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Abstract
Autism spectrum disorder (ASD) is a heterogeneous and complex group of life-long neurodevelopmental disorders. How this clinical condition
impacts an individual’s intellectual, social and emotional capacities, contributing to alterations in the proprioceptive and sensory systems and
increasing their selective attitude towards food, is well described in the literature. This complex condition or status exposes individuals with ASD
to an increased risk of developing overweight, obesity and non-communicable diseases compared with the neurotypical population. Moreover,
individuals with ASD are characterised by higher levels of inflammation, oxidative stress markers and intestinal dysbiosis. All these clinical
features may also appear in zinc deficiency (ZD) condition. In fact, zinc is an essential micronutrient for human health, serving as a structural,
catalytic and regulatory component in numerous physiological processes. The aimof this narrative review is to explore role of ZD in ASD. Factors
affecting zinc absorption, excretion and dietary intake in this vulnerable population are taken into consideration. Starting from this manuscript,
the authors encourage future research to investigate the role of ZD in ASD. The perspective is to potentially find another missing piece in the
‘ASD clinical puzzle picture’ to improve the health status of these individuals.
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Introduction

Zinc (Zn) is a redox neutral IIB group metal(1) and an essential
micronutrient for human health. In fact, it is the second most
abundant divalent cation after calcium and serves as a structural,
catalytic and regulatory component(2) in numerous physiological
processes. It is necessary for the structure of over 2000
transcription factors(2), and more than 300 enzymes depend
on it for their functioning(3).

Moreover, it is able to modulate numerous intracellular
signalling pathways, as well as influencing the progression of the
cell cycle itself, in addition to fulfilling its antioxidant and anti-
inflammatory roles(1–4).

Despite its physiological centrality, the mineral content in the
human body is very low, at just 2–3 g. Approximately 95% of its
content is intracellular, primarily located in muscles, followed by
bones, brain, testicles and liver(2,5). Zinc is not stored in the body
and undergoes a rapid turnover. Therefore, maintaining
adequate dietary intake is necessary to support all the functions
mentioned above(2,5).

Therefore, ensuring the appropriate daily dietary intake is
essential to ensure an optimal health. This is particularly crucial
for ‘vulnerable’ individuals who are at higher risk of not meeting

the body’s requirements(6–8), resulting in the development of Zn
deficiency (ZD) and subsequent health implications(2,3,9,10).

The general causes of ZD include inadequate Zn intake,
increased Zn requirements, reduced Zn absorption, increased
Zn excretion and impaired utilisation(2,5,11).

The prevalence of ZD is estimated to be approximately 17%
globally(2), and it is more frequently diagnosed in developing
countries(3). Nevertheless, ZD is also prevalent in developed
countries, including Italy, due tomultiple factors such as reduced
Zn absorption, gastrointestinal (GI) diseases, ageing and/or the
presence of specific pathological conditions(12). Moreover, ZD is
shown to be highly prevalent in individuals with autism
spectrum disorders (ASD) compared with neurotypical individ-
uals(9). This could be attributed to the frequent occurrence of
food selectivity and the comorbidities that characterise individ-
uals with ASD.

ASD is a heterogeneous and complex group of neuro-
developmental disorders(13). According to the DSM-V(13), the
diagnostic criteria of ASD must involve two dimensions: (A)
persistent deficit of social communication and social interaction
in multiple contexts; (B) restricted, repetitive patterns of
behaviour, interests or activities(13). This dimensional diagnosis
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must be combinedwith other specific descriptors that outline the
intensity of the disorder, such as: (i) with or without
accompanying intellectual impairment; (ii) with or without
accompanying language impairment; (iii) associated with a
known medical or genetic condition or environmental factor;
(iv) associated with another neurodevelopmental, mental or
behavioural disorder(13). Additionally, another crucial evaluation
criterion is the level of severity and support required, which is
described in three levels: level 3 requires very substantial
support; level 2 requires substantial support; level 1 requires
support(13). Furthermore, approximately 75% of individuals with
ASD have other comorbidities that impact their physical and
mental state, such as attention-deficit/hyperactivity disorder
(ADHD), depressive and anxiety disorders, bipolar disorder,
obsessive–compulsive disorder, irritable bowel, inflammatory
bowel disease, epilepsy, immune disorders, and sensory and
sleep disorders(14).

