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Abstract. In a recent paper, Bechtell obtained detailed structure theorems for finite super-
soluble groups with the property that every minimal supplement for a non-Frattini normal
subgroup is a complement. We consider finite soluble groups with this property. The situation
is rather different to the supersoluble case, and the information we obtain is not as complete,
though for such groups with non-trivial Frattini subgroup, some of the results are analogous.

1. Introduction

In a recent paper, Bechtell [1] studies finite supersoluble groups G with the
properties:

& : if JV is a normal subgroup of G not in the Frattini subgroup <I>G of G,
then N is complemented in G,

3P* : if JV is a normal subgroup of G not in <J>G, then every minimal sup-
plement for JV in G is a complement.

He finds detailed structure theorems for such groups, the interesting case
for supersoluble groups being groups with non-trivial Frattini subgroups. In the
present paper, we shall be mainly concerned with finite soluble ^ * groups—not
necessarily supersoluble ones (and from now on all groups will be assumed to be
finite and soluble). The situation here is quite different to the supersoluble case,
and few of Bechtell's results go over, though there are some analogues for the
case of non-trivial Frattini subgroup.

A well known result of Gaschiitz([5] Satz 8) is that in a group with elementary
abelian Sylow subgroups every normal subgroup has a complement: it follows easily
that such a group is a &* group. The converse of this theorem is false: witness S4.
However, S4 is not a @>* group, and one is tempted to conjecture that being £P*
and <D-free ensures elementary abelian Sylow subgroups. We shall show that this is
indeed so for groups of nilpotent length three, and give an example (of nilpotent
length four) to show that it is not true in general. Side by side with this example,
we construct another group which is not a £P* group, but is similar enough in
structure to make it seem unlikely that an easily applicable structure theorem can
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be found which will be fine enough to distinguish between these two groups. We
can obtain a structure theorem which places some limitations on the stucture
of certain Sylow subgroups, and it turns out to be quite useful.

It is known (Christensen [3]) that the class of <&-free S1 groups is a formation.
The same is not true for the class of O-free 3P* groups, and we show that this
class is not even direct product closed. One might then ask whether the formation
generated by a 9>-free 8?* group consists of ^ * groups: the answer is again no
but it is somewhat harder to settle: the example is fairly complicated, and we
shall not write it down. We shall prove however that if H has elementary abelian
Sylow subgroups, and G is a <D>-free 8P* group with elementary abelian Sylow
p-subgroups for those primes p dividing the order of H, then G x H is a 0>*
group.

Finally, we consider ^ * groups with non-trivial Frattini subgroup. Here we
can obtain a certain amount of information on the Fitting subgroup, the most
general result being for a SP* group G, with 3>G ^ 1, F(G) /<tG has at most two
irreducible components.

2. Notation and Preliminaries

For a group G, $Gdenotes the Frattini subgroupof G, and F(G) the Fitting
subgroup of G. If <J>G = 1, we say G is <$>-free. We shall use, often without com-
ment, a number of facts about the Frattini and Fitting subgroups and the relation
between them, and so we assume familiarity with the results of Gaschiitz [6].
Notation is usually standard, or explained as it is introduced.

If n is a set of primes, then for a group G, Gnwill denote a Hall n-subgroup
of G, and SK the class of n-groupswith elementary abelian Sylow subgroups. We
shall need the following result:

2.1 If G is a group with Gn eSn, and N is a normal n-subgroup of G, then
N is complemented in G.

This result is easily deduced from Gaschiitz [5] Reduktionssatz 2.
We shall need several elementary facts about 0> groups and ^"* groups,

and we list them (without proof) below. The proofs of those for which no reference
is given are easy.

2.2 Each homomorphic image of a group Ge^(or^*) has property 3P
(or

2.3 If Ge0>, and N is normal subgroup of G, then either N ^ 3>G, or
<t>G<N.

2.4 If'GeSP, and 4>G # 1, F(G) is a p-group for some prime p.

2.5 If GeSP, and Z(G) is the centre of G, then
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(i) Z(G) <; <5G, or
(ii) G = H x Z(G), where Z(H) = <&H = 1.

2.6 If Ge&, then either Z(F(G)) ^ <S?G or F(G) is abelian.

2.7 / / G e ^ , O G = 1, and N is a normal subgroup of G, then ^(G/N) = 1.

2.8 (Christensen [2] Theorem 3.5) / / G E # , <5G = 1, and N is a normal
subgroup of G, then N e&.

