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1. Introduction. In an n-dimensional manifold V , 

coordinates x for i = 1, . . . , n, let each curve x( t ) for 
1 

t < t < t of c lass C define a corresponding \ bv means of 
0 — — l A 

the integral equation 
t 
1 

(1) \(t±) = \( tQ) + / L(x,x,X)d^. 

For a given X(t.) = Xrt , the problem of minimizing X = X(t ) 
0 0 1 

given by (1) relat ive to curves joining given points x and x 
0 1 

in V can be interpreted as a Bolza problem of minimizing 
t 
1 

J = X(t ) + / L(x, x, X)dr 

° 'o 

in the n + 1 diiriensional space of (x, X), subject to the r e s t r a in t 

<p(x, X, x, X) = X - L(x, x, X) = 0 

3 
If L is of class C in a region R of the 2n +1 dimensional 

1 
space (x, X,x) and if an extremal (x(t), X(t)) of c lass C 
(except at corners) exists which (along with the derivat ives x) 
lies within R, then the multiplier method applies ([l] pp. 189-
202) since cp • ^ 0 and the curve satisfies the Eule r -Lagrange 

X 
equations 
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d d 
—- F . = F . — F , = F 
d t .1 i d t X X 

x x 
where F = L + \±<p and \± = \x(t) is the mul t ip l ier . Elimination 
of JJL from this equation, as in [2] leads to the equations 

(2) - £ : L . - L . = L . L , X' = L 
d t . i i .1 X 

X X X 

as necessa ry conditions for an ex t remum. 

The system (2) consists in n + 1 differential equations 

from which the n + 1 unknowns x ,X may be found in genera l 
provided that the equations are independent. 

2. An Application to Elementary Mechanics . In the 
par t icular case 

t 
(3) X(t) = / [ T - V + ^ X ] d f + X(t ) 

J' m u 
lo 

where T is the kinetic, V the potential energy, 

m m . i . j , , , kx 

T = — g . . x x J V = V(x ) 

it is easily verified that the r ight hand side of (2) gives r i s e to a 
res i s tance t e rm in addition to the usual conservative force field, 
so that the ext remals of (3) a re given by 

5 , x 9V , . j 
(4) — (mv ) = - —: + yv where v = g.. x . 5 t i l i l IJ 

ox 

Proceeding as in elementary mechanics , the total energy T + V 
along the t ra jec tor ies satisfying Newton's law (4) can be found as 
follows: 

d t 6 t l 

and substitution from (4) yields 
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/ T = - f - V + 2 ^ T 
d t d t m 

which may be written in the form 

(5) - £ { - ( T +V)} - ^ { £ i ( T +V)} = T - V. 
d t v m v 

However, \ ( t ) as defined by (3) along the ex t remals satisfies 

- £ X(t) = T - V + - J X(t) 
a t m 

and comparing with (5) it follows that 

LEMMA 1. Along the ext remals of (3), viz. the curves 
satisfying Newton's law in the case of a conservative force field 
and res i s tance (4), the action X is proport ional to the m a s s 
t imes the total energy 

(6) vX = m(T + V) for all t , 

provided X(t ) is initially so chosen. 

As in the c lass ica l case, the action integral (3) can be 
transformed into pa ramete r invariant form with the aid of (6). 
Formal ly , by (6) the integral (3) becomes 

t 
X(t) = f 2 T d f + X(t ); \ ( t ) = — (T + V) 

J 0 v 

0 

and the standard procedure yields 

t „ 
(7) \ ( t ) = f Mv\ - mV)g.-.x1xJ d ^ + — ( T + V ) 

J 1J V U U 

*<) 

where T and V denote the value of the kinetic and potential 
0 0 

energies init ially. 

In the form (7) the differential geometry of [3] and [4] is 
applicable, and since the auto-paral le l curves were shown ob­
tainable from (7) by considering X = X fixed under the in tegral 
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before applying the var ia t ional methods, it follows that the 
equations of motion 

(8) £ (mv.) = - ^ 
6 1 x ax1 

are the auto-paral le l curves in this geometry; the constant 

total energy is given by T + V = — \ . Hence equations (8) and 
" m 0 

(4) a re contained within the geometry of (7) as auto-para l le l and 
geodesic curves respect ively . 

