paper we prove a structure theorem for the class of AN-operators between separable, complex
Hilbert spaces which is similar to that of the singular value decomposition of a compact operator. Apart
from this, we show that a bounded operator isAN if and only if it is either compact or a sum of a compact
operator and scalar multiple of an isometry satisfying some condition. We obtain characterizations of
these operators as a consequence of this structure theorem and deduce several properties which are similar
to those of compact operators.

2010 Mathematics subject classification: primary 47A75; secondary 47A10.

Keywords and phrases: AN-operator, compact operator, isometry, minimum modulus.

1. Introduction

Carvajal and Neves [2] recently introduced a class of operators between Hilbert spaces,
which generalizes the space of all compact operators.

Let H1,H2 be separable, complex Hilbert spaces and T : H1 → H2 be a bounded
linear operator. Then T is said to be norm-attaining if there exists a x0 ∈ H1 with
‖x0‖ = 1 such that T = T x0. The operator T is said to be of class AN if T |M (the
restriction of T to M) is norm attaining for any nonzero closed subspace M of H1. The
class AN contains the class of compact operators and the class of isometries. Norm-
attaining operators have received much attention in the literature (for details, see [12]
and references therein). The authors in [2] characterized the norm-attaining operators
in terms of eigenvalues and extreme points of the numerical range and gave several
examples of operators which are in the classAN .

The spectral theorem for compact self-adjoint operators ensures that every such
operator is diagonalizable and has a representation in terms of eigenvalues and
corresponding eigenvectors. The nonzero spectrum of a compact self-adjoint operator
consists of eigenvalues only, with a possible limit point zero. Apart from these
operators, operators of the form compact plus identity also have similar properties. But
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the spectral theorem is not valid in this case. In this paper we discuss representations
of such operators as well as of a more general class of operators.

We prove that if T is an AN-operator between complex, separable Hilbert spaces
H1 and H2, then:

(1) T x =
∑∞

n=1 sn〈x, φn〉ψn for all x ∈ H1, where s j ( j ∈ N) is an eigenvalue of |T |
corresponding to the eigenvector φ j ∈ H1 and ψ j ∈ H2 is an orthonormal vector,
and the series above converges in the strong operator topology of B(H2). If (sn)
is infinite, then sn converges to m(T ), the minimum modulus of T .

(2) T ∈ AN if and only if either T is compact or T = K + αV , where α > 0, K is a
compact operator and V is an isometry such that K∗K + 2αRe(V∗K) is positive.

We also obtain some properties of these operators analogous to those of compact
operators and deduce several consequences.

This paper is organized as follows. In the rest of this section we introduce our
terminology and notation. Then we prove that every self-adjointAN-operator can be
represented as a compact self-adjoint operator, except that in our case the convergence
is in the strong operator topology. Using this representation theorem, we characterize
allAN-operators and obtain some important properties of these operators. Finally, we
illustrate our main results with examples.

1.1. Notations. Throughout the paper we consider infinite-dimensional separable,
complex Hilbert spaces which will be denoted by H,H1,H2, . . . . The inner product
and the induced norm are denoted by 〈, 〉 and || · || respectively. The unit sphere of
a closed subspace M of H is denoted by S M := {x ∈ M : x = 1}, and PM denotes the
orthogonal projection PM : H→ H with range M. If S is a subset of H, then the closed
linear span of S is denoted by [S ].

The space of all bounded (compact) operators between H1 and H2 is denoted by
B(H1,H2) (K(H1,H2)). If H1 = H2 = H, then B(H1,H2) and K(H1,H2) are denoted
by B(H) and K(H), respectively. The set of all norm-attaining operators between H1
and H2 is denoted byN(H1,H2) andN(H,H) byN(H). The adjoint of T ∈ B(H1,H2)
is denoted by T ∗. The null space and the range spaces of T are denoted by N(T ) and
R(T ), respectively.

If T ∈ B(H), then T = (T + T ∗)/2 + i ((T − T ∗)/2i). The operators Re(T ) :=
(T + T ∗)/2 and Im(T ) := (T − T ∗)/2i are self-adjoint and called the real and the
imaginary parts of T , respectively.