It is often convenient to regard chief factors and elementary abelian normal
subgroups of a group as modules for the group: we shall do so without comment
whenever it seems convenient.

3. Two examples

In this section we construct two very similiar groups, one of which is a 3P*
group, the other not.

Both groups have a common start to their construction. We begin with S3,
which we take to be generated by elements a, b with a2 = b3 = 1. S3 has a faithful
irreducible representation of degree two over GF(7): letM be a module affording
this representation. The following facts about Mare easily deduced: M is induced
from a one-dimensional faithful module for <fr>over GF(7) (use e.g. Blichfeldt's
Theorem [4] 50.7), and M<a> is the regular representation of <a> (use e.g. the
Mackey Subgroup Theorem [4] 44.2). Thus we can choose generators u,v forM
such that u" = u, v" = iT1. Now let H be the splitting extension of M by S3,
and note that M is then the unique minimal normal subgroup of H.

We now construct two different faithful irreducible modules for H over GF(3),
l/j and U2, such that UtH is &* and U2H is not 0>*. Both are induced from
modules for M(a}. Let Vt be an irreducible module over GF(3) for M<a> with
kernel <u,a>, and V2 an irreducible module over GF(3) for M(a} with kernel
<y>. It is easy to check that V\ and V2 have dimension six. Put Vx = Vf,
U2 = V". Then we claim that V\ and V2 are faithful irreducible modules for H.
That they are faithful is clear. To see that they are irreducible, observe that if
W is a faithful irreducible module for H over GF(3), and K an algebraically closed
field of characteristic 3, we have WK = £,"= i W', where the Wl are all faithful
and absolutely irreducible of the same dimension, and n ^ 6 (from [4] 70.15).
Also, a athful irreducible module for H over an algebraically closed field has
dimension at least 3 (this comes from applying Clifford's Theorem [4] 49.2 to
WM<b> and then Blichfeldt's Theorem to an irreducible component of W^^).
It follows that W has dimension at least 18, and then since H has a unique
minimal normal subgroup and Uu U2 have dimension 18, that U1 and U2 are
irreducible.
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Using the Mackey subgroup Theorem, we get U1Sl and U2S} are both direct
sums of principal indecomposable modules for S3 over GF(3), and that for UlS3

they are all isomorphic to Pu and for U2S3 they are all isomorphic to P2. Here
Pj is the principal indecomposable for S3 over GF(3) whose socle is the trivial
module for S3, and P2 the principal indecomposable whose socle is a non-trivial
module for S3.

Now put Gt = UtH, and G2 = U2H. Then we claim that Gj is a &* group.
Consider them separately.

1) The non-trivial normal subgroups of Gt are Ut, UtM, U^M^by. Clearly
for Ul, U\M(by any minimal supplement is a complement. So we are left with
L/jAf. It is also easy to see that any minimal supplement for UtM, L say, has
order prime to 7. Hence (replacing L by a conjugate if necessary) we may assume
that L is a subgroup of C/iS3, and that aeL. The Sylow 3-subgroup S of L is
normal in L and is a subgroup of l/t<b>. Consider S/<5S: as an <a>-module, it
is completely reducible, say S/0>S = X , / $ S x - x Knj(^S. Now not all Kt can
lie in V1: suppose X, is not contained in U1. Then K^^a} is a supplement for
UlM and hence L = K^a}. Thus the Sylow 3-subgroup of L is cyclic, and so L
is isomorphic to either S3 or D1S, the dihedral group of order 18. But in U^by,
all third powers are acted on trivially by a, since third powers lie in the socle of
U1Sy Hence L cannot be Z>18, and so L = S3, giving that L is a complement for

2) We shall find a minimal supplement for U2M in G2 which is not a comple-
ment. For this, it is enough to show that P2S3 contains a subgroup isomorphic
to D18. To do this, observe that we can choose a basis for P2, x, y, z, such that

xb =

y° =

Now the claim is that w = bxy ~x has order 9 and is inverted by a: this is
just a matter of checking. We then have (w,ay ^ Di8.

Observe that the subgroup U^M^by of Gt is a normal subgroup of nilpotent
length three, and has non-abelian Sylow 3-subgroup, and hence is not a ^*
group by Theorem 4.6. The class of <t>-free 3?* groups is therefore not normal
subgroup closed; cf. 2.8.

4, Structure Theorems

In this section, we shall attemt to shed some light on the structure of Sylow
subgroups of 5>-free Sfi* groups. Although we are mainly interested in 0>* groups,
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the crucial lemma of this section is a result about Sf groups, and yields some
information about the structure of Sylow subgroups in O-free SP groups as well as
<J>-free 0>* groups.

