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Abstract

Let n be a natural number with largest component sd. We prove that if xa(n) = yn + z (x, y, z given
positive integers), n is not primitive (y/x )-abundant and n/s is not (>'/x)-perfect, then n <
4(z + |)3/27>> (if z > 175). All solutions are tabled for the equation xa(n) = yn + z when x = 1,
y > 2, 1 < z =c 210, and n is not primitive ^-abundant. We also prove that if n is primitive
(_y/x)-abundant, then s3d < (yn/2)2. A number of results are proved concerning the range of o(n)/n
when n is primitive a-abundant, for any real number a> \. For example, then a(n)/n <a +
min{^,3ae~5<>/9/2} and a(n)/n < a + 1.6a/log n. All primitive abundant numbers n with a(n)/n
> 2.05 are listed.

1980 Mathematics subject classification (Amer. Math. Soc): 10 A 20.

1. Introduction

Let n be a natural number, a(n) the sum of its positive divisors, a > 1 a real
number. We call n a-deficient, a-perfect or a-abundant, according as a(n) < an,
o(n) — an or a(n) > an, respectively; n is a-nondeficient if a(«) > an and in this
case we call a a coefficient of abundance of n. When a — 2, the prefix will be
omitted. An a-nondeficient number is said to be primitive if all its proper divisors
are a-deficient.

The basic result of this paper is a lemma giving new necessary and sufficient
conditions for an a-abundant number to be primitive. We shall give many
consequences of this lemma and shall also prove a theorem relating to a result of
Pomerance (1975).

Pomerance showed that for given integers y and z s* 0, the equation

(1) o(n) — yn + z
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has only finitely many solutions, which are not primitive ^-nondeficient, apart
from some solutions of an explicit form. We shall consider instead the equation
xo(n) = yn + z, where x, y and z are positive integers, and will show that if n is
not primitive (y/x)-abundant then n < 4(z + \~? /21y (when z > 175) apart
from a possibility similar to that in Pomerance's result. Robbins (1980) found all
non-primitive ^-abundant n satisfying (1) for y = 2 and 0 < z < 100. We shall
find all such n lory > 2 and 0 < z =£ 210.

A number of results will be given concerning the range of a(n)/n when n is
primitive a-abundant. The main one is that then o(n)/n < a +
min{j,3ae~pa/2}, where p = e~y and y is Euler's constant. We shall also show
that the only limit point of the set {o{n)/n: n primitive a-abundant} is a and will
list all primitive abundant numbers n with a{n)/n > 2.05.

All Roman letters in this paper (except e) denote nonnegative integers, with
xy > 0, n > 1, and/», q, r, s primes. We always use/) for the smallest prime factor
of n and sd for the largest component (or prime power) in n. As usual, qb\\n
means that qb\n and qb+x \ n; we allow b = 0. By «(«), we mean the number of
distinct prime factors of n.

2. The basic result

The "lemma" referred to in the Introduction is Theorem 1, below. We need

LEMMA 1. If m is a proper divisor of n, then o{m)/m < a(n)/n.

PROOF. This is a consequence of the equation

°(n) _ v I
f d'n f d

From this follows the classical result that all a-perfect numbers are primitive.

THEOREM 1. Let n be an a-abundant number, (i) / /

p — 1 an
a(n)-an<-j--—,

then n is primitive, (ii) If n is primitive, then

a(n) — an < —- .
sd
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PROOF, (i) Suppose n is not primitive. Then n has an a-nondeficient proper
divisor and, by virtue of Lemma 1, we may write

n = mq where a(m) > am.

Suppose qb\\n. Then

i ^ i \ a (9*) °{qb)
a(qb ') a(qb ')

am
= an H •

Since

we thus have

, x /> - 1 m /? - 1 a «
a(«) > an + a • • —;— = an + • —

P qb~x P qb

p — 1 an

and the result is clear.
(ii) Suppose a(n) — an > an/sd. Then

a — =

an\ a(sd'1) an sd + 1 a(5rf~') ^ an

a(5d) « s ^ 1 a(5d) J

Thus n has an a-abundant proper divisor, contrary to hypothesis. This completes

the proof.

REMARK 1. From this proof, we can also deduce the stronger result: An
a-nondeficient number n is primitive if and only if for each component qb of n

o{n) — an < —-—— .

