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Abstract

Let n be a natural number with largest component 5% We prove that if xo(n) = yn + z (x, y, z given
positive integers), n is not primitive (y/x)-abundant and n/s is not (y/x)-perfect, then n <
4(z + 3)/27p (if z = 175). All solutions are tabled for the equation xo(n) = yn + z when x = 1,
y =2, 1<7z<210, and n is not primitive y-abundant. We also prove that if n is primitive
(y/x)-abundant, then s3¢ < (yn/2)2. A number of results are proved concerning the range of o(n)/n
when n is primitive a-abundant, for any real number a = 1. For example, then a(n)/n <a +
min{3,3ae"%%/%/2} and o(n)/n < a + 1.6a/log n. All primitive abundant numbers n with o(n)/n
= 2.05 are listed.

1980 Mathematics subject classification (Amer. Math. Soc.): 10 A 20.
1. Introduction

Let n be a natural number, o(n) the sum of its positive divisors, a = 1 a real
number. We call n a-deficient, a-perfect or a-abundant, according as o(n) < an,
o(n) = an or o(n) > an, respectively; n is a-nondeficient if o(n) = an and in this
case we call a a coefficient of abundance of n. When a = 2, the prefix will be
omitted. An a-nondeficient number is said to be primitive if all its proper divisors
are a-deficient.

The basic result of this paper is a lemma giving new necessary and sufficient
conditions for an a-abundant number to be primitive. We shall give many
consequences of this lemma and shall also prove a theorem relating to a result of

Pomerance (1975).
Pomerance showed that for given integers y and z = 0, the equation
(1) o(n)=yn+:
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has only finitely many solutions, which are not primitive y-nondeficient, apart
from some solutions of an explicit form. We shall consider instead the equation
xo(n) = yn + z, where x, y and z are positive integers, and will show that if » is
not primitive (y/x)-abundant then n <4(z + 3)’/27y (when z = 175) apart
from a possibility similar to that in Pomerance’s result. Robbins (1980) found all
non-primitive y-abundant n satisfying (1) for y = 2 and 0 <z < 100. We shall
find all such n fory = 2 and 0 < z < 210.

A number of results will be given concerning the range of o(n)/n when n is
primitive a-abundant. The main one is that then o(n)/n < a +
min{3,3ae”**/2}, where p = e ¥ and v is Euler’s constant. We shall also show
that the only limit point of the set {o(n)/n: n primitive a-abundant} is a and will
list all primitive abundant numbers n with o(n)/n = 2.05.

All Roman letters in this paper (except e) denote nonnegative integers, with
xy >0,n>1,and p, q, r, s primes. We always use p for the smallest prime factor
of n and s for the largest component (or prime power) in n. As usual, g°lln
means that ¢®| n and ¢®*'{n; we allow b = 0. By w(n), we mean the number of
distinct prime factors of n.

2. The basic result

The “lemma” referred to in the Introduction is Theorem 1, below. We need
LEMMA 1. If m is a proper divisor of n, then s(m)/m < o(n)/n.

Proor. This is a consequence of the equation
o(n) _ g1
=3 L

n an

From this follows the classical result that all a-perfect numbers are primitive.

THEOREM 1. Let n be an a-abundant number. (i) If

p—1 an
o(n) —an<——-—,
(n) PR

then n is primitive. (ii) If n is primitive, then

o(n) —an <X
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PROOF. (i) Suppose n is not primitive. Then »n has an a-nondeficient proper
divisor and, by virtue of Lemma 1, we may write
n=mq whereo(m)=am.

Suppose g° || n. Then

o(q’) _ (")

o(n) =o(m)—-"——>=am——2—

P P

b
=an + am ————U(ZA)I —q)
o(q"")
:an—{h_ﬂ_ﬂ‘
a(g”")
Since
b
b—l___q_1 9 . 1P b—1
ol )=y <=4 <o
we thus have
__1 —
o(n)>an+a-p . Zril:an+p—l~-a—z
q P q
San+ 2L
5d

and the result is clear.
(i) Suppose a(n) — an > an/s?. Then

ny _ (7 d—1 a(n) d—1
o(5) = °(s)°(s )= 6 )
d—1 d d 1
>(an+an)o(s ) _an s+ 1 ofs ) ‘
G(Sd) Ky sd—l ( d) S
Thus n has an a-abundant proper divisor, contrary to hypothesis. This completes
the proof.

