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ARTŪRAS DUBICKAS
Department of Mathematics and Informatics, Vilnius University, Naugarduko 24,

Vilnius LT-03225, Lithuania
E-mail: arturas.dubickas@mif.vu.lt

(Received 29 April 2008; accepted 9 September 2008)

Abstract. Let x0 < x1 < x2 < · · · be an increasing sequence of positive integers
given by the formula xn = �βxn−1 + γ � for n = 1, 2, 3, . . . , where β > 1 and γ are real
numbers and x0 is a positive integer. We describe the conditions on integers bd, . . . , b0,

not all zero, and on a real number β > 1 under which the sequence of integers wn =
bdxn+d + · · · + b0xn, n = 0, 1, 2, . . . , is bounded by a constant independent of n. The
conditions under which this sequence can be ultimately periodic are also described.
Finally, we prove a lower bound on the complexity function of the sequence qxn+1 −
pxn ∈ {0, 1, . . . , q − 1}, n = 0, 1, 2, . . . , where x0 is a positive integer, p > q > 1 are
coprime integers and xn = �pxn−1/q� for n = 1, 2, 3, . . . . A similar speculative result
concerning the complexity of the sequence of alternatives (F : x �→ x/2 or S : x �→ (3x +
1)/2) in the 3x + 1 problem is also given.

2000 Mathematics Subject Classification. 11B50, 11B83, 11R06, 68R15.

1. Introduction. For a given real number y, let {y}, �y� and �y� be the fractional
part, the integral part and the ceiling function of y, respectively. For any real numbers y
and β > 1, one can study the sequence of so-called β-transformations, given by y0 = y
and yn = {βyn−1} for n = 1, 2, 3, . . . . This sequence was first investigated by Rényi [18]
and Parry [17]. In particular, the sequence y0 = 1, yn = {βyn−1} for n = 1, 2, 3, . . . is
called the Rényi development of unity.

In fact, y ∈ [0, 1) can be expressed as

y =
∞∑

k=1

εk(y)β−k,

where εk(y) = �βyk−1� ∈ {0, 1, . . . , �β�}. This expression is called the β-expansion of y.

In general, if y = ∑∞
k=1 εkβ

−k with some ε1, ε2, ε3, . . . ∈ {0, 1, . . . , �β�} then this is not
necessarily the β-expansion of y (see [12, 17]). Clearly, the β-expansion of y is ultimately
periodic if and only if the sequence yn, n = 0, 1, 2, . . . , is ultimately periodic. Schmidt
[20] showed that if the β-expansion of every number y ∈ � ∩ [0, 1) is ultimately periodic
then β > 1 must be either a Pisot number or a Salem number. Recall that β > 1 is a
Pisot number (resp. Salem number) if it is an algebraic integer whose conjugates over
� (if any) all lie in the open unit disc |z| < 1 (resp. closed unit disc |z| � 1 with at least
one conjugate lying on the circle |z| = 1). Finite β-expansions have been studied in [9]
and [11]; those results are also related to Pisot numbers.

In this paper, in contrast to the fractional β-transformations, we shall study a kind
of integral β-transformations. Let x0 be a positive integer, and let β > 1 and γ be two
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real numbers such that (β − 1)x0 � 1 − γ. Consider an increasing sequence of positive
integers x0 < x1 < x2 < · · · generated by the map

Tβ,γ : x �→ �βx + γ �,

namely,

xn = �βxn−1 + γ � = Tn
β,γ (x0)

for each n � 1. Indeed, xn = �βxn−1 + γ � > βxn−1 + γ − 1 � xn−1 for n � 1, because
(β − 1)xn−1 � (β − 1)x0 � 1 − γ. For this sequence xn, n = 0, 1, 2, . . . , we prove the
following:

THEOREM 1. Let bd, . . . , b1, b0 be some integers, not all zero. Then the sequence

wn = bdxn+d + · · · + b1xn+1 + b0xn, n = 0, 1, 2, . . . ,

is bounded by an absolute constant B = B(b0, . . . , bd, β, γ, x0) independent of n if and
only if β > 1 is an algebraic number and the polynomial bdXd + · · · + b1X + b0 is
divisible by the minimal polynomial of β in �[X ].

