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ELECTROMAGNETIC-GRAVITATIONAL THEORY
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. . . . n
1. Introduction. In an n-dimensional manifold V7,
. i .

coordinates x for i=1,...,n, leteach curve x(t) for.

1
tO <t< t1 of class C° define a corresponding X\ by means of

the integral equation

t
1

(1) Mt ) = t) + [ Lix k4T

B

For a given ).(tO) = \_, the problem of minimizing \ = )\(t4)

0

given by (1) relative to curves joining given points X, and %

. n . c s s
in V' can be interpreted as a Bolza problem of minimizing

2
T =t + f L(x, %, \)dT

t
0

in the n+1 dimensional space of (x,\), subject to the restraint
¢(X’xrer)=x = L(X,)'{,)\.) =0

If L is of class C3 in a region R of the 2n+1 dimensional

space (x, X\, %) and if an extremal (x(t), \(t)) of class C1

(except at corners) exists which (along with the derivatives x)
lies within R, then the multiplier method applies ([1] pp. 189-
202) since N # 0 and the curve satisfies the Euler- Lagrange

equations
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d d
dt F.i‘Fi dt FX'Fx
X X

where F = L +p¢ and p = p(t) is the multiplier. Elimination
of u from this equation, as in [2] leads to the equations

d )
(2) at T Li_L.iL)\’ » =L
X x X

as necessary conditions for an extremum.

The system (2) consists in n+1 differential equations
from which the n+1 unknowns x A\ may be found in general

provided that the equations are independent.

2. An Application to Elementary Mechanics. In the
particular case

- v
(3) Me) = [ [T-V+m)\]d7+7\(to)

where T 1is the kinetic, V the potential energy,

== g X% Vo= V()

it is easily verified that the right hand side of (2) gives rise to a
resistance term in addition to the usual conservative force field,
so that the extremals of (3) are given by

9 .J
L (mv,) = - —Y + yv, where v, = g,,x'} .
ot i 9% i i 71

(4)

Proceeding as in elementary mechanics, the total energy T +V
along the trajectories satisfying Newton's law (4) can be found as
follows:

d . 5 .i
gt L =g (mvyx

and substitution from (4) yields

490

https://doi.org/10.4153/CMB-1966-060-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1966-060-8

V +2< T
m

d d
3t L7 aq

which may be written in the form

Yy (m -
= (ST +V)} =T-V.

d m
(5) dt{v(T+V)}-
However, X\ (t) as defined by'.(3) along the extremals satisfies
d )% '
Pieet = - — t
3t xMt)=T V+mx( )

and comparing with (5) it follows that

LEMMA 1. Along the extremals of (3), viz. the curves
satisfying Newton's law in the case of a conservative force field
and resistance (4), the action \ is proportional to the mass
times the total energy ’

(6) vA =m(T + V) for all t,

provided )\(to) is initially so chosen.

As in the classical case, the action integral (3) can be
transformed into parameter invariant form with the aid of (6).
Formally, by (6) the integral (3) becomes

t
M) = [ 2T dT + (e Mt) =T (T +V)

t
0

and the standard procedure yields

t i.j] m
(7) AMt) = f /;(v)\ - mV)gij:'c < 4T+ T(TO +V0)

t
0

where TO and V _ denote the value of the kinetic and potential

0
energies initially.

In the form (7) the differential geometry of [3] and [4] is
applicable, and since the auto-parallel curves were shown ob-
tainable from (7) by considering \ = )\O fixed under the integral
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before applying the variational methods, it follows that the
equations of motion

5 __ v
(8) 5 (V) = - =
ox

are the auto-parallel curves in this geometry; the constant

total energy is givenby T +V = _ryr_; \ Hence equations (8) and

0"
(4) are contained within the geometry of (7) as auto-parallel and
geodesic curves respectively.

3. Geometry of the Electromagnetic Action Integral.
The action integral for Electromagnetic theory is usually taken
in the form [5]

(9) \ = f ig_.(x)fc.x + Ai(x)x a7

corresponding to a Finsler geometry; the vector potential A,
P g g y P i

defines the electromagnetic field tensor Fij = where

A .- A .
i il
"/" denotes covariant differentiation relative to the tensor gij .