Moreover, traits such as systematic and neurological
inflammation, oxidative stress, gastrointestinal (GI) symptoms,
overweight and obesity as well as food selectivity (FS) are
frequently observed in individuals with ASD, with a significantly
higher prevalence than in the general population(6,10,15,16). In
fact, according to a recent meta-analysis, the prevalence of
overweight and obesity are respectively 19·8% and 21·8% in
individuals with ASD(17). Delving into the topic of FS, it is a
condition characterised by a marked limitation of the repertoire
of foods accepted, exposing the individual to the risk of
developing obesity and micronutrient deficiency, including
ZD(6,18). The prevalence of FS in the paediatric ASD population
ranges from 22·9% to 69·1%(6) and remains an important issue for
adolescents and young adults with ASD(10). The health
consequences for these individuals varies depending on the
severity of food refusal, the limitations in the food repertoire, and
the degree of repetitiveness of feeding behaviour (i.e. high-
frequency intake of single food)(6,19). Therefore, FS, which
involves the adoption of an imbalanced dietary pattern, acts as
both a risk factor and a maintenance factor for the development
of micronutrient deficiencies, including ZD, and overweight or
obesity throughout the lifespan of individuals with ASD.

The purpose of this narrative review is to explore the possible
connections between ZD and ASD, including the factors that
affect Zn absorption, excretion and dietary intake.

The role of Zn in human systems with a focus on
individuals with ASD

Zn plays an important role in the development and functioning
of the immune, gastrointestinal and nervous systems, all of
which are frequently dysregulated in individuals with ASD(2,3,15).

Starting from the immune system, Zn performs immunomo-
dulatory functions by regulating the proliferation andmaturation
of T and B lymphocytes, natural killer cells and dendritic cells, as
well as antibody production, phagocytosis and antigen presen-
tation(3). Therefore, ZD predisposes individuals to immune
disruptions and recurrent infections, including intestinal infec-
tious diseases, which are well described in individuals with
ASD(2,6,20,21).

Focusing on the gut, Zn is involved in its morphological
development, microbial composition and function, and barrier
maintenance(15) due to its essential role in cell turnover and
repair systems.

Thus, the negative effects of ZD include dynamic variation in
gut microbial composition, increased intestinal permeability
(leaky gut), activation of pro-inflammatory pathways, and
diarrhoea(2,15,21), which are common manifestations in individ-
uals with ASD(6,15). Mounting evidence strongly supports a
positive relationship between the extent of GI symptoms and the
severity of ASD symptomatology(22), as well as a close
association between Zn status and autism severity(3).
Considering the central role of the intestine in Zn absorption,
as well as the commonGI symptoms reported in individuals with
ASD, the authors delved into each of those aspects. Several
landmark studies from the past few decades have concentrated
on the gut microbiota in individuals with ASD, revealing a
decreased microbial diversity in this population(23), along with a
significant increase in Clostridioides difficile and Candida
albicans, a decrease in Bifidobacterium and Lactobacillus,
and low levels of short-chain fatty acids (SCFAs)(23–25).
Nevertheless, the description of a comprehensive and distinctive
gut microbial pattern in individuals with ASD is still under
research. Different studies have shown conflicting results,
probably due to heterogeneity of the analysed samples in terms
of age, diet, pharmacological treatment, geographic area,
comorbidities and the severity of neurobehavioral and gastro-
intestinal symptoms(24,26). The alterations of gut microbiota in
individuals with ASD are known to have a significant impact on
the brain through the microbiota–gut–brain axis(15,22,25), exacer-
bating the typical symptoms of ASD (i.e. limitations in social
interactions and communications, and repetitive behav-
iours)(13,24). Furthermore, the increased permeability of the
intestinal barrier, frequently co-present with dysbiosis, results in
the entry of bacterial metabolites, such as lipopolysaccharide
(LPS), into the bloodstream. This triggers a significant increase in
neurological and systemic inflammation by altering cytokine
levels(15,25,27). Individuals with ASD have been found to have
increased levels of these leaky gut syndrome biomarkers(24). As it
is known, the gut–brain axis operates bidirectionally; therefore,
neuroinflammation and alterations in neuronal activities signifi-
cantly impact the composition of the gut microbiota in
individuals with ASD from early childhood(25,28).