For our applications, Theorem 1 is more convenient.
It follows from Theorem 1 that if a(n) = yn + 1 (y 5* 2), then n is primitive

j-abundant. (We need only observe that u(n) s* 2.) For y — 2, this was first
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noticed by Cattaneo (1951). Our extension of the work of Robbins (1980),
summarized in Table 2, will show that if a(n) = yn + z (y > 2), then n is
primitive ^-abundant for z = 1,2,5,6,9,.. .,207,209,210.

3. On integers with rational coefficient of abundance

We now give the main result of this paper.

THEOREM 2. Suppose xa(n) = yn + z. If n is not primitive (y/x)-abundant and
n/s is not (y/x)-perfect, then

,2(z-\)
n < rnax^ v '

5/2

(The max is assumed by the second function when z > 175.)

PROOF. Suppose y = 1 and, first, that x — 1. If n is prime, then n/s = 1 is
1-perfect, so n is composite. Then n + z = a( n)> n + Jn , so n < z2. But z2 <
2(z - 1)5 / 2 for z > 3. If y = 1 and x 3= 2, then x« < jta(«) = n + z so that
n < z / (x — 1) < z. We may assume now that j> > 2.

Suppose there is a prime q with g ^ *, qb II« and « /# not (^/x)-deficient. Then

+* JC 2x '* 2xg

where we use n 3= ^*s'' > q2b for the last inequality. Thus, since z = xa(«) — yn,
we have

^4z 2 ^ 2z2

j 2 " ^

Note that z2 < (z - I)5/2 for z 5= 5. For z < 4,

so that x = 1 and n/qh < 3. Thus sd = 3, ^fr = 2 and « = 6. But 6 is not
y-abundant for y 5= 2.
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So we may assume for each prime q \ n with q ¥= s that n/q is (j>/x)-deficient.
Thus by hypothesis, n/s is (j /x)-abundant. Then, setting m = n/sd, we have

( )
S a(j«/) 5 a ( ^ ) 5 J

_ xa(n) — yn xa(n) _ z — xa(m)
s sa(sd) *

so that xa(m) < z. But from the equation xa(m)a(sd) = ymsd + z, we obtain the
equation

sd(xsa(m) — yms + ym) = xa(m) + z(s — 1),

so that

sd < xa(m) + z(s - 1) < z + z(s - 1) = zs.

Hence ^ ~ ' =£ z - \,sosd^(z - l /A ' ' " 1 ) . Since

J < g(w) _ P ( W ) o(sd) < 2a(m)
x n m s

d m '

we thus have

y y

for d s* 3.
Suppose now that J = 1 or 2, and note that

1

Thus
yn

z = xa(n) — yn > s

Ud= l.then
V/7

z > s H >

so n < z2/Ay. If d = 2, then, since | + ?)/|2 > 3 • 2 ~ 2 / V / 3 for | > 0 and fixed
Tj, we have

sow < 4 ( z + i )
This completes the proof.
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COROLLARY. If a(n) = yn + Z, n is not primitive y-abundant and n/s is not
y-perfect, then n < 4(z + \f/21y.

PROOF. From Theorem 2, this is true when z > 175. Using Table 2, below, it
may be verified also when z < 174 and y > 2. Suppose y = 1 and refer to the first
paragraph of the proof of Theorem 2. We have z2 < 4(z + i)3/27 for z s* 6. The
conditions of the Corollary exclude the possibility z = 1, and z = 2 and z = 5 are
always impossible. If z = 3 then n = 4 and if z = 4 then n = 9; in these cases the
result is seen to be true.

REMARK 2. Pomerance (1975) showed that the equation a(n) — yn + z has only
finitely many solutions n which are not primitive y-abundant, provided n ¥= qm
where q\m and a(m) = z = 0 (mod m). (A glance at Table 2, say for z = 12,
allows this to be contrasted with the corollary.) In particular, Pomerance includes
the possibility that n/s is y-perfect if s2 \ n, and we do not. However, Theorem 2
can be adjusted to take this into account, with a bound of the same order on n.

We give next a necessary condition for a number with rational coefficient of
abundance to be primitive.

THEOREM 3. If n is primitive (y/x)-nondeficient, then

sd < (ym/2) , where m = n/sd.