. e
The indicatrices of (9), viz. the set of x 's satisfying

/+ gij(x)}'clicj + Ai(:‘:)s;1 =1,

may be written in the form

(+g.. - AA)KK +2A% =1
— °ij 17 i

and hence define a "conic" (in n-space) whose center may be
found by "completing the square''. Set

(10)

aq ¥*

Lgo ¥

L= .- A A, .
ij igi) i jk k

oo

(we have assumed det(gi.) # 0, but it will be shown that this is
the case if det gij # 0 and gl‘]AiA-j # + 1), then the indicatrix

may be written
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* .1 *ir +J o *js *rs
+ =
gij (x +¢g Ar)(x g As) 1+¢g ArAs
from which it is clear that the center of the conic is at the point
i *ir

(11) X =-g Ar

in the tangent space. Hence the Finsler space associated with
(9) is similar to a Riemannian space except that the conic (the
unit circle in the Minkowsky tangent space) is centered at

*ir ‘ L
-gl Ar instead of at X =0,

i

Alternatively, the Monge cone at (xO

,)\O) (see fig. 1) for

the Hamilton-Jacobi equation

H(xl,pi) =41 where p, = -

associated with (9) is centered about the ray determined by the

) ®3
vector with components yl = - glr Ar for i=1,...,n and

+ .
yn 1. 1 in the tangent space at (xlo,)\o). If the axes of these

cones determines a direction field whose integral curves form

a schlicht covering of some sufficiently large region Rn+1 ,

then these curves may also be used to define a coordinate trans-

formation of (a subset of) Rn+1 as follows: any point p in

Rn+1 determines a unique integral curve I' (see fig. 2) inter-
secting the subspace \ = 0 at say (23,0). If (xg,)\o) are the
coordinates of p, then the coordinate transformation T is
defined by

i
T: (xo,k
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Fig. I Fig. 2

Clearly X\ is fixed under T. The Monge cones are now
centered about the new coordinate curves :21 = XB and (since the

cones were conics) the Hamilton-Jacobi equation is similar to
that of a Riemannian geometry. Since the transformation depends
on \ however, the partial differential equation will have the form
A& ,S,5,)=1 where p, ==
) )= w =T
’ pl © pl 1

that is, the H-J equation for a Riemannian fatigue geometry

(3], [4].

It is therefore to be expected that any action integral of the
form (9) may be transformed into an action integral of the form

(12) Me,) = f /h (ENEE at

by a transformation leaving X\ invariant, and that this transfor-
mation is determined by the system of differential equations (11).
We proceed now to verify analytically the above assertion.

4, The (Local) Group of Transformations.i It follows

The author gratefully acknowledges the many suggestions of the
referee regarding this section.
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from (9) that the action \ satisfies X - < A(x), x > = J+g(x; %, x)
>
where <,§ denotes the inner product relative to the metric

tensor g. This may be written in the alternate form

2 X .. .
(13) A= g (xx,x) +2X < A(x),xg

&
where g=+g- A®A asin (10) and & denotes tensor products.

*
LEMMA 2. The tensor g is non-singular if and only if

S
g 1is mon-singular and < A, A> F+1.

t=]

1
Proof. Consider the determinant of the augmented
matrix

1 A, 1 A,
J - o
= |

0 +g.. - A A, ! A +g..

—°ij i i —>ij

where the right side was obtained by elementary row operations.
An expansion by the first rows yields ligijl - Ain cof(i-gij) on

the right from which the lemma readily follows.
The action )\ as given in (12) satisfies

(14) AT = h(%R, ®)

in terms of a metric tensor h which depends on \; the previous
\

section then indicates that (13) and (14) are equivalent under X\

dependent coordinate transformations. Specifically, we consider

3
a one parameter family of transformations X = go)\(x) of class C

in x and \, defined on some region |J of a manifold Vn; let

- 3
q))\'l (X) denote the inverse transformation also of class C”™ . We

may consider N as defining a mapping of |J onto a region

1 The author gratefully acknowledges the many suggestions of the
referee regarding this section.
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U )\; for fixed x and variable X\, qo)\(x) traces a curve whose

tangent vector is °('0X (x) at x)\ = q))\ (x), where "o" denotes
differentiation with respect to X. The mapping N induces the

standard mapping ‘cp)\(x) of vectors (¢ 1in the tangent space at x

onto the vectors g'o\(x)g in the tangent space at X, - The in-

verse mapping <b):1 (x)\) exists at x)\ if the Jacobian of 2\

does not vanish at x.
If h is a metric tensor defined onU , then (p)\ induces

a metric tensor h defined on U)\ by
X
-1
h(x sL,.p ) =h
(15) )\(X)\ Loty ) o, x

v -1 -1
)i o, )éxmp (

Y et

\

for arbitrary vectors g)\, Hy in the tangent space at x

Hence h 1is also bi-linear in its vector arguments. Any curve
A
x(t) in |J is deformed by 2y into a curve in |J _ . If further

= \(t) also depends on t the curve is further deformed into

%(t) = go)\(t)(x(t)) and the tangent vector at X is

% = Za)\(x) X + ('p)\(X))'C.

