
Acute effects of elevated NEFA on vascular function: a comparison
of SFA and MUFA

Katie J. Newens, Abby K. Thompson, Kim G. Jackson, John Wright and Christine M. Williams*

Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading,

Reading RG6 6AP, UK

(Received 25 May 2010 – Revised 24 September 2010 – Accepted 1 November 2010 – First published online 16 December 2010)

Abstract

There is emerging evidence to show that high levels of NEFA contribute to endothelial dysfunction and impaired insulin sensitivity. How-

ever, the impact of NEFA composition remains unclear. A total of ten healthy men consumed test drinks containing 50 g of palm stearin

(rich in SFA) or high-oleic sunflower oil (rich in MUFA) on separate occasions; a third day included no fat as a control. The fats were emul-

sified into chocolate drinks and given as a bolus (approximately 10 g fat) at baseline followed by smaller amounts (approximately 3 g fat)

every 30 min throughout the 6 h study day. An intravenous heparin infusion was initiated 2 h after the bolus, which resulted in a three- to

fourfold increase in circulating NEFA level from baseline. Mean arterial stiffness as measured by digital volume pulse was higher during the

consumption of SFA (P,0·001) but not MUFA (P¼0·089) compared with the control. Overall insulin and gastric inhibitory peptide

response was greater during the consumption of both fats compared with the control (P,0·001); there was a second insulin peak in

response to MUFA unlike SFA. Consumption of SFA resulted in higher levels of soluble intercellular adhesion molecule-1 (sI-CAM) at

330 min than that of MUFA or control (P#0·048). There was no effect of the test drinks on glucose, total nitrite, plasminogen activator

inhibitor-1 or endothelin-1 concentrations. The present study indicates a potential negative impact of elevated NEFA derived from the

consumption of SFA on arterial stiffness and sI-CAM levels. More studies are needed to fully investigate the impact of NEFA composition

on risk factors for CVD.
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Insulin-resistant states such as obesity and type 2 diabetes

(T2D) are characterised by metabolic anomalies such as

elevated plasma NEFA levels. Epidemiological studies have

shown that elevated plasma NEFA are associated with a

greater risk of developing impaired glucose tolerance(1) and

T2D(2). Experimental elevation of plasma NEFA using intra-

venous infusion of lipid and heparin also results in impaired

insulin-stimulated glucose uptake in skeletal muscle(3) and

endothelial dysfunction(4), both of which are key features of

T2D and obesity(5,6). There is mounting evidence to suggest

that the saturation of dietary fat can influence endothelial

function; for example, consumption of SFA during weight-

loss regimens has been shown to be negatively associated

with flow-mediated dilatation (FMD)(7). Levels of SFA in

serum have also been shown to be inversely correlated with

endothelial-dependent forearm blood flow(8,9). Findings

from chronic dietary studies comparing diets rich in SFA or

MUFA are mixed. Some short-term studies have found that a

SFA-rich diet impairs vascular reactivity compared with a

MUFA-rich diet(10) or a diet rich in both MUFA and PUFA(11).

However, an 8-month supplementation trial found no differ-

ence in endothelial-dependent or -independent vasodilation

measures between MUFA- or SFA-based oils(12). Similarly,

there are contrasting findings frompostprandial studies compar-

ing high-fat meals rich in either SFA or MUFA, with some studies

finding no differential effect on FMD(13,14) and one study report-

ing a negative impact of a MUFA-rich meal on FMD(15).

Dietary fat composition may affect endothelial function by

modulating insulin sensitivity since the endothelium is an

insulin-dependent tissue, and impaired endothelial function

is a key feature of T2D and other insulin-resistant states.

Although the impact of dietary fatty acid composition on insu-

lin sensitivity remains equivocal(16), one large randomised

controlled trial found a decrease in insulin sensitivity after

substitution of monounsaturated fat for saturated fat over a

12-week period when total fat consumed constituted less

than 37 % energy(17). Furthermore, the Atherosclerosis Risk

in Community Study found that the percentage of SFA in
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plasma cholesteryl esters and phospholipids was positively

associated with the development of diabetes(18).