LEMMA 4.1. Let G be a <&-free 8? group, MjN a p chief factor of G, U a
normal subgroup of G, of index p, containing the centraliser of M jN in
G. Then there is an element yeG with y of order p2 and y $U.

PROOF. This is a fairly standard Hall Higman type argument: we merely
sketch it.

Suppose the lemma is false: let G be a minimal counterexample. It is easy
to see that G has a unique minimal normal subgroup M, with p dividing the order
of M, that a complement C for M in G acts faithfully and irreducibly on M, and
that there is a normal subgroup V of C of index p, U = MV. If X is a complement
for V in C, let X = <x>. Since C is O-free aC = F(C), and so x cannot centralise
the whole of aC: in particular, there is a minimal normal subgroup N of C such
that [JV, x] ^ 1. Since the order of N is prime to p, there is a subgroup No of N
on which X acts faithfully and irreducibly : put D = N0X. Consider MD. Since
D acts faithfully on MD, there is a composition factor W on which D acts faith-
fully and irreducibly. Let K be an algebraically closed field of characteristic p.
Using [4] 70.15 and Blichfeldt's Theorem, we get thet W^ contains the regular
module for X, and hence so does Wx, and then Mx. But than MX contains an
element of order p2, y say. Then y is an element of order p2 not in U = MV,
contradicting the choice of G.

COROLLARY 4.2 Let G be a <&-free 8P group, and suppose that a Sylow p-
subgroup of G has exponent p. Then the Sylow p-subgroups are elementary
abelian.

PROOF. By induction on the order of G. Clearly true if | GJ = 1 , so suppose
true for all O-free & groups of order less than J G j . If either G has a normal sub-
group of order prime to p or a normal subgroup of index prime to p, invoke 2.2
or 2.8 to obtain the result. If G is abelian there is nothing to prove. Thus aG
= F(G) is a p-group, and there is a non-central minimal normal subgroup N. If
U is a maximal normal subgroup of G containing the centraliser in G of N, U has
index p, and we can apply Lemma 4.1 to deduce that G has elements of order
p2, a contradiction.

COROLLARY 4.3 Let G, U, be as in the theorem. Then G is not a &* group.

PROOF. Put Y = <y>. Then Y is a minimal supplement for U which is not
a complement.

The next result is our main structural result for O-free 8P* groups.
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THEOREM 4.4 Let G be a <5>-free 0>* group, and U a normal subgroup of G
of index p. Then the Sylow p-subgroups of G are elementary abelian.

PROOF. Suppose the result is false, and let G be a minimal counterexample.
The minimality of G gives immediately that aG is a p-group, and it then follows
from Lemma 4.1 that G has no normal subgroups of index p containing aG. Thus
G = aG- U. Let V be a normal complement for aG n U in aG: then G = U x V,
and | V | = p. Now U cannot have elementary abelian Sylow subgroups, and so
by Corollary 4.2, U contains an element x of order p2. If V = (v}, hen <wc> is a
minimal supplement for U which is not a complement, a contradiction.

COROLLARY 4.5 3P* is not direct product closed.

PROOF. Consider the group G1 of §3, and let C3 be the cyclic group of order 3.
By Theorem 4.4, Gt x C3 is not a ^ * group, though Gx and C3 are.

THEOREM 4.6. Let G be a <5>-free 0>* group, and suppose that G has nilpotent
length 3: then G has elementary abelian Sylow subgroups.

PROOF. Again, suppose that the result is false, and let G be a minimal counter-
example, and let p be a prime for which G has a non-abelian Sylow p-subgroup.
Then aG = F(G) is a p-group, and F(G/<xG) = F2 jaG is a p'-group. But then
G IF2 is nilpotent, and since a Sylow p-subgroup of G was assumed non-abelian, p
divides | G/.F2|, whence G has a normal subgroup of index p, contradicting
Theorem 4.4.

5. Direct Products

We have seen that the direct product of two 3> -free 2P* groups need not be a
SP* group. The best we have been able to do in this direction is the following
theorem.

THEOREM 5.1. Let G be a <P-free ^* group, n a set of primes such that
GneSn, and H e SK. Then G x H is a SP* group.

PROOF. Put D = G x H. We work by induction on the order of D. Let 1 # N
be a normal subgroup of D, and S a minimal supplement for N in D, that is,
NS = D, S C\N ^ $ S. Suppose that N n S # 1.