Dysbiosis and GI symptoms, such as constipation, diarrhoea,
bloating, abdominal pain, reflux and vomiting are four times
more prevalent in children with ASD compared with neuro-
typical individuals(25). Furthermore, there is substantial scientific
evidence describing the persistence of GI symptom prevalence
into adulthood in individuals with ASD(29). So, considering that
Zn plays a key role in gut health and intestinal microbiota, it may
be important to prevent ZD from an early age, so as not to
exacerbate dysbiosis and GI symptoms frequently found in
individuals with ASD.

Regarding brain activity, Zn plays a key role in neuronal
learning and memory processes(2), synaptic plasticity through
ProSAP/Shank scaffold, and neurotransmitter metabolism(3),
particularly in glutamate. Specifically, Zn2þ is necessary for
proper assembly, structuring and functioning of the ProSAP/
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Shank scaffold(3) protein and is involved in glutamatergic
neurotransmission, as Zn2þ forms complexes with glutamate
in presynaptic vesicles(30,31). Numerous studies have demon-
strated that impairment of the synaptic ProSAP/Shank scaffold
promotes the development of behaviours typically observed in
ASD(3,9). Alterations in the balance between excitatory and
inhibitory pathways in the nervous system are frequently
observed in individuals with ASD(3,31).

Therefore, it may be relevant to prevent ZD conditions as
early as possible to avoid exacerbating these neurological
alterations.

Ultimately, it is necessary to emphasise the role of ZD in
inflammation (systemic and neurological) and oxidative stress,
both of which are often present in individuals with ASD(3,15,16).
The literature reports significantly higher plasma and serum
levels of proinflammatory cytokines (IL-1β, IL-6, IL-8 and IFN-
&x0263;) in individuals with ASD, compared with neurotypical
controls(15). Moreover, an increase in the levels of IL-1β, IL-6 and
IFN-&x0263; in the brain are reported in postmortem ASD
studies(15).

Individuals with ASD also present elevated levels of reactive
oxygen species (ROS) and are considered more vulnerable to
oxidative stress due to their reduced glutathione (GSH) reserve
capacity and (GSH) antioxidant defence in specific brain
regions(16). Considering that Zn enhances (GSH) biosynthesis(2),
an adequate intake of this mineral could reduce oxidative stress
in individuals with ASD.

In conclusion, ASD is frequently characterised by alteration of
immune, gastrointestinal and neurological systems, which share
inflammation as a common factor. Considering at the same time
the potential role of Zn in modulating the previously mentioned
systems, it is reasonable that alterations in Zn levels could
potentially impact on ASD symptomatology(6,20,26,27).

The relationships between the role of zinc in metabolism
and ASD comorbidities

Considering the underlying pathogenetic mechanisms of ASD
metabolic comorbidities and the role of Zn in the samemetabolic
systems, it is reasonable to assume that ZD status can contribute
to the metabolic comorbidities that are present in individuals
with ASD leading to bidirectional relationship (graphical
abstract), as further explained below.

Scientific research is currently exploring the role of Zn in
diabetes mellitus (DM) in terms of glycaemic control, and its role
in obesity and metabolic syndrome(3). Low Zn levels in
individuals with type 2 DM and obesity were observed(3). A
recent systematic review with meta-analysis found that the
association between ASD and DM is not currently supported by
robust evidence(32).