Mechanisms that might mediate the variable effects of diet-

ary fat on insulin sensitivity and endothelial function include

potentially direct effects of fatty acids on insulin signalling

pathways in endothelial cells, as has been described for skel-

etal muscle(3). In addition, there are potentially indirect effects

of different fatty acids on insulin secretion. The possibility

that this might be mediated via an effect on the secretion of

incretin hormones (gastric inhibitory peptide (GIP) and

glucagon-like peptide-1 (GLP-1)) is of particular interest

given the emerging therapeutic role of GLP-1, in particular

in the treatment of T2D. Indeed, infusion of GLP-1 has been

shown to cause a marked increase in FMD in T2D patients

with stable coronary artery disease(19). Whether such benefits

in incretin secretion might be achieved by dietary changes is

unclear, but postprandial studies have indicated that consump-

tion of MUFA-rich meals induces a higher incretin response than

consumption of SFA-rich meals(20,21). Furthermore, Southern

European subjects whose habitual diets were rich in MUFA

have been shown to have fasting levels of insulin twofold

higher and fasting levels of GIP over fourfold higher than a

matched group of Northern European subjects(22).

In addition to effects on insulin secretion, fatty acids may

have a direct impact on the insulin signalling pathway, influen-

cing the balance between vasodilator and vasoconstrictor

responses. Insulin signalling through the phosphoinositide-3

kinase pathway regulates the production of the vasodilator

NO, an important regulator of vascular tone(23). However, an

alternative pathway of insulin signalling, the mitogen-activated

protein kinase pathway, can lead to the generation of the vaso-

constrictor endothelin-1 (ET-1), as well as cellular adhesion

molecules such as soluble intercellular adhesion molecule-1

(sI-CAM) and plasminogen activator inhibitor-1 (PAI-1).

Evidence from cell culture studies suggests that different fatty

acids may affect the balance of these two pathways, with

particularly adverse effects of SFA, which may have significance

for impaired endothelial function and atherosclerosis(24,25).

Previous experimental studies of acute NEFA elevation have

been unable to study variable effects of fatty acid composition

since they have mostly used intravenous lipid emulsions such

as Intralipid, which are rich in n-6 PUFA. The present study

aimed to investigate the effects of acute elevation of plasma

NEFA of different composition using a relatively new protocol

developed by Beysen et al.(26), which involves frequent

ingestion of fat administered orally rather than by intravenous

infusion. We have examined the effect of elevating NEFA

derived from consumption of SFA- and MUFA-rich drinks on

the levels of insulin and incretin hormones, as well as on cir-

culating measures of endothelial function (total nitrite (NOx ),

sI-CAM, ET-1 and PAI-1). In addition, we used digital volume

pulse to assess arterial stiffness as a further marker of endo-

thelial function.

Experimental methods

The present study was conducted according to the guidelines

laid down in the Declaration of Helsinki, and all procedures

involving human subjects were approved by the University

of Reading Ethics Committee. Written informed consent was

obtained from all subjects. The study was conducted in the

Hugh Sinclair Unit of Human Nutrition at the University of

Reading.

The method of elevating NEFA of specific types is based on

that by Beysen et al.(27). A drink mixture was prepared com-

prising 50 g of either palm stearin (SFA; 59 % 16 : 0, 28 %

18 : 1n-9, 6 % 18 : 2n-6, 5 % 18 : 0) or high-oleic sunflower oil

(MUFA; 81 % 18 : 1n-9, 10 % 18 : 2n-6, 4 % 16 : 0, 3 % 18 : 0),

30 g skimmed milk powder (Premier International Foods

Limited, Birmingham, UK), 15 g chocolate powder (The

Spanish Chocolate Company Limited, Leicester, UK) and

0·5 g monoacylglycerol emulsifier (Danisco, Copenhagen,

Denmark). Water was added to achieve a final weight of

320 g, and the mixture was blended for several minutes to

ensure emulsification. The test drinks were identical in protein

(11·5 g) and carbohydrate (28·1 g) content. The drinks were

divided into a main test drink of 62 g (approximately 10 g

fat, 5·4 g carbohydrate and 2·2 g protein) and twelve smaller

drinks of 21 g (approximately 3 g fat, 1·8 g carbohydrate and

0·75 g protein). Control drinks were prepared using the

same method but excluding the oils. All drinks were served

warm to enhance palatability.

Healthy men (n 10; Table 1) were recruited to take part in

three study days. All subjects were non-smokers of normal

body weight and were not suffering from hyperlipidaemia

or any endocrine disorder likely to affect lipid metabolism;

all showed normal lipid and standard clinical biochemistry

values on screening. Subjects attended the Unit on three

occasions separated by at least 1 week and were randomly

assigned to one of the test drinks on each day. For 24 h

before each study day, subjects were asked to refrain from

strenuous exercise and alcohol and were supplied with a

low-fat ready meal to be consumed in the evening. On each

study day, subjects arrived after an overnight fast, and an intra-

venous cannula was placed at the wrist of the non-dominant

arm. The main test drink was consumed at 0 min, with

the smaller drinks given every 30 min for a further 6 h.