3. Geometry of the Electromagnet ic Action Integral . 
The action integral for Electromagnetic theory is usually taken 
in the form [5] 

(9) \ = f / + g. .(x)iV + A.txjx1 d^ 

corresponding to a F ins le r geometry; the vector potential A. 

defines the electromagnetic field tensor F . . = A. .. - A. .. where 
n / M denotes covariant differentiation relat ive to the tensor g.. . 

The indicatr ices of (9), viz. the set of x ' s satisfying 

J±g..(x)k1iJ + A.(x)xX = 1, 

may be writ ten in the form 

(+ g - A.A.)xXxJ + 2A.X1 = 1 
- i j i j i 

and hence define a "conic11 (in n-space) whose center may be 
found by "completing the square" . Set 

*P ^ i i *̂  i 
(10) g . . = + g. . - A . A . , g J g = Ô. 

•J* 
T 

(we have assumed det(g. .) ^ 0, but it will be shown that this is 
ij 

the case if det g., f 0 and g A.A. i + 1), then the indicatr ix 
i j i J ~~ 

may be writ ten 
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• «i # i r » i ^ i s ^ r s 
g (x + g A r)(x J + gJ Ag) = 1 + g A r A g 

from which it is clear that the center of the conic is at the point 

• i *ir A 

(11) x = - g A 
r 

in the tangent space . Hence the Fins ler space associated with 
(9) is s imilar to a Riemannian space except that the conic (the 
unit c i rcle in the Minkowsky tangent space) is centered at 

-g A instead of at x = 0 . 

Alternatively, the Monge cone at ( x
n >^ n ) (see fig. 1) for 

the Hamilton-Jacobi equation 

H(x , p.) = 1 where p. = —. , 
1 x a 1 

ox 
associated with (9) is centered about the ray determined by the 

i ^ i r 
vector with components y = - g A for i = 1, . . . , n and 
y = 1 in the tangent space at (x

n>^n)» ^ the axes of these 

cones de termines a direction field whose integral curves form 
a schlicht covering of some sufficiently large region R , 

then these curves may also be used to define a coordinate t r a n s ­
formation of (a subset of) R as follows: any point p in 

R determines a unique integral curve V (see fig. 2) in ter -
n+1 

secting the sub space X = 0 at say (x , 0 ) . If (x , X ) a re the 
coordinates of p , then the coordinate t ransformation T is 
defined by 

T: (xJ ,X 0 ) - (sJ.X0). 

493 

https://doi.org/10.4153/CMB-1966-060-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1966-060-8


— X 

Fig. I Fig. 2 

Clearly X is fixed under T . The Monge cones are now 

centered about the new coordinate curves x = x and (since the 

cones were conies) the Hamilton-Jacobi equation is s imilar to 
that of a Riemannian geometry . Since the t ransformation depends 
on X however, the par t ia l differential equation will have the form 

H ( x \ s , p . ) = 1 where p. = — : , 
1 s - 1 

ox 

that is , the H-J equation for a Riemannian fatigue geometry 
([3], [4]). 

It is therefore to be expected that any action integral of the 
form (9) may be transformed into an action integral of the form 

(12) X(t J = X(tJ + f /h..(x,X)x1xJ dt 
1 0 J J n 

0 

by a t ransformation leaving X invariant, and that this t ransfor­
mation is determined by the system of differential equations (11). 
We proceed now to verify analytically the above asse r t ion . 

1 
4. The (Local) Group of Transformat ions . It follows 

1 The author gratefully acknowledges the many suggestions of the 
referee regarding this section. 
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from (9) that the action \ satisfies X - < A(x), x > = /^g(x; x, x) 

where <,> denotes the inner product re lat ive to the m e t r i c 
g 

tensor g . This may be written in the a l ternate form 

(13) 
.2 * . . 
X = g (x;x, x) + 2X < A(x), x > 

g 
where g = ' J t g - A @ A as in (10) and 0 denotes tensor products. 

* 
LEMMA 2. The tensor g is non-singular if and only if 

g is non-singular and < A, A > i _+ 1 . 