For the sequence x0 < x1 < x2 < · · · , where xn = �βxn−1 + γ � with an algebraic
number β > 1, we prove the following:

THEOREM 2. Let β > 1 be an algebraic number with minimal polynomial bdXd

+ · · · + b1X + b0 ∈ �[X ]. If the sequence

wn = bdxn+d + · · · + b1xn+1 + b0xn, n = 0, 1, 2, . . . ,

is ultimately periodic, then β must be either a Pisot number or a Salem number.

Note that the conclusion of Theorem 2 is the same as that of Schmidt [20] and
as that of the author [5], where xn was defined as xn = �ξβn� with ξ �= 0. We remark
that the same statements as those of Theorems 1 and 2 hold if we replace the map
Tβ,γ : x �→ �βx + γ � by the map

Uβ,γ : x �→ �βx + γ �,

where (β − 1)x0 + γ > 0. (See the proofs of these two theorems in Sections 2 and
3.) The condition (β − 1)x0 + γ > 0 implies that the sequence xn = �βxn−1 + γ � =
Un

β,γ (x0) is strictly increasing, i.e. x0 < x1 < x2 < · · · . This sequence with γ = 0 was
considered by Odłyzko and Wilf [16]. They proved that if β � 2 or β = 2 − 1/q with
some integer q � 2 then xn = �c(β)βn� for each n � 0 and some constant c(β).

Clearly, if β > 1 is a rational integer then wn = xn+1 − βxn = 0, so the sequence
considered in Theorem 2 is purely periodic. In Section 6 we shall consider the sequence
x0 ∈ �, xn = �βxn−1�, n = 1, 2, 3, . . . , with a quadratic Pisot number β. We will show
that in this case the sequence wn, n = 0, 1, 2, . . . , considered in Theorem 2 is also
purely periodic.

Finally, let β be a rational number which is not an integer, i.e. β = p/q, where
p > q > 1 are some coprime integers. Consider the map

Up/q : x �→ �px/q�.
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The sequence of iterations

xn = �pxn−1/q� = Un
p/q(x0), n = 0, 1, 2, . . . ,

where x0 is a positive integer, is strictly increasing x0 < x1 < x2 < · · · . We have

wn = qxn+1 − pxn = q�pxn/q� − pxn ∈ {0, 1, . . . , q − 1},

so the sequence wn, n = 0, 1, 2, . . . , is bounded. Since β = p/q is neither a Pisot
number nor a Salem number, by Theorem 2 (see also the remark above concerning its
application to Uβ,γ ), this sequence is not ultimately periodic. In case p < q2, we can
prove much more than that.

THEOREM 3. Let w = w0, w1, w2, . . . be a sequence given by wn = qxn+1 − pxn,

n = 0, 1, 2, . . . , where p > q > 1 are two coprime integers, x0 is a positive integer and
xn = �pxn−1/q� for each n � 1. Then lim infn→∞ P(w, n)/n � log q/log(p/q).

Here, P(w, n) is the complexity function (or block-complexity function) of the
sequence w = w0, w1, w2, . . . , which, for every positive integer n, is defined as the
number of distinct vectors (wj, wj+1, . . . , wj+n−1) of length n, where j runs through all
non-negative integers 0, 1, 2, . . . . Clearly, the function P(w, n) is non-decreasing in n.

It is bounded from above by an absolute constant independent of n if and only if the
sequence w is ultimately periodic; otherwise, P(w, n) � n + 1 for each positive integer
n (see [14] or [15]). The sequences w for which equality P(w, n) = n + 1 holds for each
positive integer n are called Sturmian sequences (see [3, 4, 14]). They have the lowest
possible complexity among all sequences which are not ultimately periodic.