PROOF. We may write xa(n) = yn + z for some z 3* 0. Since n is primitive, we
have, by Theorem 1 (ii),

z = xa(n) — yn <ym.

From the proof of Theorem 2, we have sd < xa(m) + z(s — 1), so

sd < xa(m) + ym(s — 1) <yms,

since a(m)/m < y/x. Thus sd~' < ym so that, if d s= 3 (and ym > 16),
d ^ 1 \d/(d-\) ^ / \3/2 / ,_x2

j < (ym) *£ (j'^j ^ \ym/2) •

(The case studies required to verify the theorem where ym < 15 will be omitted.)
The possibilities d — 1 and d = 2 are treated separately.

Since n is (y/x )-nondeficient,

y o(n) _ a(m) s — s~~d a(m) s
x n m s — 1 m s — 1

so that s(ym — xa(m)) <ym. But ym — xo(m) > 1, so s <ym. In particular,
this proves the theorem when d — 1 (unless ym =£ 3, in which case the verification
of the theorem is again omitted).
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Suppose d = 2. Then we cannot have xa{m) — ym — 1: if this were the case,
then

xa(ms) = (ym — l)(s + 1) = yms — (s — ym + 1) >yms,

since s < ym — 1, and so n is not primitive. Thus xa(m) < ym — 2, and, since «
is (>>/x)-nondeficient,

xa(m)(.y2 + s + 1) = xa(ms2) > yms2 > ( x a ( w ) + 2)s2,

so that

2s2

_yw — 2 > xo(ffl) > > 251 — 2.
ij I 1

Thus s < ym/2, and the proof is finished.

REMARK 3. The result in Theorem 3 is best possible in that, if n = 2, y = 3 and
x = 2 (and only in this case), n is primitive (y/x)-nondeficient and 4sd = y2m2

- 1.

4. On the range of a(n)/n

The theorems in this section give information on the range of a(n)/n when n is
primitive a-abundant.

THEOREM 4. Let IT denote the set of all primitive a-nondeficient numbers. Then

km —^^- = a.
new 1

PROOF. Certainly, a(n)/n > a for « G m. Suppose

limsup ^ 1 - a + 0 , 0 > 0.
new "

Then for infinitely many members n of m we have

2 « sd

using Theorem l(ii). Thus the largest component sd of any such n satisfies
5d < 2a/jS. This restricts the possible values of n to a finite set, giving a
contradiction and proving the theorem.

We remark that if we do not insist that the a-abundant numbers n be primitive,
then the method of Somayajulu (1977) may be adapted to show that any 5,
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a *£ 8 =£ oo, is a limit point for the set of values of a(n)/n. It follows from
Theorem 4 that there are only finitely many primitive a-abundant numbers n such
that a(n)/n 3= a + e for any given e > 0. The next two theorems find values for e
such that the set {«: n primitive a-abundant, a(n)/n s* a + e} is empty. Theorem
5 is proved in Section 5.

THEOREM 5. If n is primitive abundant, then

o(n) 832
n 385

Equality occurs only for n — 325 • 7 • 11.

< 2.16104.

THEOREM 6. If n is primitive a-abundant, then

^ - < a + minH, 3ae-f">/2),
n K '

where p — e~y and y is Euler's constant. The number \ cannot be replaced by a
smaller constant.

PROOF. Let Pt be the /' th prime, and write

* = II * = i

Let i > I be such that 0,_, < a < 0,. We show first that w(«) > i. Suppose
to(rt) < ( — 1 (if / > 2) and let the prime factor decomposition of n be U"=lqp,
where qx < • • • < qu. Then u — co(«) =s /' — 1, and

«(*) f ^ - ^ \ < J P

contradicting the fact that « is a-abundant. Thus u(n) > i, so sd > P, and, from
Theorem l(ii),

a(«) a a
sd

From Rosser and Schoenfeld (1962), we know that

1

so, if / > 6,

a < 0, < ey\ogP,
log 13
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and so

P, > exp(e~ya - (log 13)"') > 2ep o r /3 .

Thus, when a > 05 = 4.8125, we have

(Note: a useful under-estimate for p is 5/9.)
The function 3£e~p*/2 is decreasing for £ > 1/p and is less than { for £ > 4.8.