At 120 min, a second cannula was inserted into the antecubital

vein in the non-dominant arm for the infusion of heparin.

A bolus of heparin (500 IU) was administered, followed by a

Table 1. Baseline characteristics of the ten male subjects

(Mean values and standard deviations)

Mean SD

Age (years) 24·8 7·2
Ht (m) 1·8 0·1
Wt (kg) 74·2 10·2
BMI (kg/m2) 22·5 2·4
Waist circumference (cm) 84·1 5·4
BP (mmHg)

Systolic 128 10
Diastolic 74 5

Fasting total cholesterol (mmol/l) 4·1 0·9
Fasting glucose (mmol/l) 5·5 0·6
Fasting TAG (mmol/l) 0·9 0·3

BP, blood pressure.
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continuous infusion of heparin (0·4 IU/kg body weight per

min) for the rest of the study day.

Stiffness index derived from digital volume pulse (SIDVP)

was measured four times during each study day using digital

volume pulse with a PulseTrace PCA 2 (Micro Medical Limited,

Kent, UK). SIDVP has been shown to be positively correlated

with classical CVD risk factors such as age, waist:hip ratio,

blood pressure and carotid intima-media thickness(28). The

PulseTrace equipment calculates SIDVP by recording three

consecutive waveforms through the index finger pulse; SIDVP

is calculated by dividing the subject’s height by the difference

in time between the systolic-derived peak and the diastolic-

derived peak of the waveform. In addition to the replicates

performed by PulseTrace, this technique was performed

three times, giving an average of nine readings at each time

point.

Blood samples were collected every 30 min into K3EDTA or

serum tubes and centrifuged at 48C within 30 min of collection.

For analysis of GIP, 10 ml of dipeptidyl peptidase IV inhibitor

(Millipore Corporation, Watford, Herts, UK) per ml of blood

were added at the time of collection to protect against proteol-

ysis. Samples were stored immediately at 2208C until analysis.

Serum NEFA were quantified using an automated clinical

chemistry analyser (ILAB 600) with kits supplied by Alpha

Laboratories (Eastleigh, Hants, UK). Instrumentation Labora-

tories (Warrington, Ches, UK) supplied kits for the analysis

of serum TAG, glucose and total cholesterol. Serum insulin

was measured using a dissociation-enhanced lanthanide fluor-

escent immunoassay kit (Perkin Elmer Limited, Beaconsfield,

Bucks, UK). Plasma GIP and serum C-peptide were measured

using commercially available colorimetric ELISA kits (Millipore

Corporation, Watford, Herts, UK) as were serum sI-CAM,

plasma PAI-I and ET-1 (R&D Systems Europe Limited,

Abingdon, Oxon, UK). Total serum nitrites (NOx) were

measured using a NO quantification kit (Actif Motif, Rixensart,

Belgium).

In four subjects, fatty acid composition analysis of NEFA and

TAG was performed on baseline fasted samples and those

collected between 300 and 360 min following the start of the

oral fat load. Lipids were extracted from 800ml serum using

chloroform–methanol (2:1, by vol.) containing butylated

hydroxytoluene (50 mg/ml) before being applied to a solid-

phase extraction cartridge (Varian, Oxford, Oxon, UK) to

isolate the NEFA and TAG fractions. These fractions were

then saponified and methylated in methanol containing 2 %

(v/v) H2SO4 at 708C for 1 h. Fatty acid methyl esters were

recovered by extraction into hexane and analysed in a gas

chromatograph as described previously(29). Fatty acid methyl

esters were identified by comparison of retention times against

a known standard, Supelco 37 component fatty acid methyl

esters mix (Supelco, Dorset, UK).

Statistical analysis

All statistical analyses were performed using SPSS software

(version 15.0; SPSS, Inc., Chicago, IL, USA). Data were tested

for normality using the Shapiro–Wilk test and log-transformed

if necessary. Analytes measured at least four times a day

(NEFA, TAG, glucose, insulin, C-peptide and GIP) were com-

pared using repeated-measures ANOVA. This approach was

also used to compare the fatty acid composition of NEFA

and TAG between the study days. Analytes measured only at

0 and 330 min (sI-CAM, NOx, ET-1 and PAI-1) were analysed

with repeated-measures ANCOVA using 330 min as the

dependent variable and 0 min as a covariate. In both cases,

a Bonferroni correction was applied to control for multiple

comparisons. Values of P#0·05 were considered as significant.

Results

Baseline subject characteristics are shown in Table 1. There

were no significant differences in any baseline measures

between the test drinks.