By the bi-linearity of h in (15), it follows that

N
(16) =S = o . i .2 .
h(%;%, %) = h(x;%, %) + 2X h(x;%, B) + X" h(x;B, B)
)N
where
(17) B=¢"" (@6 ()
N 8, (x).

If (16) is substituted in (14) and the result compared to (13), it
follows that

LEMMA 3, For (14) to be equivalent to (13) under the
transformation qo?x and (15), it is necessary and sufficient that
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(18) k) =hGsk k) {1-<B,By}

. _ . -1
(19) <A(x),x§ = <B’Xi{1'<B’BE}

for all x.

But (18) implies < B, B i independent of N\ and hence (19)
implies < B, xﬁ also independent of X\ for all x; therefore

B = B(x) is independent of N\ and (17) may be written

(171) 93)\(X) = é’)\(X) B(x) .

. -1 . s . .
Since N ((pk (x)) = x, differentiation with respect to \ vyields
° -1 ' -1 . ° -1

<P)\(¢)\ (x)) = - <P)\(<p7\ (x)) 2 (x)

and replacing x by goii(x) in (17') yields

(20) o) = - B(cpf(x)).

It follows [6] that (pii form a local one parameter group of

1

transformations with inverses ¢\ = o Replacing X\ by -

X
in (20) introduces a minus sign because of '"o'" and yields

LEMMA 4. In order that (14) and (13) be equivalent
under (p)\ and (15), it is necessary and sufficient that the local

group of transformations ?\ satisfy
2 ? = B(p, (3
(21) ¢, (x) = Ble, (x))

where the vector field B is related to A by (19).

It remains only to relate (21) and (11). In the notation of
the previous section, (18) and (19) become

* -1
1 o = -
(18") % {1-<B,B3} " by
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(19") g..AJ =

Hence,

and by (19')

(22)

.1 i . .
Hence (11) can be written x = - B (x) and comparison with (20)
verifies the assertion of the previous section.

We derive now for future reference the following formulas.

LEMMA i(’)) xij i . AlAJ
’ S Ti-<aa>
_ ij
(ii) h,. = i)
1+g7AA
gAn,
(iii) < A,A>=<B,B i= oy
g 1+g7A A,
1]
. i . . *ir% i
Proof. (i) may be verified directly since g grj = 6_]'
Substitution of (22) in (18') yields
- <B,B
g %A A A

i j=1-<B,Bﬁ

is
and using (i) yields (iii). Since 1-<B,B3 = (1 + glJAiA.)

-1
by (iii), (ii) follows from (18').
We recapitulate these results in the alternate form:
THEOREM 1. Given a non-singular metric tensor gij ,
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*1j

and define E =+g..-AA . I glJA,A, # +1, then g exists,
— %ij —7ij iy = iy -

given in lemma 5. Then the system of differential equations

dx1

o ki)
a -8 A

defines a (local) group of coordinate transformations X = @)\(X)

under which the action integral

t .

(9) My [ [relnik ) + Aikl a7 + 4,
t
0

is transformed into the form

t
(12") M) = [ /h(x%,%) 47+ N
t A
0
where h is defined by (15) in terms of h, and h by lemma 5
A
in terms of g. Definition (15) of h corresponds to
A
xr dx
(23) h, (X)=h (%, \) = —— == h__(x).
A 1 5% &% °°

Proof. Since (13) and (14) are equivalent differential

equations, and MtO) = )\O in both action integrals, the theorem

follows provided the proper sign is chosen for the roots.

Hence any electromagnetic action integral (9) can be
transformed into the form (12) by means of action dependent
coordinate transformations q))\ ; the converse is not true in

general in view of (15) and (18). In (12') the metric tensor may
be written in the form h(X, \; {, ) rather than h(X;¢,u) and

\
hence (15) implies the existence of a metric tensor E(}‘;;g, W)

such that
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Differentiation with respect to X\ then yields

5
=]

+ £h=0

@
>
wits

where denotes the Lie derivative of H, for fixed X,

(se]IC8

relative to the vector field B corresponding to the transformations

ey - It follows that

LEMMA 6. For the action integral (12) to be equivalent
to (9) under transformations. a}\ , it is necessary that a vector

field B exist such that

aﬁi.
) —L -5 -B. .
(24) N i/j il

where '"'/" denotes covariant differentiation of

B (%) = b (% VB (%)
1 1_]

relative to h. . for fixed . If B exists, then it is unigue up to

ij -
a Killing vector v corresponding to an isometry in the Riemannian
Geometry determined by Eij(i, \) for fixed X.