REMARK 1. From this proof, we can also deduce the stronger result: An
a-nondeficient number n is primitive if and only if for each component q° of n
an
o(qb) — 1
For our applications, Theorem 1 is more convenient.
It follows from Theorem 1 that if o(n) = yn + 1 (y = 2), then n is primitive
y-abundant. (We need only observe that w(n) = 2.) For y = 2, this was first

o(n) —an<
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noticed by Cattaneo (1951). Our extension of the work of Robbins (1980),
summarized in Table 2, will show that if e(n) =yn +z (y=2), then n is
primitive y-abundant for z = 1,2,5,6,9,...,207, 209, 210.

3. On integers with rational coefficient of abundance
We now give the main result of this paper.

THEOREM 2. Suppose xo(n) = yn + z. If n is not primitive (y /x)-abundant and
n/s is not ( y /x)-perfect, then

_ 1\52 1)3
1 < max 2(z—1) ,4(z+2) ~
y 27y

(The max is assumed by the second function when z = 175.)

PROOF. Suppose y = 1 and, first, that x = 1. If n is prime, then n/s =1 is
1-perfect, so n is composite. Then n + z = ¢(n) >n + Vi, so n < z2, But z2 <
20z—1/2 for z=3. If y=1 and x =2, then xn < xo(n)=n+ z so that
n <z/(x — 1)<z We may assume now thaty 2.

Suppose there is a prime g with ¢ # s, g°lln and n /g not ( y /x)-deficient. Then

ny o(q®) _ ( ) yn _ yn _yn  ¥in
=g| = sy o
o(n) o(q)o(q” l) xq 7 o(q®™") x  2xqb x 2x

where we use n = g% > ¢** for the last inequality. Thus, since z = xo(n) — yn,

we have

4z%2 277
n<—s——,
y:ooy

Note that z2 < (z — 1)*/?for z = 5. For z < 4,
)—%)qﬁon(%) >x(—n—h+ 1),

so that x =1 and n/q”<3. Thus s“=3, ¢’ =2 and n=6. But 6 is not
y-abundant for y = 2.

4= xo(n) —yn= (xo(

n
q
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So we may assume for each prime q | n with g # s that n/q is (y /x)-deficient.
Thus by hypothesis, n/s is (y /x)-abundant. Then, setting m = n /59, we have

o <xo(2) < H = rat 2 =2 oL
_ xo(n) —yn  xo(n) _z— xo(m)
s sa(s?) s

so that xa(m) < z. But from the equation xo(m)o(s¢) = yms? + z, we obtain the
equation
sUxso(m) — yms + ym) = xa(m) + z(s — 1),
so that
s?<xo(m)+z(s—1)<z+z(s—1)=zs.

Hences“ ' <z — 1,505 <(z — 1)?/¢~D_Since

Y _ o(n) _ a(m) o(s9) - 2o(m),

we thus have

N2
1)”/"’*"<2(z 1)

2x 2
n=ms?<=o(m)s?‘<=(z— 1)z —
o(m)st = (z  1)( :

ford = 3.
Suppose now that d = 1 or 2, and note that

xo(n):xo(ﬁ) o(s?) >(%+l)(&+——1 )>yn+s+ Rl

s)e(s?7h) - o(s97") so(s47h)
Thus
yn
z=x0(n) —yn>s +———.
(m) =y sa(s4 1)
If d = 1, then

z>s+%>2\/)7,

son<z=/4y If d = 2, then, since £ + n/£2 >3- 272/39"/3 for £ > 0 and fixed
7, we have
1

z>s+L2>3-2_2/3(yn)1/3—5,

(s+13)
son <4(z+3)/27.
This completes the proof.
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COROLLARY. If o(n) =yn + z, n is not primitive y-abundant and n/s is not
y-perfect, then n < 4(z + 3)* /27y.