Note that in case p < q2 the constant log q/ log(p/q) is greater than 1. So, by
Theorem 3, lim infn→∞ P(w, n)/n > 1. In particular, this implies that the sequence
w considered in Theorem 3 is not Sturmian. If p < q3/2 then log q/ log(p/q) > 2,

so the sequence w cannot belong to the class of Arnoux–Rauzy sequences which
have complexity 2n + 1. Since wn (mod q) = −pxn (mod q) and gcd(p, q) = 1, the
complexity P(w, n) of w is equal to the complexity P(X , n) of the sequence X =
xn (mod q), n = 0, 1, 2, . . . .

For p/q = 3/2, the map U3/2 is given by

U3/2(x) =
{

3x/2, if x is even,
(3x + 1)/2, if x is odd.

This map was studied in [8, p. 127]. It is related to the distribution of the fractional
parts {ξ (3/2)n}, n = 0, 1, 2, . . . . The sequence given by x0 = 1 and xn = �3xn−1/2� =
Un

3/2(x0) for n � 1 is exactly the sequence A061419 of [21]. See also [2], where
similar sequences are used for expansions of integers in rational non-integer base.
A corresponding wn = 2xn+1 − 3xn = 2U3/2(xn) − 3xn is equal to 0 if xn is even, and
to 1 if xn is odd. So wn = xn (mod 2). Theorem 3 implies the following:

COROLLARY 4. Let 0 < x0 < x1 < x2 < · · · be a sequence of integers given by
xn = �3xn−1/2�, n = 1, 2, 3, . . . . Set Xn = xn (mod 2) ∈ {0, 1} for n � 0, and let X =
X0, X1, X2, . . . . Then P(X , n) > 1.70951129n for each sufficiently large n.

This corollary is the first result which claims something more than just non-
periodicity of the sequence of iterations given by the map U3/2. The famous unsolved
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3x + 1 problem asserts that the sequence of iterations given by a very similar map

U(x) =
{

x/2, if x is even,
(3x + 1)/2, if x is odd,

which starts at a positive integer must end up with the cycle 2 �→ 1 �→ 2 �→ 1 �→ · · · . Let
us write the letter F for the first alternative x �→ x/2 and the letter S for the second
alternative x �→ (3x + 1)/2. Starting from 15, we have

15 �→ 23 �→ 35 �→ 53 �→ 80 �→ 40 �→ 20 �→ 10 �→ 5 �→ 8 �→ 4 �→ 2 �→ 1 �→ 2 �→ 1 · · · .
A corresponding sequence of letters is SSSSFFFFSFFFSFS . . . = S4F4SF2(FS)∞.

Of course, the sequence of F, S is the following sequence of 0, 1

x0, x1, x2, x3, . . . (mod 2),

where F corresponds to 0 and S corresponds to 1. Assume that the 3x + 1-conjecture
is false. Then there is either a non-trivial cycle or the sequence xn, n = 1, 2, 3, . . . , is
unbounded. In the latter case (sometimes this is called the case of divergent trajectories),
we shall prove the following speculative result:

THEOREM 5. Let x0, x1, x2, . . . be a sequence of positive integers given by xn =
U(xn−1), n = 1, 2, 3, . . . . Assume that xn → ∞ as n → ∞. Set Xn = xn (mod 2) ∈
{0, 1} for n � 0, and let X = X0, X1, X2, . . . . Then P(X , n) > 1.70951129n for each
sufficiently large n.

For X given in Corollary 4, we conjecture that P(X , n) = 2n for every positive
integer n. More generally, we conjecture that P(w, n) = qn for every sequence w

considered in Theorem 3. (See also [16], where an even stronger statement is
conjectured in case q = p − 1.) It seems very likely that this conjecture is as difficult
as a corresponding conjecture claiming that the complexity function P(α, n) of the
expansion of an algebraic irrational number α in base q � 2, i.e.