Hence, if / > 6, so that a> 05, we also have a(n)/n < a + j . Suppose / = 5.
Then a/sd < a/P5 < 65/P5 = 0.4375 < 3ae~pa/2. Thus, using Theorem l(ii),
Theorem 6 has now been proved whenever a 3= 64 — 4.375.

Suppose i — 3 or 4, so that 62 < a < 04. We may assume that j ' ' < 2a, so
5rf < 204, giving sd < 8. Listing all such n, we find in all cases that a(n)/n < 3.5
< a + {.

Suppose /' = 2, so that 2 < a < 3. We may assume that sd «£ 5. We find that
a(n)/n < 2.5 < a + {, except if n = «, = 223 • 5. But we require a >
o( / i , /2 ) / (« , /2 ) = 2.4 in this case, so aC/j,)//!, = 2.8 < a + {.

Suppose finally that 1 < a < 2. Assuming sd < 2a, we have sd < 3, so n = 2, 3
or 6. Certainly, a(3)/3 < a + {. Writing a = 1 + e/2 or a = 1.5 + e/2 (0 < e <
1) with n — 2 or n — 6, respectively, we see that in these cases n is primitive
a-abundant and (a + ^-deficient, but not (a + \ — e)-deficient.

With the observation that { < 3 a e " p a / 2 when 1 =£ a < 04, the proof of Theo-
rem 6 is now complete.

THEOREM 7. Ifn is primitive a-abundant, then

n (e - 1 )log n

PROOF. The result follows from Theorem l(ii) once we have shown that
sd > TlogH, where T = 1 — \/e. This is easily checked for n < 15, so we shall
assume n s* 16.

Suppose i d < T l o g « . Then n =£(Tlog n)" ( n ) < (logM)"(n), so that

, x log «
log log n

If Pi denotes the zth prime, then Pi > /Tog /, and

"(") , , log/,log log n 6 log log n
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Thus T log log n > log log n — log log log n, from which

log log n < log log log n = e log log log n.
1 — T

However, the function log log £/log log log £ (£ > ee) has the minimum value e.
We have a contradiction, so the theorem is proved.

REMARK 4. By a similar method to that above, we can show also that

, / tag log log* \
\ lOglogH ) 5

when n 3= 7. When n is squarefree, Theorem 6* of Schoenfeld (1976) implies that
sd > log n/1.001093.

5. Computational results

In Table 1 we give the 91 primitive abundant numbers n such that a{n)/n >
2.05, in decreasing order of a(n)/n. Values of a(n)/n are rounded to the given
number of decimal places. Theorem 5 is an obvious consequence of Table 1.

To construct Table 1, we noted, from Theorem l(ii), that we require 2.05 <
o(n)/n =£ 2 + 2/sd, from which sd < 37. A straightforward algorithm, requiring
only a few hours' work with a calculator, was used to produce all primitive
abundant numbers n with largest component not exceeding 37. Those with
a( n )/n > 2.05 were then ranked.

We come finally to our extension of the work of Robbins (1980). For brevity,
by a solution of

(2) o(n) =yn + z, / » 2, 0 < z ^ 210,

we shall mean a triple (n, z, / ) , where n is not primitive /-abundant, which
satisfies (2). Robbins gave all solutions («, z, 2) with z < 100; his Table 5
contains three misprints, in the values of n for z = 31, 84 and 86. Our Table 2
gives all solutions of (2).

We used only a hand calculator in obtaining Table 2, making use of ideas to be
described briefly below. It follows from Theorem 2, however, that if (n, z, y) is a
solution of (2) and n/s is not/-perfect, then n < 690912, and it is not difficult to
write a computer program to find these solutions. When n/s is /-perfect, we find
all solutions of (2) as follows. We will see here the reason for choosing the range
0 < z =£ 210.'

Suppose (n, z, / ) is a solution of (2) and that w(n) > 5. Then

o(n) — yn = z ^ 2\0 = { • 2 • 2 • 3 • 5 • 7 < — • / • —,
P sd
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so that, by Theorem l(i), n is primitives-abundant. This contradiction shows that
u(n) <4.

