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A b s t r a c t . The revision of the Stodolkiewicz's Monte-Carlo code is pre-
sented. It t reats each superstar as a single star and follows the evolution 
and motion of all individual stellar objects. The first calculations, for equal-
mass iV-body systems with three-body energy generation accordingly to 
Spitzer's formulae, show good agreement with the direct iV-body calcula-
tions for Ν = 2000 and 10000 particles. 

1. I N T R O D U C T I O N . 

Our knowledge about the stellar content, kinematics and the influence of 
the environment on observational features of globular clusters and even 
richer stellar systems are increasing dramatically (as we could learn, for 
example, from talks presented on this conference). First, observations are 
reaching the point where segregation of mass within globular clusters can 
be observed directly and quantitatively. Second, observations have revealed 
tha t clusters with dense (collapsed) cores are relatively more concentrated 
to the galactic center than uncollapsed ones. Thus the influences of the envi-
ronment and mass spectrum are crucial for cluster evolution. Third, recent 
observations show tha t many different and fascinating types of binaries and 
binary remnants are present in abundance in globular clusters. Binaries, in 
addition to being a diagnostic of the evolutionary status of clusters, are 
directly involved in the physical processes of energy generation, providing 
the energy source necessary to stop the core collapse and then drive the 
core expansion. So, to model the evolution of real stellar systems and make 
meaningful comparison with observation one has to take into account the 
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complex interactions between stellar evolution and stellar dynamics. Of 
course all these demands can be easily fulfilled by direct iV-body models. 
But they are very time-consuming and they need a special-purpose hard-
ware to be run efficiently (Makino 1995, Taiji 1995). Another possibility is 
to use a code, which is very fast and can properly reproduce the standard 
relaxation process, and at the same time provides a clear and unambiguous 
way of introducing all the physical processes, which are important dur-
ing globular cluster evolution. Monte-Carlo codes, which use a statistical 
method of solving the Fokker-Planck equation, provide all the necessary 
flexibility. They were developed by Spitzer (1975, and references therein) 
and Hénon (1975, and references therein) in the early seventies, and sub-
stantially improved by Marchant & Shapiro (1980, and references therein) 
and Stodolkiewicz (1986, and references therein). Unfortunately, lack of 
fast computers at tha t time and development of the direct Fokker-Planck 
and gaseous models contributed to the abandonment of this method. But 
recent developments in computer hardware now make it possible to run a 
Monte-Carlo code efficiently. The great advantages of this method, besides 
of its simplicity and speed, are connected with the inclusion of anisotropy, 
and with the fact tha t added realism does not slow it down. 

The Monte-Carlo code can have another possible use. Despite the simpli-
fied nature of continuum models (Fokker-Planck and gaseous models) they 
will continue for a while to be the most commonly used codes for stellar 
dynamical evolution. The Monte-Carlo models can be used to optimize free 
parameters of continuum models and to check their validity as it was done 
in the comparison between small iV-body simulations and continuum ones 
(Giersz & Heggie 1994ab, Giersz & Spurzem 1994). This procedure should 
further increase our confidence of the results obtained in Fokker-Planck or 
gaseous simulations. 

2. M O N T E - C A R L O M E T H O D . 

2.1. BASIC IDEAS. 

The Monte-Carlo method can be regarded as a statistical way of solving the 
Fokker-Planck equation. The basic idea behind the Monte-Carlo method is 
as follows. During the time interval Δ£, much smaller than the relaxation 
time, the fluctuating gravitational field (connected with distant two-body 
interactions between stars) can be neglected in a first approximation and 
the system can be regarded as being in a steady state. However, the fluc-
tuat ing gravitational field causes slow and random changes of the particle 
orbit parameters. This effect is small over At but it builds up and becomes 
significant over the relaxation time scale and it has to be taken into ac-
count. To compute it, the standard Monte-Carlo tricks can be applied. The 
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perturbation of a test star orbit is a random quantity, so only its statistical 
properties mat ter . The exact value of each perturbation is unimportant . 
The procedure to calculate perturbations is as follows: (1) instead of inte-
grating the perturbations along the orbit, the perturbation is computed at 
a randomly selected point, (2) instead of considering the effect of all stars 
in the system, the perturbation is computed from a randomly chosen star, 
(3) the computed perturbation is multiplied by an appropriate factor in 
order to account for all the time points and all the system stars which have 
not been considered. If the procedure is correctly set up the evolution of 
the artificial system will be statistically the same as the evolution of the 
real one. For technical reasons (available computer memory and speed of 
computations) in all Monte-Carlo methods the whole system was divided 
into a certain number of superstars each consisting of a certain number 
of stars with the same mass, distance from the cluster center, radial and 
tangential velocities. 