For a positive T ∈ B(H), the square root of T is denoted by T 1/2. For T ∈ B(H),
(T ∗T )1/2 is called the modulus of T and is denoted by |T |. The spectrum and the point
spectrum of T are denoted by σ(T ) and σp(T ), respectively. All these basic concepts
can be found in [4, 7, 8].

2. The classAN

In this section we prove a representation theorem for self-adjointAN-operators and
then extend it for generalAN-operators. The first one sharpens the result of Carvajal
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and Neves [2, Theorem 3.25] and the second one generalizes it. Using the second
result, we will show that every AN-operator can be written as a sum of a compact
operator and a scalar multiple of an isometry satisfying some condition. We also prove
the converse of this result. These two results combined give a characterization of all
AN-operators.

Recall that if T ∈ B(H1,H2), the quantity m(T ) := inf {‖T x‖ : x ∈ S H1} is called the
minimum modulus of T . We have the following proposition.

Proposition 2.1. Let T ∈ B(H) be normal. Then:

(1) m(T ) = d(0, σ(T ));
(2) m(T ) = m(T ∗);
(3) m(T n) = m(T )n for each n ∈ N;
(4) if T ≥ 0, then m(T ) = m(T 1/2)2.

Proof. The proof of (1) is given in [9, Theorem 4.4.7]. For the sake of completeness
we give the details here. We prove (1) in two cases.

Case 1. m(T ) = 0. In this case T is not bounded below. That is, T has no bounded
inverse. Thus 0 ∈ σ(T ), and consequently d(0, σ(T )) = 0.

Case 2. m(T ) > 0. In this case T has a bounded inverse and hence d(0, σ(T )) > 0.
Consider

d(0, σ(T )) = inf {|λ| : λ ∈ σ(T )}

=
1

sup {|µ| : µ ∈ σ(T−1)}

=
1
‖T−1‖

=
1

sup
{
‖T−1y‖
‖y‖ : 0 , y ∈ H

}
=

1

sup
{
‖x‖
‖T x‖ : 0 , x ∈ H

}
= inf

{
‖T x‖
‖x‖ : 0 , x ∈ H

}
= m(T ).

The proof of (2) follows from the fact that σ(T ∗) = {λ̄ : λ ∈ σ(T )} and (1). The proof
of (3) follows by the spectral mapping theorem and (1). �

Remark 2.2. Let T ∈ B(H). By using the fact that m(T ) = m(|T |), Proposition 2.1 and
the spectral mapping theorem, it can be proved easily that m(T ∗T ) = m(T )2.

Recall that T ∈ B(H1, H2) is called an AN-operator, if for any nonzero closed
subspace M of H1, T |M attains norm on the unit sphere of M. That is, there exists
an x0 ∈ S M such that ‖T |M‖ = ‖(T |M)(x0)‖.
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We denote the class of all AN-operators between H1 and H2 by AN(H1,H2) and
AN(H,H) byAN(H).

Theorem 2.3. Let T ∈ AN(H) be positive. Then:

(1) There exists a sequence of eigenvalues λ1, λ2, λ3, . . . of T with corresponding
orthonormal system of eigenvectors φ1, φ2, φ3, . . . such that λ1 ≥ λ2 ≥ λ3 ≥ · · ·

and

T x =

∞∑
n=1

λn〈x, φn〉φn for all x ∈ H. (2.1)

The above series converges in the strong operator topology of B(H). Moreover,
if λn is infinite, then λn → m(T ).

(2) Either T is compact or T = K + m(T )I for some positive compact operator K.

Proof. To prove the first part, we imitate the proof of the spectral theorem for compact
self-adjoint operators (see [6, Theorem 5.1, page 178] or [10, Theorem VII.4, page 62]
for details).