Proof. Consider the determinant of the augmented 
m a t r i x 

+g . - A.A. 

J 

+ 2. 

where the r ight side was obtained by e lementary row opera t ions . 
An expansion by the f i rs t rows yields |_+g.. | - A.A. cof(_+g..) on 

the r ight from which the lemma readily follows. 

The action X as given in (12) satisfies 

(14) X = h(x;x, x) 
X 

in t e rms of a me t r i c tensor h which depends on X ; the previous 
X 

section then indicates that (13) and (14) a re equivalent under X 
dependent coordinate t ransformat ions . Specifically, we consider 

3 
a one pa rame te r family of t ransformations x = <p (x) of c lass C 

X 
„n in x and X , defined on some region U of a manifold V ; let 

- 1 - 3 
<p (x) denote the inverse t ransformation also of class C . We 
may consider <p as defining a mapping of (J onto a region 

X 

The author gratefully acknowledges the many suggestions of the 
referee regarding this section. 
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i i ; for fixed x and var iable X, 0 (x) t r aces a curve whose 

tangent vector is V (x) at x = <p (x) , where !fofl denotes 
X X A. 

differentiation with respec t to X . The mapping <p induces the 
X 

standard mapping <p (x) of vectors £ in the tangent space at x 
X 

onto the vectors ç (x) t, in the tangent space at x . The in-
X X 

_ \ 
verse mapping <p (x ) exists at x if the Jacobian of <p 

X X X X 
does not vanish at x . 

If h is a me t r i c tensor defined on U , then ç induces 
X 

a me t r i c tensor h defined on [J by 
\ x 

(15) h(xx;̂ x) = h ^ V ^V^^'V^} 
x 

for a r b i t r a r y v e c t o r s £, , JJL in the t angen t s p a c e a t x . 
X X X 

Hence h i s a l s o b i - l i n e a r in i t s v e c t o r a r g u m e n t s . Any c u r v e 
X 

x(t) in (J i s d e f o r m e d by <p in to a c u r v e in (J . I f f u r t h e r 
X X 

X = X(t) a l s o d e p e n d s on t the c u r v e i s f u r t h e r d e f o r m e d in to 
x(t) = <p . (x(t)) and the t angen t v e c t o r a t x i s 

X v ̂ / 

à = <p (x) i. + <p (x)x. 
X \ 

By the b i - l inear i ty of h in (15), it follows that 
X 

(lfe) h(x;è, ±) = h(x;x, x) + 2X h(x;x, B) + X h(x;B,B) 
X 

where 

(17) B = V1 ®\(X)' 

If (16) is substituted in (14) and the resul t compared to (13), it 
follows that 

LEMMA 3. For (14) to be equivalent to (13) under the 
t ransformation cp and (15), it is necessa ry and sufficient that 
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(18) g(x;x,x) = h(x;x,x) {1 - < B, B £ } " 1 

(19) < A(x), x > = < B , x > {1 - < B , B >} ~* 

for all x . 

But (18) implies < B,B > independent of X and hence (19) 

implies < B , x > also independent of X for all x ; therefore 

B = B(x) is independent of X and (17) may be wri t ten 

(17') £x(x) = £x(x)B(x) . 

-1 
Since cp (cp (x)) = x, differentiation with r e spec t to X yields 

X X 

\^\ ^ = " x̂̂ x ^ ' \ ^ 
-1 

and replacing x by cp (x) in (17!) yields 
X 

(20) ^ _ 1 ( x ) = - B(«_ 1(x)) . 
X X 

_ I 
It follows [6] that <p form a local one pa rame te r group of 

X -1 
t ransformations with inverses cp = <p . Replacing X by -X 

"X X 
in (20) introduces a minus sign because of f ,on and yields 

LEMMA 4. In order that (14) and (13) be equivalent 
under cp and (15), it is necessa ry and sufficient that the local 

X ' 
group of t ransformations <p satisfy 

X 

(21) S (x) = BU (x)) 
X X 

where the vector field B is related to A by_ (19). 