Starting from the analysis of carbohydrates metabolism,
individuals with ASD often exhibit sugar malabsorption, which
may be attributed to a decreased expression of disaccharidases,
specifically sodium–glucose transporter 1 (SGLT1) and glucose
transporter 5 (GLUT5), in the brush border in the intestinal
epithelium(25,33). The remaining sugars in the intestinal lumen

can lead to osmotic diarrhoea and can be fermented by the gut
microbiota, causing alterations in microbiota composition, small
intestinal bacterial overgrowth (SIBO), bloating and flatu-
lence(25). As 30–50% reduction of disaccharidase activity has
been observed in cases of chronic ZD(33) and given the higher
prevalence of ZD in individuals with ASD, there is a possible role
for Zn in alleviating frequent intestinal symptoms observed
in ASD.

Zn has a central role in glycaemic control: it is involved in
synthesis, storage and release of insulin, and it is present in
insulin granules(1,34,35). It influences the maintenance of the
GLUT4 transporter and modulates the insulin receptor (INSR)
signalling pathway(4). This aspect is particularly significant
considering that youths with ASD have, on average, higher
homeostatic model assessment of insulin resistance (HOMA-IR)
than neurotypical individuals, regardless of their BMI and
pharmacological treatment(36).

Moving on to protein metabolism, aside from its role in
protein synthesis, protein structure and enzyme catalysis,
adequate daily intake of Zn is necessary for proper protein
digestion in the gut, due to its role in several digestive enzymes,
including carboxypeptidases(1), dipeptidase(37) and aminopepti-
dase(33). Therefore, the possible presence of a ZD condition
might favour bacterial proteolytic pathway (putrefaction), which
may be associated with dysbiosis and gastrointestinal symptoms
observed in individuals with ASD(38).

Regarding lipid metabolism, individuals with ASD can
experience alterations in their blood lipid profile(39,40), on which
Zn appears to have an influence(35,41,42). The mechanism behind
this is currently not understood, but the effects of Zn levels in
terms of both prevention and treatment of cardiovascular
diseases (CVDs) have been well described in literature(35). In
fact, a systematic review of prospective cohort studies showed
that higher serum Zn levels are associated with a lower risk of
CVDs. Furthermore, a recent meta-analysis indicated that low-
dose (<25 mg/d) and long-term (>12 weeks) Zn supplementa-
tion is associated with improved blood lipid parameters(42). This
aspect seems to be more important when considering that,
according to a recent study by Bishop et al. 2022, about 75% of
adults with ASDhave at least one CVD risk factor, comparedwith
40% in neurotypical individuals(43,44).

Regarding adipose tissue, Zn is involved in several related
physiological processes, including leptin synthesis and adipo-
cyte lipid metabolism regulation(3,34). Given this background,
many authors have suggested that Zn status could be associated
with the state of adipose tissue in obesity(3). These results are in
line with the known higher inflammatory and oxidative state of
this tissue in individuals with overweight and obesity(45).
Considering the role of zinc in the anti-inflammatory and
antioxidant systems(3,34), the authors hypothesise that lower Zn
levels in adipose tissue might also be present in individuals with
ASD. This suggests that screening Zn levels in such individuals
may be beneficial for those showing signs of lipid metabolism
dysregulation.

In conclusion, considering the possible links discussed thus
far, Zn could play a key role in the frequently observedmetabolic
comorbidities in individuals with ASD. Consequently, the
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importance of screening Zn levels in individuals with ASD who
present with metabolic comorbidities, emerges as a crucial
aspect to better manage their clinical condition(46).

Sensory perception, food selectivity and Zn in individuals
with ASD

The role of Zn in sensory perception, specifically taste
perception, can be discussed by distinguishing between the
mechanisms at the oral and neurological levels.