The way of implementing this basic strategy divides Monte-Carlo codes 
into three different groups; referred to as "Princeton", "Hénon" and "Cor-
nell" methods (Spitzer 1987, and references therein). Each of these imple-
mentation was in the past successfully used in simulations of evolution of 
globular clusters and galactic nuclei. 

2.2. NEW IMPLEMENTATION OF THE STODOLKIEWICZ'S 
MONTE-CARLO SCHEME. 

The real power of Monte-Carlo codes was demonstrated by Stodolkiewicz 
(1982, 1985, 1986). He substantially improved Henon's version of Monte-
Carlo code by adding individual time-step scheme and a special procedure, 
which makes the total energy conservation much more strict. He used the 
code to model the evolution of globular clusters influenced by the following 
processes: formation of binaries by dynamical and tidal interactions, inter-
actions between binaries and field stars and between binaries themselves, 
collisions between stars, stellar evolution, the tidal field of the Galaxy and 
tidal shocks. These were unique calculations, and have never been repeated 
or superseded by anybody. Excellent and very detailed description of the 
Stodolkiewicz's code can be found in Stodolkiewicz (1982, 1986). 

Unfortunately the Stodolkiewicz's method is not suitable to correctly 
represent the very center of the system. In the core, as a result of the 
collapse, the density in a small and ununiform region reaches high values. 
This area is represented by only a few superstars. Therefore the statistical 
properties of this region are very poorly described. Moreover, superstars 
which constitute the core take part in processes which are responsible for 
energy generation and creation, in direct star interactions, many different 

https://doi.org/10.1017/S0074180900001431 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900001431


104 MIREK GIERSZ 

and fascinating types of binaries, binary remnants and coalesced stars. In 
the new code, in order to properly describe this region and these processes, 
each superstar is t reated as a single star and evolution and motion of all 
individual objects are followed. This improvement is possible only due to 
enormous increase of speed and memory in present day general-purpose 
computers. 

Note, tha t individual treatment of all objects in the system enables, 
for example, to investigate influence of primordial binaries on the system 
evolution. In the Stodolkiewicz's method all binaries or coalesced stars take 
par t only in relaxation process. They are neglected in computation of grav-
itational potential, so the process of mass segregation is not properly de-
scribed. 

Basically, the improvement mentioned above is the only major change 
to the Stodolkiewicz's original code. Other changes are rather cosmetic 
and do not have any influence on code flow or implementation of physical 
processes. 

3 . F I R S T R E S U L T S 

The Monte-Carlo method contains several free parameters, which have to 
be adjusted in order to get the proper description of the system evolution. 
The best way of adjusting them is to compare the results of Monte-Carlo 
and direct iV-body simulations. The same strategy was used to optimize 
free parameters of the continuum models (Giersz & Heggie 1994ab, Giersz 
& Spurzem 1995). 

The good statistical quality da ta for single mass iV-body simulations are 
available only for Ν = 250, 500, 1000, 2000 and 10000 (Giersz & Heggie 
1994ab, Giersz & Spurzem 1994, Aarseth & Spurzem 1995). Simulations 
with Ν = 2000 are the best for our purposes. They cover the system evo-
lution up to twelve collapse times and consist of sixteen separate runs. 

Most of the Monte-Carlo simulations were run for systems consisting 
of 2000 equal mass particles, but additionally a few simulations were per-
formed with Ν = 10000 and 30000. Pilot runs have shown tha t the best 
choice of free parameters is practically the same as chosen by Stodolkiewicz 
(1982). The results discussed bellow (N = 2000) were averaged over 25 
simulations, each having the same initial parameters but with different se-
quence of random numbers used to initialize the positions and velocities of 
the stars. 