It remains only to re la te (21) and (11). In the notation of 
the previous section, (18) and (19) become 

(18') I = { 1 -<-B,B>}'ih 
i] a i] 
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(19') g j j A ^ l i ^ B . B j J ^ h ^ B 3 . 

Hence, 

and by (19') 

ï i j = (1 - < B , B £ ) h 1 J 

* n i 
(22) g J A . = B . 

Hence (11) can be writ ten x = - B (x) and comparison with (20) 
verifies the asser t ion of the previous section. 

We derive now for future reference the following formulas , 

LEMMA 5. 5. _ . . 
(i) g = g 

(11) \ - 4 

AXAJ 

+ 1 - < A, A > 
a 
o 

•V 

o 

*ij 
+ g A.A. 

g JA.A. 
(iii) < A, A > = < B, B > ^ 

1 + g JA.A. 
i J 

^ ir^ i 
Proof. (i) may be verified direct ly since g g . = 5 . 

rJ J 
Substitution of (22) in (18* ) yields 

< B , B £ 
g A.A 

i j 1 - < B,B £ 

*ii -1 
and using (i) yields (iii). Since l - < B , B > = ( l + g A.A.) 
by (iii), (ii) follows from (18'). 

We recapitulate these resu l t s in the al ternate form: 

THEOREM 1. Given a non-singular me t r i c tensor g.. , 
XJ 

498 

https://doi.org/10.4153/CMB-1966-060-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1966-060-8


and define g.. = +g.. - A.A. • If g A.A. f + 1 , then g exists, 
*i j - i j i J — i J "~ ° 

given in lemma 5. Then the system of differential equations 

dx *ij A = - or J A 

defines a (local) group of coordinate transformations x = & (x) 
X 

under which the action integral 

t 
(9) X(t) f /+g(x;x, x) + A.x1 d^ 4- XA 

0 

is transformed into the form 

t ^ 
(121) x(t) = / /MxixTij dT + \ 

where h is defined by (15) in terms of h, and h by lemma 5 
X 

in terms of g. Definition (15) of h corresponds to 
X 

. r a 
(23) h..(x) = h..(x, X) = ~ - ^ r h (x). 

X 1 J 1J ox1 0 3̂  " 

Proof. Since (13) and (14) are equivalent differential 
equations, and X(t ) = Xn in both action integrals, the theorem 

follows provided the proper sign is chosen for the roots. 

Hence any electromagnetic action integral (9) can be 
transformed into the form (12) by means of action dependent 
coordinate transformations cp ; the converse is not true in 

X 
general in view of (15) and (18). In (12f) the metric tensor may 
be written in the form h(x, X; £, y.) rather than h(x; £, u) and 

X 
hence (15) implies the existence of a metric tensor h(x;£,,u) 

0 
such that 

h{5 (x),X ; é (X);, è (x)u} = h(x;£, u). 
X X X 0 
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Differentiation with respect to X then yields 

Tx + Sh = ° 

w h e r e ^ deno t e s the Lie d e r i v a t i v e of h , for fixed X, 
B 

r e l a t i v e to the v e c t o r field B c o r r e s p o n d i n g to the t r a n s f o r m a t i o n s 
cp . It fol lows that 

LEMMA 6. F o r the ac t ion i n t e g r a l (12) to be equ iva l en t 
unde r t r a n s f o r m a t 

field B ex i s t such tha t 

to (9) unde r t r a n s f o r m a t i o n s - <p , i t i s n e c e s s a r y tha t a v e c t o r 

ah.. 
(24) - ^ T 1 = -B -B 

ax i / j j / i 

w h e r e " / n d e n o t e s c o v a r i a n t d i f f e r en t i a t i on of 

B.(x, X) = h. . (x, X)B j(x) 

r e l a t i v e to h for fixed X . If B e x i s t s , then i t i s unique up to 
ij ~ • 

a Ki l l ing v e c t o r v c o r r e s p o n d i n g to an i s o m e t r y in the R i e m a n n i a n 
G e o m e t r y d e t e r m i n e d by h. .(x, X) for fixed X . 