Serum NEFA, TAG and glucose

There was an initial decline in NEFA after consumption of the

bolus oral load followed by a sharp increase at 120 min

following initiation of heparin infusion. The oral fat–heparin

protocol resulted in a threefold elevation of serum NEFA

following consumption of both fats compared with that of

the control (Fig. 1). Repeated-measures ANOVA revealed a

significant effect of test drink and time (P,0·001); both

MUFA- and SFA-rich drinks (P,0·001) elicited a higher NEFA

response than the control, with no significant difference

between the two fats (P¼0·193).

The fatty acid composition of NEFA and TAG at baseline

(t ¼ 0 min) and after consumption of the control, SFA and

MUFA-rich drinks (t ¼ 300–360 min) is shown in Table 2. A

significant effect of test drink was found for palmitic acid

(NEFA and TAG, P,0·001), stearic acid (NEFA only,

P¼0·001), oleic acid (NEFA and TAG, P#0·001) and linoleic

acid (NEFA P¼0·001 and TAG P¼0·020). There was an

approximately 1·5-fold increase in the palmitic acid content

of both NEFA and TAG following consumption of the SFA

test drinks. Consumption of the MUFA test drinks led to an

approximately 2·5-fold increase of oleic acid in NEFA and an

approximately 1·7-fold increase in TAG, which was

accompanied by significant decreases in palmitic acid. Con-

sumption of the control drinks did not affect proportions of

any of the fatty acids from baseline in either NEFA or TAG.

A significant effect of test drink, time and test drink 3 time

interaction (all P,0·001) was found for serum TAG (Fig. 1(b)).

Consumption of both MUFA- and SFA-rich drinks (P,0·001)

was followed by a rise in serum TAG with no rise following

consumption of the control drink. There was an initial decline

in serum TAG following the administration of heparin at

120 min, but thereafter, values remained constant. There was

no significant difference in the serum TAG profiles for the

two test fats (P¼1·000).

Serum glucose levels initially increased at 30 min following

the bolus oral load on all three drinks and then declined to

below-fasting levels until 240 min when there was a steady

increase, most markedly for the two fat test drinks following

heparin infusion (Fig. 2(c)). There was a significant effect of

time (P,0·001) but not of test drink (P¼0·118).

NEFA and vascular function 1345
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Serum insulin, C-peptide and gastric inhibitory peptide

response

Serum insulin levels increased following the bolus oral load of

both fats, reaching a peak at 60 min (Fig. 2(a)). There was no

insulin response to consumption of the control drink. Follow-

ing administration of heparin, there was a sharp increase in

insulin for the MUFA-rich drink at 150 min (95 % CI 43·3,

65·3 pmol/l), which was significantly different from the control

at this time point (95 % CI 14·4, 36·9 pmol/l). In contrast, there

was no rise in serum insulin at 150 min for the SFA-rich drink

(95 % CI 27·1, 49 pmol/l). There was a significant effect of test

drink, time and test drink 3 time interaction for overall insulin

response (P,0·001), with both SFA- and MUFA-rich drinks

eliciting a higher insulin response than the control drink

(P,0·001); however, there was no significant difference T
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Fig. 1. Serum (a) NEFA, (b) TAG and (c) glucose (note the broken scale of

the y-axis) during the consumption of SFA ( ), MUFA ( ) or control, no fat

( ). Values are means of ten subjects, with their standard errors represented

by vertical bars; indicates administration of heparin. For serum NEFA

and TAG, repeated-measures ANOVA revealed a significant effect of test

drink (P,0·001), time (P,0·001) and test drink 3 time interaction (NEFA

P¼0·031, TAG P,0·001). For glucose, there was a significant effect of time

only (P,0·001).
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between the fats (P¼1·000). For C-peptide, there was a signifi-

cant effect of test drink (P¼0·010) and time (P,0·001)

(Fig. 2(b)). Compared with the control drink, the response

was significantly higher for the SFA-rich drink (P¼0·013),

with also a strong trend for MUFA values to be higher than

the control (P¼0·056), but there was no difference between

the fats (P¼1·000).

There was a marked increase in plasma GIP following the

consumption of both fat-containing drinks, which was sus-

tained for the duration of the study day (Fig. 2(c)).

Repeated-measures ANOVA revealed a significant effect of

test drink, time and test drink £ time interaction (P,0·001);

both fats induced a higher response than the control

(P,0·001). Despite no statistically significant overall

difference between the fats (P¼0·097), MUFA induced a

significantly higher early response at 90 min (95 % CI 232,

302 pg/ml) than SFA (95 % CI 145, 215 pg/ml).