We first show HnN=HnS=l. Observe that H n JV is normal in D, and
S(H nN)l(H OJV) is a minimal supplement for N/{H r>N) in D/(// HJV). If
H O JV =£ 1, we conclude by induction that S r>N ^ H r*N. But then SO JV is
a normal 7r-subgroup of S, and so by 2.1 has a complement Co in S. Co is then a
complement for JV in D, giving S = Co, contradicting S n JV ̂  1. Hence H f~\N
= 1. If if n S # 1, then # O S is normal in D, and, by induction, there is a
complement CJiSCiH) in D/(Sr\H) for JV(S n H) /(S O //) (with Cx ^ S).
But then NC1 = D, and
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Hence S = Cu again a contradiction, and so S n H = 1 also.
Next note that N n G # 1. For, it not, N is a re-group, and 2.1 gives us a

contradiction again. Also, arguing as in the previous paragraph, if M is a minimal
normal subgroup of G, M ^ N (~\G, then S C\N ^ M. Then, using 2.1 again,
S O N is a p-group for some prime p not in n.

Let c be the projection of D onto G. Since No So = G, and G e^>*, there is
a subgroup C of S such that Co is a complement for 2V<7 in G (observe that c is
a monomorphism on S and N.) Let B be the normal subgroup of S denned by
Bo = No n So: then C is a complement for B in S. Since (S O JV)a = S C\N,
we have

giving B n iV = S nJV. Further, B <~\N = B^,, where 7t' is the set of primes not
in n. This comes from the fact that Br = i^-cr ^ JVcr, whence .6^ ^ N, and on
the other hand BC\N = S O N ^ £„,.

Now the usual Frattini argument, with S acting on the conjugates of Bo, a
complement of S O iV in B, gives

But S O AT ^ $ 5 , and so S = NS(BO), giving S = B0C. Then S O JV = 1, a contra-
diction.

6. &* groups with non-trivial Frattini subgroup

Recall that if G is a finite soluble group, F(G) properly contains OG, and
F(G) /$G is completely reducible as a module for G, and also if G is a 0* group
with <t>G # 1, F(G) is a p-group for some prime p. We start by proving

THEOREM 6.1. Let G be a 3P* group with Q>G ^ 1. Then F(G)j<bG has at
most two irreducible components, and ifF(G) is abelian,F(G)/4>G is irreducible.

PROOF. Since G e £?*, F(G) has a complement, C say, in G. Suppose that

F(G)l<i>G = Tj/OG x T2/<J>G x

is a decomposition of F(G)j<bG, with each Tf # <£>G, i = 1,2,3. Then T; is a non-
Frattini normal subgroup of G, and Tj-T^C (i,j, k distinct) is a supplement for
Tj, and so contains a complement ^ f for Tt in G, i = 1,2,3. Since

it follows that Xt C\ F(G) = Uu x Ulk, and JCf o F(G) has a complement Dt in Xf

which normalises UtJ and [/ijb and T; = Uu<bG, I =j,k. Note also that Uu, Uik

are elementary abelian and Dt is a complement for f (G) in G.
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Consider first the case in which <f>G is central in F(G). Then each Tt is abelian,
[Uij, uik] = 1> a n d h e n c e 1TJ> Tk] = 1- It follows that F(G) is abelian. Since each
Uij admits some complement (viz. D,) of F(G) in G, it admits C, and hence
U2i

 x U12 x U13 is normal in G,

(U21 x U12 x U13)C = G

(since it generates G modulo <DG), and

F(G) = U21 x U12 x U13.

But then F(G) is a direct sum of completely reducible modules and so is completely
reducible. Thus <SG = 1, a contradiction.

If <DG is not central in F(G), put JV = [F(G),®G], and consider G/N. Since
iV<<J>G

4>(G/N) = <»G/./V# 1, F(G/N) = F(G)IN,

and we are in the same situation as in the last paragraph.
If F(G) is abelian, we assume a decomposition

F(G)I$G = TJQG x T2l®G,

and proceed much as above.
For G e SP* with OG # 1, we can say a little more about the structure of

F(G), mainly for the case F(G)/<DG reducible. If G e^21*, <DG J= 1, and F(G)/O(G)
is reducible, we have, as in the proof of Theorem 6.1, that there exist elementary
abelian p-subgroups of F(G), UUU2, such that

is irreducible, i = 1,2, and

L/1t/2<DG =

THEOREM 6.2. Wif/i G as above, we may choose the Ul and U2 to be nor-
malised by the same complement C ofF(G) in G. Further, <fr(F(G)) = 0>G = F(G)'.