In the mouth, Zn participates in the maintenance and
regeneration of the lingual epithelium and taste buds(47,48).
Moreover, it is necessary for the activity of alkaline phosphatase
and gustatin, which are associated with taste and smell
alterations when their activity is low(47). Animal studies suggest
that Zn influences the expression of some taste receptors and
membrane channels, such as bitter taste-sensing type 2 receptors
(TAS2Rs) and epithelial Na channel (ENaC)(49,50), indicating the
role of Zn especially in bitter(51,52) and salty taste perception(53).
The role of Zn bitter taste perception is supported by the
involvement of gustatin itself in bitter taste(51) and the finding of a
lower frequency of expression of six TAS receptor genes in
individuals with hypogeusia compared with healthy controls(50).

Analysing the neural mechanisms, Zn seems to promote the
transmission of information to gustatory nerve fibres and to
modulate neuropeptides, such as neuropeptide Y (NPY), and
neurotransmitter concentrations in the hypothalamus(54,55).
Moreover, current literature is exploring the influence of Zn
on the levels of leptin, insulin and NPY(1,34,35,55–57), in relation to
taste perception and taste bud physiology. These peptide
hormones are present in saliva, and their respective receptors are
expressed in taste cells(51). The multiple roles played by Zn in
taste perception are summarised in Table 1.

In light of the evidence described, it is important to consider
that alterations in taste sensory perception (e.g. smell, taste and
sight) are among the main symptoms of ASD and may persist
throughout life(6) and can be modulated by several factors,
potentially including ZD. The possible co-presence of ZD in
individuals with ASD may also be connected to FS, which can
lead to micronutrient malnutrition(6).

FS itself, often present as a life-long clinical feature in
individuals with ASD, can be accompanied by a sensory aversion
to food, characterised by a rejection of specific textures,
temperatures, flavours, colors and smells(6). This attitude leads
to the adoption of a diet mainly composed of processed foods

with high energy density, rich in sugar and saturated fatty acids,
and, consequently, a reduction of dietary diversity(6). The typical
treatment strategy for FS in individuals with ASD is a personalised,
careful and gradual food reintroduction programme using applied
behaviour analysis (ABA) techniques(58). Although useful, these
strategies are often time consuming and difficult to carry out over
time for individuals and their families, potentially leading to
relapses(59). Due to the potential mechanisms via which ZD could
impact in individuals with ASD, described above, it could be
relevant to screen ZD in individuals with ASD to design an
appropriate and personalised treatment plan. However, there are
no current evidence for the role of ZD in FS; therefore, future
studies are needed to fill this knowledge gap.

Moreover, taste perception features in individuals with ASD
may manifest hyper- or hyposensitivity to food stimuli. In the
latter case, individuals may tend towards a greater preference for
sweet, salty or spicy foods to achieve an adequate stimulus(6).

Concerning Zn supplementation, which has been used since
the 1980s(54), a recent systematic review has highlighted that it is
the most frequently employed intervention for the prevention
and treatment of taste disorders (i.e. ageusia/dysgeusia)(53).
However, the effectiveness of Zn supplementation and the
optimal dosage are still debated and controversial. Moreover, the
analysed studies often lacked a control group, and exhibited
inconsistencies in terms of intervention duration, sample size,
age, sex and comorbidities (often carried out in subjects with
cancer or Chronic Kidney Disease). As a result, these studies
were generally considered as ‘low quality’ overall(47). Regarding
ASD, there are currently no clinical trials exploring the role of Zn
in improving taste perception, indicating the need for further
research in this area.

The authors therefore emphasise the need for further
investigation in this regard, specifically focusing on evaluating
the potential role of Zn supplementation in individuals with ASD
in relation to alterations in sensory perception.

Factors influencing dietary Zn intake, absorption and
excretion in ASD

Inadequate dietary intake of absorbable Zn represents the
primary cause of ZD(11). This deficiency may result from low
dietary intake and/or low bioavailability of dietary Zn.