α = �α� +
∞∑

k=1

gk(α)q−k,

gk(α) ∈ {0, 1, . . . , q − 1}, defined as the complexity of the sequence gk(α), k =
1, 2, 3, . . . , is equal to qn. So far the equality P(α, n) = qn is out of reach. By a
result of Adamczewski and Bugeaud [1], we know that P(α, n)/n → ∞ as n → ∞
for each algebraic irrational number α. One among earlier results [7] implies that
P(α, n) − n → ∞ as n → ∞. Analogously, in our problem, Theorem 3 implies that
P(w, n) − n → ∞ as n → ∞ in case p < q2.

The sequence considered in Corollary 4 is related to the so-called Josephus problem
(see, e.g., [13, 16, 19]). There are N places arranged around a circle and numbered
clockwise 1, 2, . . . , N. Each of N people takes one of the places. Then the pth is
executed. If some place is just vacated, then the pth one of the remaining survivors
clockwise will be executed next and so on, until just one remains. Which is the initial
place Jp(N) of the last survivor? The answer is given in terms of one of the above
sequences. Given integer p � 2, consider the sequence x0, x1, x2, . . . defined by x0 = 1
and xn = �pxn−1/(p − 1)� for n � 1. Then

Jp(N) = pN + 1 − xk,
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where k is the least integer such that xk > (p − 1)N (see, e.g., Section 3.3 in [10]
or [16]).

Note that wn = (p − 1)xn+1 − pxn modulo p − 1 is equal to xn (mod (p − 1)). Put
Xn = xn (mod (p − 1)) ∈ {0, 1, . . . , p − 2}. The constant

K(p) = 1 + 1
p

∞∑
k=0

Xk

(
p − 1

p

)k

appears in [16], where the exact formula for J3(n) was obtained. In particular, K(2) = 1,

K(3) = 1.6222705028 . . . . Theorem 3 implies that, for every integer p � 3 and every
ε > 0, the complexity function P(X , n) of the sequence X = X0, X1, X2, . . . is at least
(1/(log p/ log(p − 1) − 1) − ε)n for each sufficiently large n.

2. Proof of Theorem 1. Write xn+m = �βxn+m−1 + γ � = βxn+m−1 + τn+m−1 for
each n � 0 and each m � 1, where τ0, τ1, τ2, . . . ∈ (γ − 1, γ ]. Then

xn+m = βmxn + βm−1τn + βm−2τn+1 + · · · + τn+m−1.

Applying this formula to m = 1, 2, . . . , d and putting corresponding values into

wn = bdxn+d + · · · + b1xn+1 + b0xn,

we find that

wn = (bdβ
d + · · · + b1β + b0)xn +

d−1∑
j=0

τn+j

d−j−1∑
i=0

bi+j+1β
i.

Since | ∑d−j−1
i=0 bi+j+1β

i| � βd−1(|bd | + · · · + |b1|) and |τn+j| < |γ | + 1, the mo-
dulus of the double sum is bounded from above by B0 = dβd−1(|bd | + · · · + |b1|)(|γ | +
1). Hence the sequence wn, n = 0, 1, 2, . . . , is bounded by a constant B independent of n
if and only if the term (bdβ

d + · · · + b1β + b0)xn, n = 0, 1, 2, . . . , is bounded. However,
xn → ∞ as n → ∞, because x0 < x1 < x2 < · · · is strictly increasing. Evidently, if there
is a constant B1 independent of n such that |(bdβ

d + · · · + b1β + b0)xn| � B1 for each
n � 0 then bdβ

d + · · · + b1β + b0 = 0. Hence bdXd + · · · + b1X + b0 is divisible by the
minimal polynomial of β in �[X ].

On the other hand, if bdXd + · · · + b1X + b0 is divisible by the minimal
polynomial of an algebraic number β then bdβ

d + · · · + b1β + b0 = 0. Thus |wn| =
| ∑d−1

j=0 τn+j
∑d−j−1

i=0 bi+j+1β
i| is bounded from above by the constant B0 = dβd−1(|bd | +

· · · + |b1|)(|γ | + 1).