ProOF. From Theorem 2, this is true when z = 175. Using Table 2, below, it
may be verified also when z < 174 and y = 2. Suppose y = 1 and refer to the first
paragraph of the proof of Theorem 2. We have z2 < 4(z + 1)?/27 for z = 6. The
conditions of the Corollary exclude the possibility z = 1, and z = 2 and z = 5 are
always impossible. If z = 3 then n = 4 and if z = 4 then n = 9; in these cases the
result is seen to be true.

REMARK 2. Pomerance (1975) showed that the equation 6(n) = yn + z has only
finitely many solutions n which are not primitive y-abundant, provided n # gm
where gim and o(m) = z =0 (mod m). (A glance at Table 2, say for z = 12,
allows this to be contrasted with the corollary.) In particular, Pomerance includes
the possibility that n/s is y-perfect if s*| n, and we do not. However, Theorem 2
can be adjusted to take this into account, with a bound of the same order on n.

We give next a necessary condition for a number with rational coefficient of
abundance to be primitive.

THEOREM 3. If n is primitive (y /x)-nondeficient, then
s?<(ym/2)’, wherem = n/s".
PROOF. We may write xo(n) = yn + z for some z = 0. Since n is primitive, we
have, by Theorem 1(ii),
z=xo(n) —yn<ym.
From the proof of Theorem 2, we have s¢ < xo(m) + z(s — 1), so
s!< xa(m) + ym(s — 1) < yms,
since o(m)/m <y /x. Thus s~ ! < ym so that, if d = 3 (and ym = 16),
st < (ym) V0 < (ym)? < (ymy2)’.

(The case studies required to verify the theorem where ym < 15 will be omitted.)
The possibilities d = 1 and d = 2 are treated separately.
Since n is ( y /x)-nondeficient,

_ —d
Xgo(n):o(m).s s <0(m). s
X n m s—1 m s—1

so that s(ym — xe(m)) <ym. But ym — xa(m) > 1, so s < ym. In particular,
this proves the theorem when d = 1 (unless ym < 3, in which case the verification
of the theorem is again omitted).

https://doi.org/10.1017/51446788700019819 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700019819

[7] Primitive abundant numbers 129

Suppose d = 2. Then we cannot have xo(m) = ym — 1: if this were the case,
then
xo(ms) = (ym—1)(s+ 1) =yms — (s —ym + 1) = yms,
since s < ym — 1, and so n is not primitive. Thus xo(m) < ym — 2, and, since n
is (y/x)-nondeficient,
xa(m)(s?* + s+ 1) = xa(ms?) = yms? = (xa(m) + 2)s?,
so that

2s?

+ 1

ym—2>xo(m)>s >2s — 2.

Thus s < ym/2, and the proof is finished.

REMARK 3. The result in Theorem 3 is best possible in that, if n = 2, y = 3 and
x = 2 (and only in this case), n is primitive ( y /x)-nondeficient and 4s? = y?m?
— 1.

4. On the range of 6(n)/n

The theorems in this section give information on the range of o(n)/n when n is
primitive a-abundant.

THEOREM 4. Let 7 denote the set of all primitive a-nondeficient numbers. Then

lim
nemw

ProoF. Certainly, 6(n)/n = a for n € 7. Suppose

o(n)

lim sup —n—:a+,B, B > 0.

nemw

Then for infinitely many members n of 7 we have

ar B

2 n s9
using Theorem 1(ii). Thus the largest component s¢ of any such n satisfies
s?<2a/B. This restricts the possible values of n to a finite set, giving a

contradiction and proving the theorem.

We remark that if we do not insist that the a-abundant numbers r be primitive,
then the method of Somayajulu (1977) may be adapted to show that any &,
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a <4< oo, is a limit point for the set of values of o(n)/n. It follows from
Theorem 4 that there are only finitely many primitive a-abundant numbers # such
that o(n)/n = a + ¢ for any given ¢ > 0. The next two theorems find values for &
such that the set {n: n primitive a-abundant, o(n)/n = «a + €} is empty. Theorem
5 is proved in Section 5.