We can show now that y — 2 or 3. For suppose y > 4. Then w(«) = 4, since
otherwise, letting 11"=, qp be the prime factor decomposition of n, we have

Then we must have 231 n, since otherwise

3 . 5 7
2 4 6n 22 2 4 6

If 5 = 2, then a(n) - yn < 210 = { • 4 • 3 • 5 • 7 < (p - \)yn/psd\ Us > 2, then
a(n) - yn =£ 210 < \ • 4 • 233 • 5 < (p - \)yn/psd. Either way, by Theorem l(i),
n is primitive.

Now suppose (n, z, y) is a solution of (2) and that n/s is ^-perfect. As in the
proof of Theorem 2, we then have

/ \ yn

o(n) — yn = .

Suppose.y = 3. Since «(«) < 4, n/s is either 233 • 5 = 120, 253 • 7 or 293 • 11 -31
(Dickson (1966), page 37). If d = 1, then

o(n) -3n= — >3- 120 > 2 1 0 ;

if d > 2, then we find only the following four solutions of (2):

(243 • 5,24,3), (23325,90,3), (233 • 52,60, 3), (263 • 7, 32, 3).

Suppose y — 2. If d — 1, then a(n) — 2n — 2n/s > 210 unless n/s is 6 or 28.
This gives the solutions

(6q, 12,2), where 6 and q are relatively prime,

(28g, 56,2), where 14 and q are relatively prime and q > 1.

If d s* 2 then, since n is even (for an odd perfect number has more than four, in
fact more than seven, distinct prime factors), we have either n = 2a~ \2a — I)2 or
n - 2a(2" - 1) (where 2" - 1 is prime), and a(n) - 2n = 2" - 1 or 2a, respec-
tively. Hence a(n) — 2 « > 2 1 0 i f a 3 5 8 and we quickly find the only eight such
solutions.

The rest of our manual approach to finding solutions of (2) relied in the first
place on lists of primitive y-nondeficient numbers, with y = 2 or 3, since if
(n, z, y) is a solution of (2) then n has a ^-nondeficient divisor. The relevant
numbers with y — 3 we found for ourselves. A purportedly complete list of odd
primitive nondeficient numbers with at most four distinct prime factors was
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TABLE 1
All primitive abundant n such that o(n)/n > 2.05

[12]

n

325-7-11

325-7-13

3-5-7-11-17

225

325-7-17

2317-19

3-5-7-13-17

2213-17-23

3-5-7-11-23

2-5-11-17

3-5-11-13-17-23

2317-23

327 -13-17-19 -23

2-5-11-19

325217-19-29

3-7-11-17 -19 -23-29-31

3-7 -11-13-17-19-29

325 -17-19-29-31

325 -13-17-23

3 - 5 27 -11

325217-19-31

325213-29-31

2319-23

o(n)/n

2.16104

2.13333

2.11215

2.10000

2.09748

2.08978

2.08507

2.08223

2.08154

2.07914

2.07683

2.07161

2.067 57

2.06699

2.06512

2.06450

2.06408

2.06297

2.06240

2.06130

2.06068

2.05977

2.05950

n

3-5-7 -11-13

2-5-11-13

2213 -17-19

3-5-7-11-19

3-5-11-13-17-19

325-7-19

2-7 -11 -17 -19

3-7-11 -13-17 -19 -23

325-13 -17 -19

325-11•19-23

3-5-7-13-19

2213-19-23

325-7-23

2-7-11-17-23

3-5-11-13-19 -23

2213-17-29

3-5-7-11-29

2-7-17 -19-23 -29

3-5211-17-23-29

2 2 l l -23-29

2213-17-31

3-7-11-13-17-19-31

3-5 -11 -17-23 -29 -31

ci (n)/n

2.14825

2.11469

2.10050

2.09979

2.09504

2.08521

2.08436

2.08203

2.08050

2.07697

2.07287

2.07006

2.06708

2.06623

2.06468

2.06428

2.06359

2.06248

2.06148

2.06079

2.05985

2.05964

2.05934

published by Dickson (1913a). The list has many errors, as pointed out and
corrected by Ferrier (1950) and Herzog (1980). Dickson (1913b) listed primitive
abundant numbers of the form 2? with u(t) =£ 3 and errors in this list do not
appear to have been previously noticed. From that list, the entry 2 • 53174181
should be deleted and to it should be added 2 • 5423 • 43, 2 • 7 • 112172, 2 • 7211
• 17, 2 • 7211 • 19 and 2 • 7211223.