PRGOF. The proof separates into two cases, depending on whether one or
none of Ult U2 is a trivial G/F(G)-module

i) Suppose that U2 is a trivial G /ir(G)-module. Then G /<&G is a <t-free &*
group, and has a quotient group of order p. Hence the Sylow p-subgroup of
Gj<5>G is elementary abelian (Theorem 4.4), and we deduce that F(G)l<bG is
the Sylow p-subgroup of G /3>G, and hence F(G) is the Sylow p-subgroup of G.
Now, as in the proof of Theorem 6.1, we see that there are complements Cx and
C2 of F(G) in G normalising L/t and U2 respectively. By the Schur-Zassenhaus
Theorem, they are conjugate: say Ct = C2, g eG. Then Uu UB

2 both admit Clt

and have the same properties as Uu U2.
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For this case, it is clear that ®(F(G)) = 3>G = F(G)'.
ii) Hence we may suppose that both L/j and U2 are nontrivial. Let C be a

complement for F(G) which normalises Ut: we will show that we can choose an
elementary abelian p-subgroup of F(G) which complements U^G in F(G), and
is normalised by C. We proceed by induction on the class of F(G). By 2.6 we have
Z(F(G)) = N ^ 0>G. Consider G/JV: if the class of F(G) = 2, O(G/JV) = 1, and
there is a complement V /N for U^G/N in F(G)/N which is normalised by
CN /N: if the class of F(G) is greater than 2, then by the induction hypothesis,
there is a complement V jN for U^GjN in F(G)/N normalised by CN IN.
Consider VC: this is a supplement for U^G in G, and hence contains a comple-
ment, the compelment having the form U2D, where U2 is a complement for
U^G in F(G), and D is a complement for F(G) in G,U2nD = 1. Now U2 S V,
N ^ V, [C/2,N] = 1, and V= U2N, giving V abelian. It follows that U2 is
normalised by C, and l / j , [/2,C satisfy the requirement of the Theorem.

Next observe that Ut[UuU2'] is a non-Frattini normal subgroup, i = 1,2,
and hence 0>G g l /^ t / i , l/2] (by 2.3). But

tf i[tfi, f 2 ] n l/aCl/x, t /2] = [ U L l / 2 ] ,
and so we have

0>(F(G)) ^ 0>G ̂  [t7lf L/2] ^ F(G)' ^ *(F(Gf)),

and hence <D(F(G)) = <DG = F(G)'.
If, in the set up of Theorem 6.2, F(G) has class c, form the 9tc-product F*

of [/i and C72, and, letting C act on F* in the natural way, form the split extension
F*C = G*. Clearly G is a homomorphic image of G*, and one might hope that
a G* formed with appropriate XJ1,U2,C is a ^ * group. This is not in general
true, and it is not difficult to find examples.

As an example, let V be the elementary abelian group of order 4, acted on
non-trivially by C3 (the cyclic group of order 3), and C2, acted on trivially by C3.
Let F be the free 9t2-product of V and C2, and G = FC3 then (®F, V, C3> = N
is a normal subgroup of index 2 in G and there are elements of order 4 not in JV,
whence G is not a 0P* group. This example is not atypical of the situation when
one of t/j and U2 is trivial: we can show that F(G) cannot be a 2-group, or more
generally, if f(G) is a p-group of class p, it must have exponent p. It is for this
case that the analogy with Bechtell's results is closest.

Finally, if F(G)/<I)G is irreducible, we can say nothing more in general:
however, we can prove

THEOREM 6.3. Let G be a group with the following properties:
(i) G/^G is a 0>* group
(ii) F(G) is a p-groupfor some prime p, and F(G)I$>G is irreducible, and

| |
Then G is a 8P* group.
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PROOF. From (iii) we deduce <&(F(G)) = <E>G: from (ii) that G /<I>G has a unique

minimal normal subgroup F(G) /<£G.

Let N be a non-Frattini normal subgroup of G. Then JV<X>G ^ -F(G), and

hence N ^ F(G). Let S be a minimal supplement for N: then SOG/OG is a

minimal supplement for N /4>G, and since G/OG is a &>* group, S (~\N ̂  OG. But

then from (iii)

(|s/snjv|,|snjv|) = l,

and so by the Schur Zassenhaus Theorem S niV has a complement C in S: and

clearly NC = G, giving S = C, S nN = 1, i.e. S is a complement for JV in G.
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