During the phase of core collapse the iV-body and Monte-Carlo models 
follow each other very closely (Fig. 1). The first differences start to build 
up around the time of the core bounce. This is, particularly well, visible for 
the middle and outer Lagrangian radii. In the Monte-Carlo simulations the 
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Figure 1. Evolution of Lagrangian radii for Ν = 2000 for Monte-Carlo model (solid 
line) and N-body model (thick solid line). The core radii for both model are also shown. 

rate of system expansion is slower just after the core bounce and slightly 
faster for the advanced post-collapse evolution. For the inner parts of the 
system, up to the Lagrangian radius containing 10% of the total mass, the 
evolution for both models is very similar. Only the core collapse is slightly 
deeper in the iV-body model. It is worth to note that the collapse time 
for both models is practically the same. This further confirms the value of 
7 = 0.11, in the Coulomb logarithm, obtained by comparison of iV-body 
and continuum models (Giersz & Heggie 1994a). 

Similarly as for the inner Lagrangian radii the anisotropy for the inner 
half of the system is very well reproduced by the Monte-Carlo model (Fig. 
2). For the outermost part of the system (Lagrangian radii containing more 
than 90% of the total mass) the anisotropy in the iV-body simulations is 
larger from the very beginning of the core expansion. This suggests tha t in 
the iV-body simulations halo is developed faster than in the Monte-Carlo 
ones. At least part of the differences in the anisotropy labeled by 75% 
can be explained by the way of anisotropy computation. For the JV-body 
simulations the displayed anisotropy is computed for shell between 50% 
and 75% Lagrangian radii, while for the Monte-Carlo simulations for shell 
between 70% and 75% Lagrangian radii. Because the anisotropy increases 
with radius, so it should be slightly larger for the Monte-Carlo model than 
for the iV-body one. 

https://doi.org/10.1017/S0074180900001431 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900001431


106 MIREK GIERSZ 

Ν - b o d y t i m e u n i t s 

Figure 2. Evolution of the anisotropy for Ν = 2000 for Monte-Carlo model (solid line) 
and iV-body model (thick solid line). 

The clue to explain the differences between the iV-body and Monte-
Carlo models gives Fig. 3, which shows the energy balance. There are three 
main differences between models visible in this figure. Firstly, the energy 
carried out by single star escapers, Ee^ is much larger in the Monte-Carlo 
simulations. This is connected with the fact that the number of escapers is 
larger by about 30% and tha t the escapers connected with interactions be-
tween three-body binaries and field stars are more numerous in the Monte-
Carlo model. The larger number of escapers in the Monte-Carlo simulations 
is mainly connected with the fact that stars are immediately removed from 
the system, while in the direct iV-body simulations they are only removed 
when they are further than ten times the half-mass radius. Secondly, bi-
naries s tar t to form slightly earlier and the number and the total internal 
energy of escaping binaries, Ef%v are larger in the Monte-Carlo simulations. 
Thirdly, around the time of core bounce, the total internal binding energy of 
the three body binaries bound to the system, E\nt is smaller in the Monte-
Carlo simulations. This is despite that the number of binaries bound to the 
system is practically the same in both models. Too early energy generation 
by three-body binaries makes the core collapse less deep and as well less 
abrupt expansion of the outer parts of the system. On the other hand in 
the iV-body simulations binaries, which stay in the core, harden to higher 
binding energies than in the Monte-Carlo simulations. So they can produce 
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Figure 3. Energy balance for Ν = 2000 for Monte-Carlo model (solid line) and JV-body 
model (thick solid line). The meaning of the symbols is given in the text. 

more stars, which penetrate, on nearly radial orbits, the outermost parts 
of the system partially contributing to larger anisotropy. Smaller binding 
energy of the system, Eexi for Monte-Carlo simulations is connected with 
the fact tha t there are substantially more escapers than in the iV-body 
simulations. 

Comparison between the Monte-Carlo simulations and the i\T-body ones 
for Ν = 10000 shows, basically, the same features as in the case of Ν = 
2000. 