Essentially, for each primitive ̂ -abundant number we added 1 to the exponent
of each compojient in turn and calculated a(n) — yn for the resulting number n,
repeating the process for n if necessary. Restrictions on the primitive j-abundant
numbers to be used were obtained through Theorem l(i), as used above, and
other considerations. Stops on the process were provided by the following results,
which are of independent interest.
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TABLE 1 (continued)

135

n

3 - 5 - 7 - 1 1 - 3 1

3 - 5 - 1 1 - 1 3 - 1 7 - 2 9

2 - 7 - 1 7 - 1 9 - 2 3 - 3 1

3 - 5 2 7 - 1 9 - 2 9

2 - 5 - 7

3 - 5 2 l l - 1 7 - 2 3 - 3 1

3 - 5 2 l l - 1 3 - 1 7

2 2 11 -13

2 - 5 2 l 7 -23

3 2 5 - 1 J - 1 9 - 3 1

2 - 7 - 1 1 - 1 9 - 2 3

3 2 7 • 1 1 - 1 7 - 2 3 - 3 1

3 2 7 - 1 1 - 1 3 - 1 7

3 - 5 2 7 - 1 9 - 3 1

2 - 5 - 1 7 - 2 3 - 3 1

2219-23-29-31

325-17-19-29-37

3 2 7 • 1 3 - 1 9 - 2 9 - 3 1 - 3 7

2 - 1 1 - 1 3 - 1 9 - 2 3 - 3 1 - 3 7

3 3 7 • 1 3 • 1 7 - 2 9 - 3 7

3 - 5 - 1 3 - 1 7 - 1 9 - 2 9 - 3 1

3 2 5 2 1 7 - 1 9 - 3 7

3 3 5 2 1 9 - 3 1 - 3 7

o(n) /n

2.05915

2.05892

2.O5KO5

2.057 56

2.057143

2.05705

2.05664

2.05594

2.05504

2.05464

2.05415

2.05389

2.05348

2.05313

2.052900

2.05262

2.05252

2.05233

2.05208

2.05117

2.05077

2.05024

2.05005

n

3 2 5 - l l - 1 9 - 2 9

3 2 7 - 1 1 - 1 7 - 2 3 - 2 0

2 - 7 - 1 3 - 1 7 - 1 9

2 - 5 - 1 7 - 2 3 - 2 9

2 - 7 - 1 3 - 2 3 - 2 9 - 3 1

3 2 5 2 1 1 - 1 9

2 2 1 1 - 2 3 - 3 1

3 - 5 - 7 - 1 9 - 2 9 - 3 1

3 - 5 - 7 - 1 3 - 2 3

3 • 5 • 11 • 1 3 • 17 • 3 1

3 - 7 - 1 1 - 1 7 - 1 9 - 2 3 - 2 9 - 3 7

2 3 1 7 - 2 9

3 - 5 2 1 7 - 1 9 - 2 3 - 2 9 - 3 1

3 - 5 2 1 3 - ] 7 - 1 9 - 2 9

5 2 7 - l l - 1 3 - 1 7 - 1 9 - 2 3 - 3 1 - 3 7

3 - 5 - 7 - 1 7 - 3 1 - 3 7

2 - 5 - 1 3 - 1 7

2 2 13-1 .9-29

2417

2 - 7 - 1 1 - 2 9 - 3 1 - 3 7

3 2 5 - 1 3 - 1 9 - 2 3

327-17-19-23-29-31

a (n)/n

2.05907

2.O5K31

2.05763

2.05732

2.057135

2.05678

2.05636

2.05542

2.05485

2.05450

2.05403

2.05375

2.05331

2.052903

2.05277

2.05261

2.05249

2.05221

2.05147

2.05100

2.05034

2.05016

LEMMA 2. If m is a proper divisor of n and a(m) 3* ym, then a(m) — ym < o(n)
- yn.