THEOREM 5. If n is primitive abundant, then

a(n) _ 832
" < 385 < 2.16104.

Equality occurs only for n = 325 - 7 - 11.
THEOREM 6. If n is primitive a-abundant, then
o(nn) < a + min{$,3ae™"*/2},

where p = e~ " and v is Euler’s constant. The number 3 cannot be replaced by a

smaller constant.

PROOF. Let P, be the ith prime, and write

d p
6, = 11 5 - 6,=1.
i=1
Let i = 1 be such that §,_, < a <#6,. We show first that w(n) =i Suppose
wn)<i—1 (1f i = 2) and let the prime factor decomposition of n be 4= lqj ,
where g, < -+ <g¢q,. Thenu = w(n) <i— 1, and

on) L= _ 4 g B
=< <1 =0, <a,
= g1 jzlqj—l j:lPJ—l

contradicting the fact that » is a-abundant. Thus w(n) = i, so s9= P, and, from
Theorem 1(i1),

o(n) a a
< 2 < =
" <a+sd a+P‘.

1

From Rosser and Schoenfeld (1962), we know that

0i<e710gPi(1+ 1 ),
log? P,

so,if i = 6,
Y

e
log 13

a<<f§ <elog P, +
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and so
P > exp(e"a — (log 13)71) >2ef /3.
Thus, when a = 6; = 4.8125, we have

oln) 2

P.

i

<a+ 3ae /2.

(Note: a useful under-estimate for p is 5/9.)

The function 3£e“’5/2 is decreasing for £ > 1 /p and is less than 3 for £ > 4.38.
Hence, if i = 6, so that a = 5, we also have o(n)/n < a + 3. Suppose i = 5.
Then a/s¢ < a/P; < 8,/P; = 0.4375 < 3ae **/2. Thus, using Theorem 1(ii),
Theorem 6 has now been proved whenever a = 8, = 4.375.

Suppose i = 3 or 4, so that 6, < a <#,. We may assume that s¢ < 2a, so
s9 < 28,, giving s? < 8. Listing all such n, we find in all cases that o(n)/n < 3.5
<a-+i.

Suppose i = 2, so that 2 < @ < 3. We may assume that s¢ < 5. We find that
o(n)/n<25<a+1i, except if n=n =2°3-5 But we require a >
a(n,/2)/(n,/2) = 24 1in this case, so 6(n,)/n, =28 < a + 3.

Suppose finally that 1 < a < 2. Assuming 5% < 2a, we have s¢ < 3,so0n =2, 3
or 6. Certainly, 6(3)/3 <a + 3. Writinga =1+ ¢/2ora =15+ ¢/2 (0 <e<
1) with n = 2 or n = 6, respectively, we see that in these cases n is primitive
a-abundant and (a + 3)-deficient, but not (a + § — ¢)-deficient.

With the observation that 3 < 3ae™?*/2 when 1 < a < §,, the proof of Theo-
rem 6 is now complete.

THEOREM 7. If n is primitive a-abundant, then

o(n) - ae
n (e = l)logn"

PrROOF. The result follows from Theorem 1(ii) once we have shown that
s4>r1logn, where 7 =1 — 1/e. This is easily checked for n < 15, so we shall
assume n = 16.

Suppose 59 < 7log n. Then n < (7log n)“"™ < (log n)“(", so that

w(n) > log n

loglogn”

If P, denotes the ith prime, then P, > ilog i, and

log n o log n
loglog n & loglogn”

rlogn=s5=P > w(n)logw(n)>

w(n)
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Thus tloglog n > loglog n — logloglog n, from which

loglog n < logloglog n = elogloglog n.

I—7
However, the function loglog £/logloglog £ (£ > e¢) has the minimum value e.
We have a contradiction, so the theorem is proved.

REMARK 4. By a similar method to that above, we can show also that

_ logloglog n

d
st= |1 loglog n

log n
when n = 7. When n is squarefree, Theorem 6* of Schoenfeld (1976) implies that
s> log n/1.001093.