If the r e q u i r e d v e c t o r field B e x i s t s then the c o r r e s p o n d i n g 

t r a n s f o r m a t i o n s wi l l be g iven by x = 7p (x) w h e r e ~ = B(<p ) . 
X ^\ X 

- 1 _ 
C l e a r l y <p = <p - <p , and by (20), B = - B . The t r a n s i t i o n 

X X "X 
f r o m (12) or (12') to (9) i s g iven exp l i c i t ly in the c o m p o n e n t no ­
ta t ion by 

T H E O R E M 2. Given a R i e m a n n i a n fa t igue g e o m e t r y (12) 

for which a v e c t o r field B (x) e x i s t s sa t i s fy ing (24). Then the 

s y s t e m of d i f f e r en t i a l equa t ions — — = B (x) def ines a ( local) 

g roup of t r a n s f o r m a t i o n s x = <p (x) under which (12) m a y be 
~ X 

t r a n s f o r m e d into (9) if h. .B B i \ w h e r e 
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il 1-h B B l 13 
r s J 

(27) _ D E F - + A . A . (28) g . . = - ^ r g 
IJ IJ OX OX 

and A. = — r A . 
— ' ax1 r 

P r o o f . Equa t i ons (25), (26) and (27) a r e s i m p l y (18T)> 
(191) and (10) r e s p e c t i v e l y w h e r e t e r m s have b e e n su i t ab ly r e ­
labe l led s ince we a r e dea l ing with the c o n v e r s e p r o b l e m . 
E q u a t i o n (28) then c o r r e s p o n d s to (23) . 

5 . P h y s i c a l A s p e c t s of F a t i g u e G e o m e t r y . The above 
t r a n s f o r m a t i o n s c o n s i s t e s s e n t i a l l y in showing the e q u i v a l e n c e 
of the d i f f e r en t i a l equa t ions (13) and (14) unde r t r a n s f o r m a t i o n s 
leav ing X i n v a r i a n t . Equa t i on (13) m a y b e w r i t t e n 
(i = 1,2, 3 ,4) 

(13') X 2 - 2 A . i 1 \ ' + (A.A. + g . . ) i X i J = 0 

whi le (14) i s 

(14') X2 - h . . (x , X)xXxJ = 0. 

One m a y c o n s i d e r the ac t ion X (or any p h y s i c a l m e a s u r e m e n t ) 

a s a fifth d i m e n s i o n , X = x . Then (14') i m m e d i a t e l y s u g g e s t s 
5 

an ana logy with the nul l c u r v e s of a mani fo ld V with m e t r i c 

t e n s o r v_,_ = 1, v . - = v,.. = 0 , v . . = h . . ( x ), w h e r e a = 1, . . . , 5 . 
55 i5 5i IJ IJ 

__. T r 5 . . a & ,—$ v i 
Then V a d m i t s a c o o r d i n a t e t r a n s f o r m a t i o n x = ç (x ) u n d e r 

5 JD 
which x = x and f u r t h e r , the m e t r i c t e n s o r b e c o m e s i n d e p e n -

5 
den t of x , exp l i c i t ly g iven by y r r = 1 , y = y. = - A. , 

DO 5 i ID i 
y = g Bu t th i s i s p r e c i s e l y the K a l u z a c y l i n d r i c a l s p a c e 

[7], [8] in which V f o r m the c o m p o n e n t s of the four v e c t o r 
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potential. The Einstein tensor based on y then becomes a r ap 
natural choice for unified field equations. 

In the form (12), L(x, x) = /h..(x, \)xi? is positive homo-
i 1J 

geneous of degree one in the x and, as in Finsler spaces, the 
n + 1 equations (2) are not independent. However, if the para­
meter t is chosen such that \" = L = 1 and the rank of the 
matrix L.i J is n - 1, then equations (2) were shown [3], [4] 

equivalent to the system 

^ , . 5x , i j ^ , • k 1 ^ , . k. i. j 
Geodesies = -h o h . , x + -roh., x x x 

5t X j k 2 X j k 

where X' = L = 1 

4 ^ DEF i 4 i r i , . j . k 
51 ===== x + { . , } x Jx 

J k J 

1 j kj 2 v i rk k îr r ik 

d 8 
where 8 =— and 8. = r , in a way completely analogous 

\ o \ i l 
dx 

to the standard derivations in Riemannian or Finsler geometries, 
It was also shown that intrinsic differentiation leads to the 
equation for 

dx 
Auto-Parallel Curves —— = 0. 