Causes of ZD under the category of reduced Zn absorption
primarily include Inflammatory Bowel Diseases, inherited
diseases (i.e. acrodermatitis enteropathica and cystic fibrosis),

Table 1. The multiple roles played by Zn in taste perception

Oral mechanisms Neural mechanisms

Epithelium and taste bud morphology maintenance(47,48) Favor the information transmission from taste cells to gustatory nerve fibres(54)

• alkaline phosphatase(47)

• carbonic anhydrase VI (gustatin)(51,54)
Modulates neuropeptides, such as NPY, and neurotransmitter concentrations in

the hypothalamus(54,55)

• expression of some TAS2R and of ENaC(49,50)

• taste bud normal activity by increasing calcium concentration
in saliva(53)

Putative indirect role influencing leptin, insulin and neuropeptide Y (NPY)
levels(1,34,35,55–57), which are all hypothesised to influence taste perception(51)

Legend. Explanation of the role of Zn in taste perception, distinguishing between the mechanisms put in place at the oral and neurological level.
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diarrhoea, unbalanced vegetarian or vegan diet, undernutrition
or hidden hunger conditions, eating disorders, alcoholism and
exocrine pancreatic insufficiency(2). Causes of ZD under the
category of reduced Zn intake are related to food preferences
and eating patterns, including conditions such as FS, which is
highly prevalent in the ASD population and could lead to
suboptimal Zn intake.

Analysing Zn absorption, it is important to point out that the
bioavailability of Zn content in food is low, about 20–50%(60,61)

and it depends on both quantitative and qualitative factors(61,62).
Among the food products, red meat, certain seafood, dairy
products, nuts, seeds, legumes and whole-grain cereals are
considered good dietary sources of Zn(62). Animal products, in
particular, are known to provide a more bioavailable source of
Zn than plant foods(61).

Factors with a positive, negative or ‘neutral’ effect on dietary
Zn bioavailability are presented in Table 2.

Although a low intake of phytate-rich food by individuals
with ASD might promote better absorption of dietary Zn since
phytates are the most potent inhibitors of Zn absorption(61,63,64),
this is not advisable since a reduced consumption of vegetables
and legumes increases the risk of micronutrient inadequacy and
dysbiosis due to low fibre content(67). Moreover, organic acids,
such as malic acid found in fruits, citric acid found in fruits and
milk, and lactic acid found in yogurt and fermented foods can
improve Zn absorption(61,64,65).

Another well-known mechanism that promotes Zn absorp-
tion is mediated by the protein content of the diet: free amino
acids can bind Zn2þ and be transported with it into the
enterocyte(61). Therefore, eating complete meals with all
macronutrients is even more recommendable. This recommen-
dation is also supported by the fact that such individuals with
ASD generally accept protein sources, with the exception of
legumes(6) and fish(68,69), which in some cases have a strong
smell and taste.

Increased Zn losses represent another category of ZD causes
and may result from GI disorders such as diarrhoea, as well as
urinary tract disorders including kidney disease and DM(2).

In this regard, the ratio between the amount of absorbed Zn
and the fraction of the mineral excreted is crucial, as it affects the
cellular content of Zn and its distribution. Over time, due to the
initial protective action of homeostatic mechanisms, it also
impacts the plasma Zn concentration itself(2,5). In fact, the
amount of retained Zn in the human body is highly dependent
on its dietary content(63). Therefore, it is not surprising that Zn is
primarily excreted with faeces and secondarily with urine(61).
Severe undernutrition and starvation conditions result in both an
increase of urinary Zn losses and a sedentary lifestyle(63). In fact,
a chronic reduction in physical activity level (i.e. sedentary
lifestyle) is associated with loss of muscle mass. Increased
urinary zinc excretion has been observed in individuals with
chronic reduction in physical activity levels(63), as zinc is well
represented within muscle tissue(2). Leading a sedentary lifestyle
is common among individuals with ASD(70), due also to motor
comorbidities, so the presence of increased urinary Zn losses is a
concrete potential issue in this population, exposing them (along
with the other factors previously described) to an increased risk
of ZD. T
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To summarise, Zn absorption is influenced by the compo-
sition of food matrix, vegetable food preparation techniques and
full meal consumption. On the other hand, Zn elimination is
influenced by the possible presence of existing Zn deficiencies
or excesses, as well as ongoing catabolic processes, which can
be associated with a sedentary lifestyle.