3. Proof of Theorem 2. Below, we shall use the following lemma (which is a
special case of Lemma 1 in [6]):

LEMMA 6. Let adXd + · · · + a1X + a0 = ad(X − α1) · · · (X − αd) ∈ �[X ] be an
irreducible polynomial, ad > 0, and let zn, n = 0, 1, 2, . . . be a sequence of integers
satisfying adzn+d + · · · + a1zn+1 + a0zn = 0 for each n � n0. Then α = α1 is an algebraic
integer, namely ad = 1, and there is a polynomial Q(X) ∈ �[X ] such that

zn = Q(α1)αn
1 + · · · + Q(αd)αn

d
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for each n � n0.

Suppose that there is a positive integer t such that wn = wn+t for each n � n0. Then

bd(xn+d+t − xn+d) + · · · + b1(xn+1+t − xn+1) + b0(xn+t − xn) = 0

for each n � n0. Here, each difference xn+j+t − xn+j, where j = 0, 1, . . . , d, is a positive
integer. Hence, by Lemma 6, there exists a polynomial G(X) with rational coefficients
such that

xn+t − xn = G(β1)βn
1 + · · · + G(βd)βn

d

for each n � n0, where β1 = β, β2, . . . , βd are the conjugates of β > 1 over �, and β

must be an algebraic integer, i.e. bd = 1. If d = 1, namely, β > 1 is a rational number,
then β must be a positive integer greater than 1. So it is a Pisot number.

Suppose that d � 2. Using the inequality

|xn+1 − βxn| = |�βxn + γ � − βxn| = |γ − {βxn + γ }| < |γ | + 1,

which holds for each n � 0, we deduce that

∣∣∣∣∣
d∑

j=1

G(βj)β
n+1
j − β1

d∑
j=1

G(βj)βn
j

∣∣∣∣∣ = |xn+t+1 − xn+1 − β(xn+t − xn) | < 2(|γ | + 1).

So the modulus of

δn =
d∑

j=1

G(βj)β
n+1
j − β1

d∑
j=1

G(βj)βn
j =

d∑
j=2

(βj − β1)G(βj)βn
j

is smaller than 2(|γ | + 1) for every n � n0.

Taking d − 1 consecutive equations for δn, . . . , δn+d−2, where n � n0 and

δn+i =
d∑

j=2

(βj − β1)β i
j G(βj)βn

j , i = 0, 1, . . . , d − 2,

we see that the vector (βn
2 , . . . , βn

d ) is a solution of a non-homogeneous linear system.
By Cramer’s rule, this linear system has a unique solution, because the corresponding
matrix A = ((βj − β1)G(βj)β i

j )0�i�d−2, 2�j�d is non-singular. Indeed, its determinant
is equal to the Vandermonde determinant

∏
2�k<j�d(βj − βk) multiplied by the factor∏d

j=2(βj − β1)G(βj). Here (βj − β1)G(βj) �= 0 for j = 2, . . . , d, because G(βj) �= 0 for
each j. Hence the matrix A is non-singular.

Now, using the fact that |δn|, . . . , |δn+d−2| < 2(|γ | + 1), by Cramer’s rule, we
deduce that each |βn

j |, where j = 2, . . . , d and n � n0, is bounded from above by
a constant C independent of n. The inequality |βn

j | � C, where n = n0, n0 + 1, n0 +
2, . . . , shows that |βj| � 1. Thus |βj| � 1 for every j = 2, . . . , d. Since β = β1 > 1 is an
algebraic integer, we conclude that β must be either a Pisot number or a Salem number.

https://doi.org/10.1017/S0017089508004655 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089508004655


ON INTEGER SEQUENCES GENERATED BY LINEAR MAPS 249

4. Proof of Theorem 3. Since wn = qxn+1 − pxn ∈ {0, 1, . . . , q − 1} for each n �
0, expressing xn+m as pxn+m−1/q + wn+m−1/q and so on, we obtain

xn+m = (p/q)mxn + q−1((p/q)m−1wn + (p/q)m−2wn+1 + · · · + wn+m−1).