5. Computational results

In Table 1 we give the 91 primitive abundant numbers n such that o(n)/n =
2.05, in decreasing order of o(n)/n. Values of o(n)/n are rounded to the given
number of decimal places. Theorem 5 is an obvious consequence of Table 1.

To construct Table 1, we noted, from Theorem 1(ii), that we require 2.05 <
o(n)/n <2+ 2/s% from which s¢ < 37. A straightforward algorithm, requiring
only a few hours’ work with a calculator, was used to produce all primitive
abundant numbers n with largest component not exceeding 37. Those with
a(n)/n = 2.05 were then ranked.

We come finally to our extension of the work of Robbins (1980). For brevity,
by a solution of

(2) o(n)=yn+2z, y=20<z=<2l10,

we shall mean a triple (n, z, y), where n is not primitive y-abundant, which
satisfies (2). Robbins gave all solutions (n, z,2) with z < 100; his Table 5
contains three misprints, in the values of »n for z = 31, 84 and 86. Our Table 2
gives all solutions of (2).

We used only a hand calculator in obtaining Table 2, making use of ideas to be
described briefly below. It follows from Theorem 2, however, that if (n, z, y)isa
solution of (2) and n/s is not y-perfect, then n < 690912, and it is not difficult to
write a computer program to find these solutions. When »n /s is y-perfect, we find
all solutions of (2) as follows. We will see here the reason for choosing the range
0<z=<210’

Suppose (n, z, y)is a solution of (2) and that w(n) = 5. Then

|=

)

o8

o(n)—yn:z<210:'%-2-2-3'5-7<ijl-y-
s
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so that, by Theorem 1(i), » is primitive y-abundant. This contradiction shows that
w(n) <4,

We can show now that y = 2 or 3. For suppose y = 4. Then w(n) = 4, since
otherwise, letting [I%_, g j’-’/ be the prime factor decomposition of n, we have

o(n /- 2 3 5
4<():Hj—Jl<H “T<1'21 3%
n =t 4 =19

Then we must have 2* | n, since otherwise

o(n) o(2?) 3 5 7
A I I I S

If s =2,theno(n) —yn<210=4-4-3-5-7<(p— lyn/ps? if s > 2, then
o(n)—yn<210<1.4.2’3.5<(p— l)yn/psd. Either way, by Theorem 1(1),
n is primitive.

Now suppose (n, z, y) is a solution of (2) and that n/s is y-perfect. As in the
proof of Theorem 2, we then have
_mm
so(s47")’
Suppose y = 3. Since w(n) < 4, n/sis either 2°3 - 5 = 120,2°3 - 7o0r2°3 - 11 - 31
(Dickson (1966), page 37). If d = 1, then

o(n)—3n=3—:->3-120>210;

o(n) —yn=

if 4 = 2, then we find only the following four solutions of (2):
(243 -5,24,3), (2°3%5,90,3), (2°3-5%,60,3), (2°3-7,32,3).

Suppose y = 2. If d = 1, then o(n) — 2n = 2n/s > 210 unless n/s is 6 or 28.
This gives the solutions

(69,12,2),  where 6 and g are relatively prime,
(284,56,2), where 14 and q are relatively prime and ¢ > 7.

If d = 2 then, since n is even (for an odd perfect number has more than four, in
fact more than seven, distinct prime factors), we have either n = 247 !(2¢ — 1)? or
n = 2%2% — 1) (where 2 — 1 is prime), and o(n) — 2n = 2¢ — 1 or 29, respec-
tively. Hence o(n) — 2n > 210 if a = 8 and we quickly find the only eight such
solutions.