If the required vector field B exists then the corresponding

transformations will be given by x = Eﬁ)\(i) where % = B(¢)\) .
A
Clearly g?)\ = (P;\i =0y and by (20), B = -B. The transition

from (12) or (12') to (9) is given explicitly in the component no-
tation by

THEOREM 2. Given a Riemannian fatigue geometry (12)

for which a vector field El(i) exists satisfying (24). Then the
-1

= —Bl(i) defines a (local)

system of differential equations

dx

group of transformations x = (,01 (X) under which (12) may be

transformed into (9) if Eij—BlEJ # 1 where
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* 17 *
(25) -~ DE — (26) = DEF — =j
i - r_ s A = h B
ij 1-h BB i ij
rs
(27) DEFf’ +AA (28) ¢ -i 'a;{—s g
iglj = hij i ®ij oxt  ax rs
T
and A =& 1.
—_— i i r
ox

Proof. Equations (25), (26) and (27) are simply (18'),
(19") and (10) respectively where terms have been suitably re-
labelled since we are dealing with the converse problem.
Equation (28) then corresponds to (23).

5. Physical Aspects of Faticue Geometry. The above
transformations consist essentially in showing the equivalence
of the differential equations (13) and (14) under transformations
leaving N invariant. Equation (13) may be written
(i=1,2,3,4)

.2 .1 - 1]
! - =
(13") Iy ZAix N+ (AiAj + gij)x X 0

while (14) is

(14") - h (®NE R = o0.

One may consider the action X\ (or any physical measurement)
. . 5 .
as a fifth dimension, X = x . Then (14') immediately suggests

an analogy with the null curves of a manifold V5 with metric

tensor Ysq =1, Yig = Vg = 0, ¥

~

.. = E__(XQ), where o=1,...,5.
1) 1)
B

5 . . . @ @,
Then V admits a coordinate transformation x = ¢ (X ) under

5 __5 . .
which x° = X and further, the metric tensor becomes indepen-

5
ici i b =4, yo, SY.. T -A,
dent oi x , explicitly given by Y55 1 Yg; = Y5 ;
Yij =g - But this is precisely the Kaluza cylindrical space
1)

[7], [8] in which Y, form the components of the four vector

5
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potential, The Einstein tensor based on y then becomes a
a

natural choice for unified field equations.

In the form (12), L(x, x) =V hij(x' )\)5{15{] is positive homo-

geneous of degree one in the 5:1 and, as in Finsler spaces, the
n + 1 equations (2) are not independent. However, if the para-
meter t is chosen such that X = L =1 and the rank of the

matrix L}.{i}.{j is n - 1, then equations (2) were shown [3], [4]

equivalent to the system

i . )
. 5x ij ko1 Lk.iLj
Geodesics —=-h"9 h., X +=0 h. x xx
—_— 5t N jk 2 ) jk
where X =L =1
.
5x . . .
— DEF .1 i J.k
+
5t X {j k}xx
i 1 . ir
{j o B O arhik)’
9 9 )
where 9, =77 and 0, =—— , in a way completely analogous
N O 1 g4

to the standard derivations in Riemannian or Finsler geometries.
It was also shown that intrinsic differentiation leads to the
equation for

9%’

Auto-Parallel Curves 5t = 0.

Hence the differential geometry of (12) leads naturally to two
families of curves: the geodesics correspond to the geodesics
of the electromagnetic action integral (9) and hence describe the
motion of charged particles; the auto parallel curves are identi-
cal to the geodesics of the Riemannian geometry obtained from
(12) by considering \ fixed under the integral sign before
applying variational principles (except for the presence of

X =t +c in the Christoffel symbols). It may be of interest
therefore to consider the consequences of the following axioms:

I. The theory of auto-parallel curves in the fatigue space
should be identical to the classical theory of general relativity;
more precisely, the unit circles in the Minkowsky tangent spaces
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for variable N\ must be homothetic (corresponding to a uniform
magnification of the metric in all directions) and the Christoffel
symbols must be independent of \. The equations of the auto
parallel curves are then independent of )\, and correspond to
classical gravitational theory.