Suppose that the limit lim infn→∞ P(w, n)/n is strictly smaller than log q/ log(p/q).
Then there is an infinite sequence of positive integers m1 < m2 < m3 < · · · such that
P(w, mk) � mk(log q/ log(p/q) − ε) for some ε > 0 and each k � 1.

Set m = mk for some fixed k � 1 which is so large that

εmk log(p/q) > log(x0 + q − 1).

Consider the vectors (wn, wn+1, . . . , wn+m−1) for n = 0, 1, . . . , �m(log q/ log(p/q) − ε)�.
There are more than m(log q/ log(p/q) − ε) � P(w, m) of such vectors, so at least two
of them must be equal, say (ws, . . . , ws+m−1) = (wn, . . . , wn+m−1), where 0 � s < n �
�m(log q/ log(p/q) − ε)�. Subtracting

xs+m = (p/q)mxs + q−1((p/q)m−1ws + (p/q)m−2ws+1 + · · · + ws+m−1)

from xn+m, we deduce that

xn+m − xs+m = (p/q)m(xn − xs).

Hence qm divides xn − xs. Since xn > xs > 0, this implies that qm must be smaller than
xn. But

xn = (p/q)nx0 + q−1((p/q)n−1w0 + (p/q)n−2w1 + · · · + wn−1),

so, using wj � q − 1, we deduce that

qm < xn � (p/q)nx0 + ((p/q)n − 1)(q − 1)/(p − q) < (p/q)n(x0 + q − 1).

By taking the logarithms of both sides and using

n � �m(log q/ log(p/q) − ε)� � m(log q/ log(p/q) − ε),

we obtain

m log q < log xn < n log(p/q) + log(x0 + q − 1) � m log q − εm log(p/q)

+ log(x0 + q − 1).

It follows that εmk log(p/q) = εm log(p/q) < log(x0 + q − 1), contrary to our assump-
tion on mk.

5. Proof of Theorem 5. Note that xn+1 = (unxn + vn)/2, where (un, vn) = (1, 0)
if Xn = xn (mod 2) = 0 and (un, vn) = (3, 1) if Xn = xn (mod 2) = 1. Let n � 0 and
m � 1 be two integers. Expressing xn+m by xn+m−1 and so on up to xn, we obtain

xn+m = un+m−1 · · · unxn

2m
+ un+m−1 · · · un+1vn

2m
+ un+m−1 · · · un+2vn+1

2m−1
+ · · · + vn+m−1

2
.
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Suppose that the limit lim infn→∞ P(X , n)/n is strictly smaller than log 2/ log(3/2).
Then there is an infinite sequence of positive integers m1 < m2 < m3 < · · · such that
P(X , mk) � mk(log 2/ log(3/2) − ε) for some ε > 0 and each k � 1.

Fix any m ∈ {m1, m2, m3, · · ·} satisfying

m log(3/2) > ε−1 log(x0 + 1).

Consider the vectors (Xn, Xn+1, . . . , Xn+m−1) for n = 0, 1, . . . , �m(log 2/ log(3/2) − ε)�.
There are more than m(log 2/ log(3/2) − ε) � P(X , m) of such vectors. Hence, at least
two of them must be equal, for instance (Xs, . . . , Xs+m−1) = (Xn, . . . , Xn+m−1), where
0 � s < n � �m(log 2/ log(3/2) − ε)�. Subtracting

xs+m = us+m−1 · · · usxs

2m
+ us+m−1 · · · us+1vs

2m
+ us+m−1 · · · us+2vs+1

2m−1
+ · · · + vs+m−1

2

from a corresponding expression for xn+m and using un+j = us+j, vn+j = vs+j for j =
0, 1, . . . , m − 1, we derive that

xn+m − xs+m = un+m−1 · · · un

2m
(xn − xs).