dt 

Hence the differential geometry of (12) leads naturally to two 
families of curves: the geodesies correspond to the geodesies 
of the electromagnetic action integral (9) and hence describe the 
motion of charged particles; the auto parallel curves are identi­
cal to the geodesies of the Riemannian geometry obtained from 
(12) by considering X fixed under the integral sign before 
applying variational principles (except for the presence of 
X = t + c in the Christoffel symbols). It may be of interest 
therefore to consider the consequences of the following axioms: 

I. The theory of auto-parallel curves in the fatigue space 
should be identical to the classical theory of general relativity; 
more precisely, the unit circles in the Minkowsky tangent spaces 
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h..(x , X)x'xj = 1 

for v a r i a b l e X m u s t be h o m o t h e t i c ( c o r r e s p o n d i n g to a u n i f o r m 
m a g n i f i c a t i o n of the m e t r i c in a l l d i r e c t i o n s ) and the Chr i s to f fe l 
s y m b o l s m u s t be independen t of \ . The equa t ions of the auto 
p a r a l l e l c u r v e s a r e then independen t of X , and c o r r e s p o n d to 
c l a s s i c a l g r a v i t a t i o n a l t h e o r y . 

II . We a s s u m e the e x i s t e n c e of an ac t i on dependen t 
c o o r d i n a t e t r a n s f o r m a t i o n <p which p e r m i t s the ac t ion to be 

X 
e x p r e s s e d in the f o r m (9) as outl ined in s e c t i o n 4 . The p u r p o s e 
of th is s e c t i o n is not to judge I and II, but to d e r i v e t he i r c o n s e ­
q u e n c e s . 

L E M M A 7. Axiom I i m p l i e s 

(29) h . . ( x \ x ) = e K ( X ) y . . ( x k ) . 

P roo f . Since the i n d i c a t r i c e s a r e h o m o t h e t i c , i t fo l lows 
tha t 

h. .(x , X) = <p{x. , X)y . . (x ) 

for s o m e <p . If we se t ^ = incp , then 

a { - \ } • A 2 , • a 2 , • A 2 • 

ox 3X 9x 3X ax a \ 

and ident i fying i and j , ax iom I i m p l i e s 

9 2 ! k 
— - ^ - = 0 , i . e . V4J = H(x ) + K ( \ ) . 

9 x 8 \ 

k k 
Abso rb ing exp H(x ) into y . . (x ) the l e m m a fo l lows . 

COROLLARY. The Chr i s to f fe l s y m b o l s c o n s t r u c t e d f r o m 

, , k K(X) , k. 
h. .(x , X) = e y . . (x ) 
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1Q 

are identical to those constructed from the v..(x ) . 
— i j 

LEMMA 8. A x i o m s l a n d II imp ly h. .(x , \ ) = e y . . (x ) 
XJ 1J 

for s o m e c o n s t a n t v. 

i k 
P roo f . As in s e c t i o n 4, t h e r e m u s t e x i s t a B (x ) s a t i s ­

fying (24), or a l t e r n a t i v e l y , us ing (29) 

(30) K ' ( X ) e K ( X ) y . . = - e K U ) {y. B r , . + y . B * } 
i j i r | j T jr | i 

and s ince the Chr i s tof fe l s y m b o l s a r e independen t of X , so a l so 
r 

B «. , and hence th is equa t ion i m p l i e s K ' ( \ ) = v , a cons t an t as 

r e q u i r e d . 