Let H1 := H and T1 := T . Then by [2, Proposition 2.3], there exist a λ1 ∈ R
+

and φ1 ∈ S H such that T1φ1 = λ1φ1 and λ1 = ‖T1‖. By the projection theorem,
H1 = [φ1] ⊕⊥ [φ1]⊥. Let H2 = [φ1]⊥. Note that H2 reduces T1. Let T2 := T1|H2 . The
fact that T1 ∈ AN(H) implies that T2 ∈ N(H2). Again, by [2, Proposition 2.3], there
exists a λ2 ∈ R

+ and φ2 ∈ S H2 such that T2φ2 = λ2φ2 and λ2 = ‖T2| ≤ |T1‖ = λ1. Clearly
φ1⊥φ2. Now, let H3 := [φ1, φ2]⊥ and T3 := T |H3 . If T3 = 0, then there is nothing to
prove. Otherwise, H3 reduces T . Again, by [2, Proposition 2.3], there exist a λ3 ∈ R

+

and φ3 ∈ S H3 such that T3φ3 = λ3φ3, λ3 = ‖T3‖ ≤ λ2 ≤ λ1. By construction, φ3⊥φ j,
j = 1, 2.

Proceeding in this manner, either after some stage n, Tn = 0, or there exist a
sequence λn ∈ R

+ and corresponding vectors φn ∈ S Hn such that Tnφn = λnφn and
λn ≥ λn+1 for all n ∈ N. Here we describe these two cases.

Case 1. Tn = 0 for some n. If Tn = 0 and Tn−1 , 0, then Hn ⊆ N(T ). That is,
N(T )⊥ ⊆ H⊥n = span{φ1, φ2, . . . , φn−1}. Since, each φ j ∈ N(T )⊥, it follows that N(T )⊥ =

H⊥n . Hence R(T ) = span{φ1, φ2, . . . , φn−1}. Hence for every x ∈ H, we have T x =∑n−1
j=1 λ j〈x, φ j〉φ j.

Case 2. Tn , 0 for all n ∈ N. As λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ m(T ), λn → α for some α ∈ σ(T )
and α ≥ m(T ).

Let G = span{φn : n ∈ N}. If y ∈ G, then y =
∑∞

n=1〈y, φn〉φn. By the continuity of T ,
we get Ty =

∑∞
n=1 λn〈y, φn〉φn.

Now, let x ∈ H. Write yn = x −
∑n−1

j=1〈x, φ j〉φ j. Then yn ∈ Hn and ‖yn‖ ≤ ‖x‖. Also,

‖(T − αI)(yn)‖ ≤ ‖(T − αI)|Hn‖ ‖yn‖ ≤ ‖Tn − αIn‖ ‖x‖, (2.2)

where In : Hn → Hn is the identity operator. Next, we show that ‖Tn − αIn‖ = λn − α
for each n ∈ N. By construction, ‖Tn‖ = λn for each n ∈ N. Hence by the triangle
inequality,

|λn − α| = ‖λn| − α| = | ‖Tn‖ − ‖αIn‖ | ≤ ‖Tn − αIn‖.
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On the other hand, as Tn is self-adjoint for each n ∈ N, we have that Tn ≤ ‖Tn‖In = λnIn

and Tn − αIn ≤ (λn − α)In. Hence ‖Tn − αIn‖ ≤ |λn − α|. By Equation (2.2), we can
conclude that (T − αI)(yn)→ 0 as n→∞. Hence

(T − αI)x =

∞∑
n=1

(λn − α)〈x, φn〉φn, for each x ∈ H. (2.3)

By the converse of the spectral theorem for compact self-adjoint operators [6, Theorem
6.2, page 181], it follows that T − αI is compact. Let K := T − αI. Clearly, K = K∗

and σ(K) = {λn − α} ∪ {0}. Hence K ≥ 0. If α = 0, then T = K.
Next, assume that α > 0. In this case, T = K + αI > αI. This shows that T−1 ∈ B(H)

and, by Proposition 2.1, we have m(T ) = d(0, σ(T )) = α.
As {φn : n ∈ N} is an orthonormal basis for H, by Equation (2.3)), we have

T x =

∞∑
n=1

λn〈x, φn〉φn for all x ∈ H. �

Remark 2.4.

(1) Let T ∈ AN(H) be positive. Then T is compact if and only if m(T ) = 0.
(2) Let P : H → H be an orthogonal projection and P , I. Then P ∈ AN(H) if and

only if P is a finite-rank operator.
(3) The eigenspace corresponding to each λn , m(T ) is a reducing subspace for T .
(4) By the proof of Theorem 2.3, it follows that ‖T‖ = λ1 and ‖K‖ = ‖T‖ − m(T ).