II. We assume the existence of an action dependent
coordinate transformation N which permits the action to be

expressed in the form (9) as outlined in section 4. The purpose
of this section is not to judge I and II, but to derive their conse-
quences.

LEMMA 7. Axiom I implies

(29) h (x ,\)=e y..(x).
Proof. Since the indicatrices are homothetic, it follows
that
k k k

for some ¢ . If we set 4 ={ng, then

9 . 2
0 = —-—J--—-—-{ k} = 1 {61 4‘82‘ + 5i _____32.‘4'4 - er\{A —a 'Ji"-}
I 200 e K aday T axTan
and identifying i and j, axiom I implies
82 ) k
= 0, i.e. o= H(x) +K(\).
k
9x 9\

k
Absorbing exp H(xk) into yi},(x ) the lemma follows.

COROLLARY. The Christoffel symbols constructed from
k _ K(x) k
hij(x JN) =e Yij(x )
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k
are identical to those constructed from the \{ij(x ) .

k k
LEMMA 8.  Axioms I and II imply hij(x VE e")‘yij(x )

for some constant wv.

. . . i, k .
Proof. As in section 4, there must exista B (x ) satis-
fying (24), or alternatively, using (29)

(30) K'(\) .}

K K
R ()\)Y IR NON) (. Br’j+\’jrBrl1

ij ir
and since the Christoffel symbols are independent of X\, so also

Br lj , and hence this equation implies K'(\) = v, a constant as

required.

The Riemann fatigue space therefore reduces to

_ J DN k 1_]
\ = f e yij(x )X %" dt +)\(t0)
1:0

and, using the formulas for the auto-parallel and geodesics,

. oh, .
since ij = vh.,,

N 1

Auto-parallel

i
§X%
(31) 5t - 0
Geodesics
i .
8k _ v .i
(32) 5t 2

where the parameter is chosen such that

(33) evxyij(xk)}'ci{c‘j =1

and the Christoffel symbols are constructed from the yij(xk) .

504

https://doi.org/10.4153/CMB-1966-060-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1966-060-8

The classical form of the action integral for electromagnetic

theory is then obtained by solving (30) for B® , that is

(34) vy.. = - B, .-B.ll

ij ilj 7

and considering the action dependent coordinate transformation

. . .1 i .
corresponding to the solution of the system x =+B , as in
section (4).

While the auto-parallel theory coincides with classical
theory, the geodesic equation (32) contains a resistance term, so
to speak. This resistance term gives rise to the action integral
in the form (9) since, under coordinate transformations of the

f )
orm ¢
. i, _i
(35) . ax' o+ 9 N
BX‘J dx

But if it is assumed that (31) and (32) are also applicable when

the velocity of the particle or wave is ¢, then X =0 and (35)
reduces to the standard form. Since the geodesics refer to
electromagnetic phenomena, it would seem that (32), rather than
(31), should refer to the path of light, thereby implying a spec- -
tral shift corresponding to a cosmological constant vy.

6. An Illustrative Example. If the space is empty, but
v# 0 so that a four potential still exists, one would expect the

action integral to be of the form (x4 = ict)

_ VA 21.j
A= f Je éijxx dt+A(t,).

%

Then equation (34) becomes

=T T
which has the trivial solution B = - 'Yi?i . The transformation

. . . . =1 _i
to the classical integral is found by solving X = - - X , that

r
2
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is ¥ =a exp ( --;'t), and hence ?y is given by

-1 i

%
X =x exp (- 3\).
.2 N, o=ii)
Substituting into \ = e’ 6i_jx & yields
2 r s.2 i.] i.j
(1-=6 xx )M\ =5 %% -5, x%N
4 rs 1) 1]
and comparison with (13) yields
o 5. 5, x
* ij _ v ij
SR S T 2
1-25 X x 1-% 5 ers
4 'rs 4 rs
* . .
from which it follows that g..=g.. + A A is given by
ij 1] 1]
) 2 6ir6jsxrxs
v
= . +
%4 2 { 61j 4 2 }
v r S v r S
1-—/06_ xx 1-—68 xx
4 rs 4 'rs

while F.. =0 since
1]

2

) v
8XJ. (£n(1 - y Srsx x )).

A =

2
j v

Alternatively, the action integral may be written

r= [ -V{A/sijiclicl -5 §5ijx15<3 } dt

where Sij is de Sitter's solution to the Einstein equations in

empty space [7], p.182,
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2 r s 1
v o=
and = - —
n i (1 p érsx x ) 2
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