The R i e m a n n fat igue s p a c e t h e r e f o r e r e d u c e s to 

x = f ye
vx

Y..(xk)x ix j dt + M o 
J n C) 

and, us ing the f o r m u l a s for the a u t o - p a r a l l e l and g e o d e s i e s , 

s ince ij = vh . . , 

A u t o - p a r a l l e l 

(31) *£ = 0 
0 t 

G e o d e s i e s 

(32. ^-fi* 

w h e r e the p a r a m e t e r i s c h o s e n such that 

(3 3) e v X v i . ( x k ) x i x j = 1 

and the Chr is tof fe l s y m b o l s a r e c o n s t r u c t e d f r o m the y . . ( x ] 
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The c l a s s i c a l f o r m of the ac t ion i n t e g r a l for e l e c t r o m a g n e t i c 
r 

t h e o r y i s then obtained by solving (30) for B , tha t i s 

(34) vy.. = - B . , . - B . ,. 
ij i | J J ! 1 

and c o n s i d e r i n g the ac t ion dependen t c o o r d i n a t e t r a n s f o r m a t i o n 

c o r r e s p o n d i n g to the so lu t ion of the s y s t e m x = +B , a s in 
s e c t i o n (4). 

While the a u t o - p a r a l l e l t h e o r y co inc ides wi th c l a s s i c a l 
t h e o r y , the g e o d e s i c equa t ion (32) con ta ins a r e s i s t a n c e t e r m , so 
to s p e a k . T h i s r e s i s t a n c e t e r m g ives r i s e to the ac t ion i n t e g r a l 
in the f o r m (9) s i n c e , unde r c o o r d i n a t e t r a n s f o r m a t i o n s of the 
f o r m cp , 

(35) i i ax 1 . j ^ dx1 .. 
x = r x + — a J d \ ' 

But if i t is a s s u m e d tha t (31) and (32) a r e a l so app l i cab l e when 
the v e l o c i t y of the p a r t i c l e or wave is c , then \* = 0 and (35) 
r e d u c e s to the s t a n d a r d f o r m . Since the g e o d e s i e s r e f e r to 
e l e c t r o m a g n e t i c p h e n o m e n a , i t would s e e m that (32), r a t h e r than 
(31), should r e f e r to the pa th of l ight, t h e r e b y imply ing a s p e c ­
t r a l shift c o r r e s p o n d i n g to a c o s m o l o g i c a l c o n s t a n t v . 

6. An I l l u s t r a t i v e E x a m p l e . If the space is emp ty , but 
v î 0 so tha t a four p o t e n t i a l s t i l l e x i s t s , one would e x p e c t the 

4 
ac t ion i n t e g r a l to be of the f o r m (x = ic t ) 

= f JeVk 6 . .x1^' dt + \ ( t j . 
J n u 

Then equa t ion (34) b e c o m e s 

— r — r 
vô . . = - Ô . B j . - Ô . B .. 

ij i r |J j r | i 

— r v _ r 
which h a s the t r i v i a l so lu t ion B = - — x . The t r a n s f o r m a t i o n 

to the c l a s s i c a l i n t e g r a l i s found by solving x = - ~r x , tha t 
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is x1 = a1 exp ( - ~ t ) , and hence <p is given by 

x = x exp ( - - \ ) 

Substituting into \~ = e 5 . .x x yields 

2 
[1 - — ô x x )X = 5 . i x - v5.x iJK 

4 rs IJ IJ 

and comparison with (13) yields 

i 
6.. 5..x 

1J , A . = - * 1-L 
5ij 2 ' " j 2 2 

, v c r s , v
 c

 r s 

1 - —- 6 x x 1-"— 6 x x 
4 rs 4 rs 

from which it follows that s . = e.. + A A. is given bv 

9 c c r S 

2 5. 5 . x x 
'ij 2 L ij 4 2 

J v r s J v r s 
1 - —6 x x 1 - —- 6 x x 

4 rs 4 rs 

while F. . = 0 since 
i j 

A.=^ ^ ( i n ( l - 4 ô xr-S))-1 v ox. 4 rs 

J 

Alternatively, the action integral may be written 

\ = f J • {7s xXxJ --^ i 5 x V } dt 
J * • i j 2 * i j ; 

where S.. is de Sitter's solution to the Einstein equations in 

empty space [7], p. 182, 

* * r s 
6 . 5 . x x 

S. .=6. . + — ^ . 1J 1J -I- - 6 xV 
2 rs 
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2 1 
and $ = (1 - ^ r ô x V f 2 

*- 4 r s 
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