Hence if ‖T‖ = m(T ), that is, T is an isometry, then K = 0.
(5) If T ∈ AN(H) be positive and bounded below, then H consists of a system of

eigenvectors which form an orthonormal basis.
(6) Since K is compact, each λn − m(T ) ∈ σp(K) is repeated finitely many times

provided λn − m(T ) , 0. This is true if and only if λn (λn , m(T )) is repeated
finitely many times.

Using (2) of Theorem 2.3 and properties of compact operators, we can prove the
following theorem.

Theorem 2.5. Let T ∈ AN(H) be positive. Then:

(1) eigenspaces of T corresponding to λ j ∈ σ(T ) \ {m(T )} are finite-dimensional;
(2) R(T − λ jI) is closed for each λ j ∈ σ(T ) \ {m(T )}.

Proof. If m(T ) = 0, then T = K and all the above statements are well known for
a compact operator. If m(T ) > 0, then T being self-adjoint, it is invertible. In
this case, by Theorem 2.3, we have T = K + m(T )I. Now the statements follow
by the corresponding statements for self-adjoint compact operators and the fact that
σ(K + m(T )I) = {µ + m(T ) : µ ∈ σ(K)}. �

Next, we would like to obtain a representation of a self-adjoint AN-operator as in
Equation (2.1). For this purpose we need the following results.
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Theorem 2.6 [2, Theorem 3.22]. Let K ∈ K(H) be positive. Then K + I ∈ AN(H).

Theorem 2.7. Let T ∈ B(H) be positive. Then T ∈ AN(H)⇔ T 1/2 ∈ AN(H).

Proof. If T ∈ AN(H), then by Theorem 2.3,

T x =

∞∑
n=1

λn〈x, φn〉φn, for all x ∈ H,

where {λn}, {φn} are as in Theorem 2.3. Consequently,

T 1/2x =

∞∑
n=1

λ1/2
n 〈x, φn〉φn, for all x ∈ H,

and if (λn) is infinite, then λ1/2
n → m(T 1/2).

If m(T ) = 0, then T is compact and hence T 1/2 is compact.
If m(T ) > 0, then T 1/2 = K + m(T

1
2 )I, where

Kx =

∞∑
n=1

(λ1/2
n − m(T 1/2)〈x, φn〉φn, for all x ∈ H.

Note that K ≥ 0. Hence by Theorem 2.6, T 1/2 ∈ AN(H). The reverse implication
follows along similar lines. �

As a consequence of the above theorem, we prove the following characterization of
AN-operators.

Theorem 2.8. Let T ∈ B(H1,H2). Then T ∈ AN(H1,H2) if and only if T ∗T ∈ AN(H1).

Proof. We know that T ∈ AN(H1,H2) if and only if |T | ∈ AN(H1). This is true if and
only if T ∗T = |T |2 ∈ AN(H1) by Theorem 2.7. �

Theorem 2.9. Let T = T ∗ ∈ AN(H). Then:

(1) There exists a sequence of eigenvalues λ1, λ2, λ3, . . . of T with corresponding
orthonormal set of eigenvectors φ1, φ2, φ3, . . . such that |λ1| ≥ |λ2| ≥ |λ3| ≥ · · ·

and

T x =

∞∑
n=1

λn〈x, φn〉φn for all x ∈ H.

The above series converges in the strong operator topology of B(H). Moreover,
if λn is infinite, then |λn| → m(T ).

(2) σ(T ) = {λn} ∪ {m(T )}.

Proof. We begin by proving (1). Following the proof of Theorem 2.3, we get a
sequence of real numbers (λn) such that |λn+1| ≤ |λn| with |λn| = ‖Tn‖, and vectors φn

such that Tnφn = Tφn = λnφn. Either (λn) is finite, or if (λn) is infinite, then |λn| → β.
If β = 0, the proof is same as that of case (1) in Theorem 2.3.
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Let β > 0. The operator S = T 2 is positive and S ∈ AN(H), by Theorem 2.8. By
Theorem 2.3, we have S x =

∑∞
n=1 λ

2
n〈x, φn〉φn, where λ2

n is an eigenvalue of S and φn
is the corresponding eigenvector. Also m(S ) = m(T )2 = β2. Hence m(T ) = β. Since
T = T ∗, we can conclude that T−1 ∈ B(H). Also T−1φn = 1

λn
φn. Thus for each x ∈ H,

T x = T−1S x =

∞∑
n=1

λ2
n〈x, φn〉T−1φn =

∞∑
n=1

λn〈x, φn〉φn.