The rest of our manual approach to finding solutions of (2) relied in the first
place on lists of primitive y-nondeficient numbers, with y = 2 or 3, since if
(n, z, y) is a solution of (2) then n has a y-nondeficient divisor. The relevant
numbers with y = 3 we found for ourselves. A purportedly complete list of odd
primitive nondeficient numbers with at most four distinct prime factors was
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TABLE 1
All primitive abundant » such that o(n)/n = 2.05

n o(n)/n n s (n)/n
3%5.7.11 2.16104 354741113 2.14825
325.7.13 2.13333 2-5+11-13 2.11469
3eCe7011-17 2.11215 2213417419 2.10050
2%5 2.10000 35-7-11-19 2.09979
3254717 2.09748 305411413417 +19 2.09504
2317419 2.08978 32527419 2.08521
3+547+13+17 2.08507 24711417419 2.08436
2%13-17-23 2.08223 37411413417 +19 23 2.08203
354701123 2.08154 32513417419 2.08050
2-5-11+17 2.07914 325.11+19+23 2.07697
345+11-13-17 -23 2.07683 3454741319 2.07287
231723 2.07161 2%13+19-23 2.07006
3%7.13-17-19-23 2.06757 3%5.7-23 2.06708
245-11-19 2.06699 2+7+11-17+23 2.06623
32521741929 2.06512 3-5-11+13-19-23 2.06468
3+7+11-17-19+23-29+31 2.06450 2%13-17+29 2.06428
307-11+131719+29 2.06408 3454711429 2.06359
3%5.17-19-29+31 2.06297 2741741942329 2.06248
3%5.13-17-23 2.06240 3.5211+17-23-29 | 2.06148
3-5%7-11 2.06130 2%11-23-29 2.06079
325217.19-31 2.06068 2%13-17-31 2.05985
3%5213.29-31 2.05977 347411-13-17 41931 2.05964
2419423 2.05950 345411+17+23+29+31 2.05934

published by Dickson (1913a). The list has many errors, as pointed out and
corrected by Ferrier (1950) and Herzog (1980). Dickson (1913b) listed primitive
abundant numbers of the form 2¢ with w(¢) < 3 and errors in this list do not
appear to have been previously noticed. From that list, the entry 2 - 5174181
should be deleted and to it should be added 2 - 5423 - 43,2 -7 - 11?172, 2 - 7211
- 17,2 -7%11 - 19 and 2 - 7°11223.

Essentially, for each primitive y-abundant number we added 1 to the exponent
of each component in turn and calculated o(#) — yn for the resulting number n,
repeating the process for n if necessary. Restrictions on the primitive y-abundant
numbers to be used were obtained through Theorem 1(i), as used above, and
other considerations. Stops on the process were provided by the following results,
which are of independent interest.
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TABLE 1 (continued)
- :

n o{(n)/n n s(n)/n
3+5.7+11-31 2.05915 32511419429 2.05907
3054114131729 2.05892 327411417 42320 2.05831
247171942331 2.05805 2:7+13417+19 2.05763
3-527419+29 2.05756 24541742329 2.05732
20547 2057143 247+13+23.29+31 2.057135
3-5211+17-23-31 2.05705 32521119 2.05678
3-5211.13+17 2.05664 221123431 2.05636
2211013 2.05594 345.7-19+29-31 2.05542
2-5217.23 2.05504 3434741323 2.05485
3251141931 2.05464 3+5-11+13-17-31 2.05450
2:7+11+19+23 2.05415 597911417 +19423+29+37 2.05403
3%7.11.17.23-31 2.05389 2317-29 2.05375
3%7.11.13.17 2.05348 3.5%17.19.23.29.31 2.05331
3.5%7.19.31 2.05313 3.5213417.19-29 2.052903
2.5417.23.31 2.052900 S27.1113417-19+23+31+37 | 2.05277
2219+23.29.31 2.05262 3452741743137 2.05261
325.17.19.29.37 2.05252 2:5+1317 2.05249
327.1341929.31+37 2.05233 221341929 2.05221
2-11-13-19.23-31+37 2.05208 217 2.05147
337.13.17.29.37 205117 2:711+29.31+37 2.05100
3.5413417-19+29-31 2.05077 325.13.19.23 2.05034
325217.19.37 2.05024 327.17419-23-29-31 2.05016
335219.31.37 2.05005

LEMMA 2. If m is a proper divisor of n and o(m) = ym, then o(m) — ym < o(n)

— yn.