Recall that uk ∈ {1, 3}, so gcd(un+m−1 · · · un, 2m) = 1. Hence 2m divides |xn − xs|.
We claim that xn �= xs. Indeed, if xn = xs then the sequence xs, xs+1, xs+2, . . . is an
infinite repetition of the string xs, . . . , xn−1. So the sequence x0, x1, x2, . . . is bounded,
contrary to the condition of the theorem. From

xn = un−1 · · · u0x0

2n
+ un−1 · · · u1v0

2n
+ un−1 · · · u2v1

2n−1
+ · · · + vn−1

2
,

using uk ∈ {1, 3}, vk ∈ {0, 1}, we derive that xn < (3/2)n(x0 + 1). Similarly, xs <

(3/2)s(x0 + 1). Hence,

2m � |xn − xs| < (3/2)n(x0 + 1),

because n > s.
By taking the logarithms and using

n � �m(log 2/ log(3/2) − ε)� � m(log 2/ log(3/2) − ε),

we obtain

m log 2 < n log(3/2) + log(x0 + 1) � m log 2 − εm log(3/2) + log(x0 + 1).

Consequently, m log(3/2) < ε−1 log(x0 + 1), contrary to our assumption on m.

Therefore, lim infn→∞ P(X , n)/n � log 2/ log(3/2), giving P(X , n) > 1.70951129n
for each sufficiently large n.

6. Examples. Let us take β = (1 + √
5)/2. Consider the map x �→ �βx� and a

sequence of iterations x0 = 1, xn = �βxn−1� associated to it. Clearly, the golden mean
(1 + √

5)/2 is a Pisot number, because its conjugate θ = (1 − √
5)/2 lies in (−1, 0). We

claim that

xn = Fn+2 − 1 for each n � 0.
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Here Fn is the nth Fibonacci number, given by F0 = F1 = 1, Fn+2 = Fn+1 + Fn.

We will show first that

xn+2 = xn+1 + xn + 1

for each n � 0. Indeed, writing xn+1 = βxn + τn and xn+2 = βxn+1 + τn+1, where
τn, τn+1 ∈ (0, 1), we obtain

xn+2 − xn+1 − xn = βxn+1 + τn+1 − xn+1 − xn

= (β2 − β − 1)xn + (β − 1)τn + τn+1 = (β − 1)τn + τn+1.

Since xn+2 − xn+1 − xn ∈ (0, β) is an integer, it is equal to 1. Hence xn+2 = xn+1 + xn +
1, as claimed. In particular, we see that, for the sequence x0, x1, x2, . . . , a corresponding
sequence wn = xn+2 − xn+1 − xn, n = 0, 1, 2, . . . , considered in Theorem 2 is purely
periodic.

Next, using x0 = 1 = F2 − 1 and x1 = �β� = 2 = F3 − 1, by induction on n, we
find that

xn+2 = xn+1 + xn + 1 = Fn+3 − 1 + Fn+2 − 1 + 1 = Fn+3 + Fn+2 − 1 = Fn+4 − 1,

so the formula xn = Fn+2 − 1 holds for each n � 0.

More generally, let β be a quadratic Pisot number with minimal polynomial X2 −
aX + b. Consider the sequence which starts with an arbitrary positive integer x0 and
is given by the formula xn = �βxn−1� for n � 1. Let β ′ be the conjugate of β, i.e.
X2 − aX + b = (X − β)(X − β ′). Writing xn+1 = βxn + τn, we find that

wn = xn+2 − axn+1 + bxn = (β − a)xn+1 + τn+1 + bxn

= ((β − a)β + b)xn + τn+1 + (β − a)τn = τn+1 + (β − a)τn.

Since 0 < τn, τn+1 < 1 and β − a = −b/β = −β ′, where −1 < β ′ < 1, we see that wn ∈
(0, 1 − β ′) if β ′ is negative and wn ∈ (−β ′, 1) if β ′ is positive. It follows that, for each
n � 0, we have wn = 1 if β ′ < 0 and wn = 0 if β ′ > 0. In both cases, the sequence wn,

n = 0, 1, 2, . . . , is purely periodic.
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