The proof of part (2) follows by the above representation (1) and the proof of
Theorem 2.3. �

Remark 2.10. Theorem 2.9 is not valid for normal AN-operators. For example, the
bilateral shift on `2(Z) is unitary, which is an AN-operator, but it does not have
representation as in (1) of Theorem 2.9. Also the spectrum of this operator is the
unit circle and the point spectrum is empty. Hence statement (2) of Theorem 2.9 is not
valid in this case.

Now by dropping the positivity of the operator we can obtain the above results for
anyAN-operator as follows.

Theorem 2.11. Let T ∈ AN(H1,H2) and T = V |T | be the polar decomposition of T .
Then the following statements are true.

(1) There exist orthonormal sets {φ j}
∞
j=1 ⊆ H1, {ψ j}

∞
j=1 ⊆ H2 where φ j is an

eigenvector of |T | corresponding to the eigenvalue s j of |T | and ψ j = Vφ j, j ∈ N,
such that

T x =

∞∑
n=1

sn〈x, φn〉ψn for all x ∈ H.

The above series converges in the strong operator topology of B(H). Moreover,
if sn is infinite, then sn → m(T ).

(2) Either T is compact or T = K + m(T )V, where V is an isometry and K ∈
K(H1,H2).

Proof. As ‖|T |x‖ = ‖T x‖ for all x ∈ H1, |T | ∈ AN(H1). By Theorem 2.3, we have that
either |T | is compact or |T | = K1 + m(T )I where K1 is a positive compact operator.
Now by the polar decomposition of T and the fact that m(T ) = m(|T |), we have
T = K + m(T )V , where K = VK1 ∈ K(H1,H2). �

Corollary 2.12. Let T ∈ AN(H1,H2). If rank of T is not finite, then either R(T ) is
not closed or T is bounded below.

Proof. The corollary follows by Theorem 2.11. �

Note that in Theorem 2.11, the operators K and V satisfy the condition

K∗K + 2m(T ) Re(V∗K) ≥ 0. (2.4)

Next we prove the converse of Theorem 2.11.
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Theorem 2.13. Let K ∈ K(H), V be an isometry and α ≥ 0 satisfying the condition

K∗K + 2αRe(V∗K) ≥ 0. (2.5)

Let T := K + αV. Then:

(1) m(T ) = α; and
(2) T ∈ AN(H).

Proof. We have

|T |2 = T ∗T = K∗K + αK∗V + αV∗K + α2I = K1 + α2I,

where K1 = K∗K + 2αRe(V∗K). By the hypothesis, K1 ≥ 0, and by Proposition 2.1 we
have

m(T )2 = m(|T |)2 = m(T ∗T ) = d(0, σ(K1 + α2I)) = α2.

Hence m(T ) = α. Here we used the fact that 0 ∈ σ(K1).
Now by Theorem 2.3, |T |2 ∈ AN(H) and by Theorem 2.7, |T | ∈ AN(H). Hence

T ∈ AN(H). �

Remark 2.14.

(1) Let K be a one-to-one compact operator with the polar decomposition K = V |K|.
Then V is an isometry and satisfies the hypothesis of Theorem 2.13. Hence
K + V ∈ AN(H).

(2) Let K be a compact operator and V be a unitary such that V∗K ≥ 0. If T =

K + αV(α ≥ 0), then |K| = V∗K and in this case T = V |T |. Condition (2.5) is
satisfied and hence T ∈ AN(H).

By the converse of the spectral theorem for compact self-adjoint operators and
Theorem 2.13 we can prove the following result.