LEMMA 3. Let q, r and n be given (q i>= r) and suppose that qbrc \\n (be 3* 0). / / u
and v are positive integers such that

(3) qu<rv and a(qhrv-1) > a(qu-]rc),

and if a (n) s* yn, then

a(qun) - yqun < a(rvn) - yr' n.
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TABLE 2

All solutions of o (n ) = yn + z,y > 2, 0 < z < 210, for

which n is not primitive y-abundant

[14]

z

3

4

7

8

10

12

17

18

19

20

24

26

28

31

32

34

39

40

41

44

46

48

50

51

52

54

56

58

59

60

64

65

66

68

2 - 3 2

223

2 2 7 2

237

235

2 3 3 ,2-3

2252

2413

2 2 3 2

2411

2 4 7 ,2 4 3

245

243

2 4 3 1 2

2 5 3 1 , 2 6

2529

2 - 3 4

2523

2 3 1 3 2

2 - 5 2 7 , 2

2 - 5 - 7 2 ,

2 2 3-5

2513

2 3 3 2

2 5 1 1 , 2 -

2-3 2 5

2 5 7 , 2 2 7

255

2 3 1 1 2

2 5 3 , 2 - 3
r

2 * 5
22

3V
2 3 5 2

2*61 •

2 2 5 - 1 3 ,

n

3

3

5

2

5

3

2

p

5

2

y = 3

2*3q«

5

• 7

19
517

313

, 2 2 7 r -

7,2Si35,

•11

*59

if

z

71

72

74

76

78

80

84

86

88

89

90

92

96

98

100

104

108

110

114

115

116

119

120

121

122

124

126

127

128

132

136

138

142

* ( q .

n is in

2 3 7 2

2 2 3 - l l

2 5 3 -

2*53

225-17

2-3213

223-13

2*43

2*41

225-23

2 4 29 2

2-3217

2 2 5 3

223-17

2*31

2*29

225-29

223-19

2-3223

2*17

2*13

2 4 3 2

2*11,2

2-5213

2 3 3 - 5 ,

2Zi2b2

2*5

2*3 ,2 2

2-3229

2*1272

225-43

2-3231

225-47

345-7

27 113

6).= (r,

italics;

n

, 2 - 3 - 5 2

5

,2 2 5 -19

,2*37,2

, 2 * 3 - 7 2

,2? 3-7

, 2 2 5 -31

, 2 * 1 9

2 5 - 3 7 , 2
2

2 2 3 - 2 3 ,

5-41

,27127

14) = 1

otherwise

2 - 3 2 l l ,

,2*47

Vs

, 2 - 3 2 l 9 ,

,2*23

-5 3 11

2 * 7 , 2 - 3 5

y =

z

144

146

148

150

152

154

156

158

160

161

162

164

166

168

172

176

180

182

184

185

186

188

192

194

196

198

199

200

202

204

208

(q, r prime)

2

n

233*7,223-29,2

27109

225-53,27107

2-3237

2 2 3 -31 ,2 7 103

27101

2*3-5-7

2797

2 3 5 - 7 , 2 2 5 - 5 9

2 4 5 2

2-3 2 41

2 2 5-61

2789

2 3 3 3 , 2 - 3 2 4 3 , 2

263*5

2783

2 2 3 - 3 7 , 2 2 5 - 6 7 ,

2*3 3 5 ,2-3 2 47

277 3

2 2 5 - 7 1 , 2 7 7 1

2 5 6 1 2

2 2 3 2 5

3*

3-

27

2 - 5 - 7 - 1 1 , 2 2 5 - 7 3 ,

2 3 3 - 1 1 , 2 2 3 - 4 1

2761

2 - 5 - 7 - 1 3 , 2 7 5 9

2 -3253

2 2 3 4 , 2 4 7 2

2 3 5 - l l , 2 2 3 - 4 3

24327

2753

2 - 3 - 5 - 1 1 , 2 - 3 3 '

2 3 7 - l l , 2 2 5 - 8 3 ,

243-7S

22

27

I I 2

1 3 2 ,

79

2767

5-79,

47,
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Lemma 2 follows easily from Lemma 1 (and generalises a result of Robbins
(1980)). Lemma 3 is a consequence of the identity

(o(r°n) - yr°n) - (o(q»n) - yqun)

'" - q")(°(n) - yn)
o(q»)

a(n).

In applications of Lemma 3, we always had b = c = 0, u = v and q < r, so that
(3) was always satisfied.

We mention finally that the only solution of (2) with n odd is (2835,138,2). In
fact, we found that the only other solution of (1) in which n is odd and not
primitives-abundant, y > 2 and 0 < z < 420 is n - 15435, z = 330, y - 2.
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