The gravothermal oscillations are the most pronounced feature of the 
post-collapse evolution of JV-body systems with number of stars greater 
than a few thousands. They were observed in gas (Bettwieser & Sugimoto 
1984, Goodman 1987, Heggie & Ramamani 1989), Fokker-Planck (Cohn et 
al 1986, Cohn, Hut & Wise 1989, Gao et al 1991) and recently in iV-body 
simulations (Makino 1995). The lowest value of Ν for which the gravother-
mal oscillations begin to show up is uncertain. But recent pilot iV-body 
simulation of system consisting of 16000 particles ( Makino 1995) shows 
clear oscillations. All this suggests that gravothermal oscillations should, 
as well, be present in the Monte-Carlo simulations, at least for Ν = 30000. 

In Fig. 4 the evolution of the logarithm of the central density for Ν = 
2000, 10000 and 30000, respectively is shown. It seems tha t gravothermal 
oscillations are visible in system with 30000 particles and there are some 
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Figure 4. Evolution of the central density for Ν = 2000, 10000 and 30000. Data for 
Ν = 10000 is shifted up by 1 in the logarithm of the central density. Data for Ν = 30000 
is shifted up by 2 in the logarithm of the central density . 

signs of gravothermal oscillations for Ν = 10000. This conclusion is some-
what ambiguous, because binary activities can give similar behaviour of 
the central density. But amplitudes of oscillations connected with binary 
activities are usually smaller than observed in 10000 and 30000 body simu-
lations. Evidently more simulations with broader range of Ν are needed to 
clarify this problem and to get a better agreement with the direct iV-body 
simulations. 

At the end I would like to show an unpublished (in international as-
tronomical literature) result of the Stodolkiewicz Monte-Carlo simulations 
of two-component system with 10 5 stars, performed in 1986 (Fig. 5) The 
evolution of central density for unevolved and evolved stars is shown to-
gether with the evolution of the total central density. The total central 
density (dominated by evolved stars) behaves in manner characteristic for 
gravothermal oscillations. I think that this is the remarkable result ob-
tained well before the gravothermal oscillations were confirmed and widely 
accepted by the astronomers. 

Finally, a few words about the efficiency of the new code. The calculation 
of Ν = 2000, 10000 and 30000 models takes about 2, 20 and 130 hours, 
respectively. The theory predicts a linear increase of computing time with 
N. This is connected with the fact tha t the most time consuming part of 
the code is the computation of the potential, which is proportional to Ν 
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Figure 5. Evolution of the central density for Stodolkiewicz Monte-Carlo model for 
Ν = 1 0 5 two component system. Arrows show the densities for evolved , unevolved stars 
and the total density. 

due to spherical symmtery of the system. The real calculations give slightly 
steeper dependence on Ν. It seems that this is connected with the fact tha t 
larger systems have more density peaks, which implies smaller time steps 
in order to properly resolve the system evolution. The high speed of the 
code makes it possible to run several different models to improve statistical 
quality of the da ta and investigate influence of different physical processes 
on cluster evolution. 

4. F U T U R E D E V E L O P M E N T S OF T H E N E W M O N T E - C A R L O 
C O D E 

The new Monte-Carlo code presented in the previous section can be treated 
only as a first approximations. Several important physical processes have 
to be included to make the simulations of stellar systems more realistic. 
The final code will contain the following physical processes: 

- formation of binaries due to dynamical and tidal interactions, 
- primordial binaries, 
- stellar evolution, 
- tidal field of Galaxy, and tidal shocks connected with crossing of the 

galactic plane and with large molecular clouds, 
- collisions between stars, 
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- interactions between binaries and stars and between binaries them-
selves. 

In the first stage of the code development (nearly completed) all processes 
connected with interactions between objects will be modeled using analyt-
ical cross sections available in the literature. This will allow the code to be 
tested and make possible comparison with continuum models. 

In the next stage interactions between groups of three and four (finite 
size) stars will be modeled by numerical integrations of their orbits (the 
first a t tempts are tested now). This more realistic approach ensures tha t 
processes of energy generation (the most important factor in the dynamical 
evolution of globular clusters) will be modeled more closely. 

The final stage will be the inclusion of a detailed 3-D hydrodynamical 
modeling of collisions between stars. This will be done by use of Smooth 
Particle Hydrodynamics (SPH) for a limited number of particles per star 
(a few hundred). This will allow for the first time close comparison between 
numerical models and observations of real globular clusters. I refer here to 
observations of various, peculiar objects like blue stragglers and millisec-
onds pulsars, which can be formed during collisions and encounters between 
stars. 
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