Corollary 2.15. Let (λn) be a sequence of real numbers such that limn→∞ λn = λ and
{φn : n ∈ N} be an orthonormal set in H. Define T : H → H by

T x =

∞∑
n=1

λn〈x, φn〉φn, for all x ∈ H. (2.6)

Then T = T ∗,T ∈ AN(H) and m(T ) = |λ|.

Example 2.16. Let T : `2 → `2 be given by Ten = n+1
n en+1, n ∈ N. Let Ren = en+1,

the right shift operator on `2 and Den = 1
n en, n ∈ N. Then T = RD + R = R(D + I) ∈

AN(`2) by [2, Proposition 3.22 and Proposition 3.2]. This can also be seen from
Theorem 2.13.

Remark 2.17. Condition (2.5) cannot be dropped in Theorem 2.13. To see this,
consider the operator D in Example 2.16. The operator T = D − I < N(`2). If
T ∈ N(`2), then ‖T‖ = 1 or −‖T‖ = −1 should be an eigenvalue of T by [2, Proposition
2.3], which is not true. Note that m(T ) = 0, condition (2.5) is not satisfied in this case
and the conclusion of the theorem fails.
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If T is normal, then |T | = |T ∗|. Hence T ∈ AN(H) if and only if T ∗ ∈ AN(H).

Proposition 2.18. Let (λn) be a sequence of complex numbers such that |λ1| ≥ |λ2| ≥

|λ3| ≥ · · · and |λn| → α. Define the multiplication operator M : `2 → `2 by

M((xn)) = (λnxn) for all (xn) ∈ `2.

Then m(M) = α and M ∈ AN(`2).

Proof. It suffices to show that |M| ∈ AN(`2). We have |M|(xn) = (|λn|xn) for all
(xn) ∈ `2. Then (|M| − αI) = (|λn| − α)I. Since |λn| → α, it follows that (|M| − αI) =: K,
where K is a positive, compact operator. Hence by Theorem 2.13, m(|M|) = α and
|M| ∈ AN(`2). �

Corollary 2.19. Let T ∈ B(H). Then T ∈ AN(H) if and only if limn→∞〈|T |en, en〉 =

m(T ) for every orthonormal basis {en}
∞
n=1 of H.

Proof. If T is compact then |T | is compact and the result is well known. If T =

K + m(T )V , where V is an isometry such T = V |T |, then V∗T = |T | = V∗K + m(T )I.
Since V∗K is compact, we have 〈(|T | − m(T )I)en, en〉 → 0 as n→∞, and the result
follows by [1, 5]. For a similar reason the converse also holds. �

Proposition 2.20. Let T ∈ AN(H) be such that T ∗ ∈ AN(H). If T is not a finite-rank
operator, then either R(T ) is not closed or T−1 ∈ B(H) .

Proof. Assume that T ∈ AN(H). If T ∈ K(H), then R(T ) is not closed. If T is
not compact, then T = K + m(T )V , where K and V are as in Theorem 2.11. As
T ∗ = K∗ + m(T )V∗ and by the hypothesis, T ∗ ∈ AN(H), we must have V∗ an isometry,
KK∗ + 2m(T )Re(VK∗) ≥ 0 and m(T ∗) = m(T ) by Theorem 2.13. That is both T and
T ∗ are bounded below and hence T−1 ∈ B(H). �

Definition 2.21 [3, page 349]. Let T ∈ B(H1,H2). Then T is called left semi-Fredholm
if there exist a B ∈ B(H2,H1) and K ∈ K(H1) such that BT = K + I, and right semi-
Fredholm if there exist a A ∈ B(H2,H1) and K′ ∈ K(H2) such that T A = K′ + I. If T
is both left semi-Fredholm and right semi-Fredholm, then T is called Fredholm.

Remark 2.22. Note that T is left semi-Fredholm if and only if T ∗ is right semi-
Fredholm (see [3, Section 2, page 349] for details).

Corollary 2.23. Let T ∈ AN(H) be bounded below. Then T is left semi-Fredholm.

Proof. Let T = K + m(T )V as in Theorem 2.11. Then S T = K1 + I, where K1 = V∗K
m(T )

and S = V∗
m(T ) . Hence T is left semi-Fredholm. �
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