LEMMA 3. Let g, r and n be given (q # r) and suppose that q°r<|in (bc = 0). If u

and v are positive integers such that
(3) g“<r® and o(q’r*"")y=a(q" 'r),
and if a(n) = yn, then

o(q“n) —yq“n <o(r®n) — yren.
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TABLE 2
All solutions of a(n) = yn + z,y 22,0 < z < 210, for
which n is not primitive y-abundant

y =3 if n is in italics; otherwise, y = 2

z n z n Z n
3 | 237 71 | 2372 144 | 2337223029 2.3-112

2 2 2, ..2 7
a | 2% 72 | 2%3.112-3-522.3%11, | 146 | 27109
7 | 2272 2°3.5 148 | 2%5+53,27107
8 | 2% 74 | 2%53 150 | 203237

3 2 2 7
w0 | 2% 76 | 225417 152 | 2%3-31,27103
12 | 2%3,2:3% 2.3q% 78 | 2:3%13 154 | 27101

2.2 2 2 6
17 | 2% 80 |223-13,2%5-19,2%7 156 | 203-5+7
18 | 2*13 84 | 2%43 158 | 2797
19 | 2232 86 | 2041 160 | 235.7,2%5.59

4 2 42
20 | 2*n 88 | 2%5.23 161 | 2%
25 | 2%7,2%5.5 89 |2%292 162 | 2:3%4
26 | 2% 90 | 2.3%17,2%37 2%5% 164 | 22561
8 | 2% 92 | 2%s3 166 | 2789
31 | 2%? 96 |2%3417,2:3.7%,2.3%19, | 168 | 2333 2:3%3,2.3.13%,
32 | 2°31,2%5.7 2%31,273.7 2305
34 529 98 | 2529 172 | 2783
39 | 2:3% 100 | 2%5.29 176 | 2%3.37,2%5.67,2779
a0 | 2%23 104 | 2%3.19,2%5.31,2523 180 | 2-3%5,2.3%07
a1 | 2%138 108 | 2-3%23,2%19 182 | 2773

2 s 6 2 7

4 | 2-5%7,2°19 110 | 2%17 184 | 2%s5-71,2"71
46 | 205-72,2%17 114 | 2%13 185 | 29612
a8 | 2%3-5 115 | 2432 186 | 223%s

5 6., 2 3 2 7,
so | 2°13 116 | 2%11,2%5-37,2.5%11 188 | 2.5.7-11,2%5.73,27 67
51| 2332 119 | 252132 192 | 233411,2%3. 41
s2 | 2°11,2.5%13 120 | 2335,2%3.23,2%7,2.35 {194 | 2761
54 | 2. 325 121 X 196 | 2:5+7413,2759
s6 | 2°7,227%,2%7 122 | 2% 198 | 2-3%s53
s | 2°s 124 | 2%3,2%5.4 199 | 223% 2%2
s | 22112 126 | 2-3%29 200 | 235.11,2%3-43,2%5.79,
60 253 2-3%7,5%%: 0 127 | 281272 252

Su-sp 128 | 225.43,27 127 202 | 2753

2,3 2 2 3
64 | 2%3%,2%5.11 132 | 2-3%31 204 | 2-3-5-11,2-3%
65 352 136 | 2%5-47 208 | 237-11,2%5.83,27 47,
66 | 2%1 - 138 | 3%5.7 2%5.7°

2 6 7
68 | 2%5413,2%09 142 | 2113

|
*(q, 6) .= (r, 14) = 1 (q, r prime)
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Lemma 2 follows easily from Lemma 1 (and generalises a result of Robbins
(1980)). Lemma 3 is a consequence of the identity

(o(r°n) —yr*n) — (a(q*n) — yq*n)
o(rv~l) B 0((]“71)
a(r°) o(q*)

In applications of Lemma 3, we always had b = ¢ = 0, ¥ = v and ¢ < r, so that
(3) was always satisfied.

= (r'—q*)(o(n) —yn) + a(n).

We mention finally that the only solution of (2) with n odd is (2835, 138,2). In
fact, we found that the only other solution of (1) in which » is odd and not
primitive y-abundant, y = 2 and 0 <z <420 is n = 15435, z = 330, y = 2.
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