Zn requirements in individuals with ASD. Conclusions
and future prospects

Increased Zn requirement constitutes another recognised cause
of ZD(2,11). Considering the potential alterations in Zn absorption,
excretion or Zn intake previously discussed, the possibility of
increased Zn requirements in this population should be
considered. It is important to note that the dietary recommen-
dations provided by national and international organisations are
intended for the healthy population(71–75), and currently, there
are no specific dietary guidelines available for individuals
with ASD.

This gap in the existing guidelines contradicts the need for
personalised and adapted management of this disorder, as
emphasised by guidelines and action plans developed at the
global(76), European(77–80) and Italian(81,82) levels. These guide-
lines are endorsed by the most authoritative organisations in the
field, that is, Autism Speaks(83).

In fact, ASD is a sensitive and lifelong condition that impacts
every aspect of life. Hence, there is a crucial need for specific
nutritional guidelines to improve the quality of life of those
individuals, focusing on their health and inclusion in the
community(84). Considering the role of Zn, the frequent co-
presence of ZD risk factors and FS problems in individuals with
ASD highlights the potential need for formulating specific dietary
recommendations for this population. Furthermore, considering
the frequent occurrence of multiple comorbidities in individuals
with ASD (e.g. recurrent infection, systemic and neurological
inflammation, diarrhoea, microbiota alterations, leaky gut and
metabolic disorders), which can either cause or contribute to ZD,
relevant attention should be paid on Zn requirement.

Therefore, it is advisable to early detect Zn blood levels and
assess dietary intake in individuals with ASD, ideally during
infancy at the time of ASD diagnosis, to evaluate the presence of
ZD. A potential workflow for propermanagementwould involve
following the principles and the structure of the Nutrition Care
Process (NCP) developed by the American Dietetic Association,
which includes nutrition assessment, nutrition diagnosis,
nutrition intervention, nutrition monitoring and evaluation
(followed by periodic re-assessment)(85,86).

In reference to the results provided by the assessment phase
(interview and clinical data collection), the next step would
involve analysing plasma Zn levels(87). If a ZD condition is
identified, that is, <60 μg/dl in healthy adults(88), the most
appropriate strategy to address the deficiency would be
planned. In this regard, the primary approach to be implemented
is to improve dietary intake of Zn. If, on the other hand, the ZD
condition is severe and/or persistent, potential supplementation
strategies should be considered. In this scenario, recent
European Society for Clinical Nutrition and Metabolism

(ESPEN) recommendations suggest 0·5–1 mg/kg/d of elemental
zinc (Zn2þ) given orally for 3–4months(87). Moreover, the ESPEN
panel emphasises that organic compounds (such as zinc
histidinate, zinc gluconate and zinc orotate) are comparatively
better tolerated than inorganic zinc sulphate and zinc chlo-
ride(87). A reasonable approach in this casewould be to gradually
increase the zinc dosage from supplementation in parallel with
an adequate dietary zinc intake, with periodic monitoring of
blood levels(87) to tailor treatment to the subject’s response while
avoiding potential side effects. In fact, at doses >50 mg/d, GI
symptoms, such as nausea, abdominal discomfort and diarrhoea,
commonly occur(88).

In conclusion, future perspectives could concern the
development of a comprehensive screening tool that considers
all the factors to which individuals with ASD are generally
exposed, which can increase the risk of developing ZD, along
with the individual’s current symptomatology. This screening
tool would take the form of a questionnaire that provides a score
indicating the risk of developing ZD, tailored specifically for
individuals with ASD.
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