Markers of endothelial function

Despite the high inter-subject variation in SIDVP during the

study days (Fig. 3), there was a clear increase in this measure

during the consumption of the SFA-rich drink, which peaked

at 210 min. In the case of the MUFA-rich drink, values declined

towards 210 min, increasing slightly at 330 min. Because of

varied baselines between the study days, SIDVP was analysed

by a repeated-measures ANCOVA using mean SIDVP

(90–330 min) as the dependent variable; this revealed a sig-

nificant effect of test drink (P¼0·001). SIDVP was higher

during the consumption of the SFA-rich drink than during

the consumption of the control drink (P,0·001), but there

was no statistical significance between the MUFA-rich and

control drinks (P¼0·089) or the SFA-rich and MUFA drinks

(P¼0·128).

Table 3 shows the effect of test drinks on circulating mar-

kers of endothelial function. There was a significant effect of

test drink on sI-CAM levels (P¼0·014). Pairwise analysis

showed that levels of sI-CAM were significantly higher

during the consumption of the SFA-rich drink than during

the consumption of either the MUFA-rich (P¼0·048) or the

control (P¼0·021) drink, while there was no difference

between the response to MUFA and the control (P¼1·000).

PAI-1 and NOx decreased during the study days, while ET-1

increased (P,0·001), but there was no effect of test drink

compared with the control for any of these parameters.

Discussion

The present study demonstrates that acute elevation of serum

NEFA by the consumption of a SFA-rich drink leads to an

increase in arterial stiffness and levels of sI-CAM in healthy

young men. These effects were not found following ingestion

of a MUFA-rich drink, suggesting that the composition of fat

consumed is an important factor in determining the impact

of elevated NEFA on both vascular function and endothelial

inflammation. The present protocol resulted in a three- to
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and (c) gastric inhibitory peptide (GIP) during the consumption of SFA ( ),

MUFA ( ) or control, no fat ( ). Values are means of ten, seven and nine

subjects, respectively, with standard errors represented by vertical bars;

indicates administration of heparin. * Denotes a significantly higher

response for MUFA than control; † denotes a significantly higher response
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fourfold increase in NEFA from baseline in our healthy

subjects, achieving levels observed in insulin-resistant states

such as obesity and T2D. A subset analysis of fatty acid com-

position of NEFA and TAG also confirmed that the protocol

significantly increased the proportions of palmitic and oleic

acids during the SFA and MUFA study days, respectively.

The present study confirms the findings of published lipid

infusion studies, which have shown that experimental acute

elevation of NEFA impairs vascular function(4,30–36); this is

also reflected in postprandial studies, which have shown simi-

lar adverse effects of all types of high-fat meals(37). However,

unlike the findings of lipid infusion studies, which have

analysed markers of vascular function and inflammation in

response to elevating NEFA rich in n-6 PUFA, the protocol

adopted in the present study has enabled a comparison of

the acute effects of SFA and MUFA. As such, there are no pre-

vious studies to directly compare the present results, although

several postprandial studies have compared the effect of

mixed meals rich in SFA or MUFA on vascular function, with

variable results. Comparison of outcomes from different post-

prandial studies is complicated by virtue of differences in the

amount and source of the fats used in the oral fat load. For

example, shea butter is rich in stearic acid and has been

shown to have varying absorption rates following acute inges-

tion, which would confound data from this type of study(38).

In addition, the amount and type of carbohydrate in test

meals in different studies is also variable which, through dif-

fering effects on insulin secretion, would introduce additional

variables other than the fat type. Raitakari et al.(14) reported

that FMD did not change after a cooked breakfast rich in

SFA or MUFA. Rueda-Clausen et al.(13) also found a similar

reduction in FMD after consumption of potato soup contain-

ing either olive oil or palm oil. In contrast, Berry et al.(15)

found a significant reduction in FMD after a meal of muffins

and a milkshake enriched in high-oleic sunflower oil, which

was not found when the meal was enriched with shea

butter. However, in this latter study, consumption of the

MUFA-rich meal led to significantly higher circulating TAG

levels than consumption of the SFA-rich meal. This could

affect vascular function as the extent of postprandial lipaemia

has been shown to be negatively correlated with FMD in

healthy subjects consuming high-fat meals(39,40). In the present

study, the oils used for the SFA fat load were chosen to reflect

typical UK fatty acid intakes, and, importantly, no difference

was recorded between circulating TAG levels during con-

sumption of either the SFA- or the MUFA-rich fat loads,

suggesting that the observed differences in vascular markers

are due to qualitative rather than quantitative differences in

the raised serum NEFA. Since circulating TAG-rich lipoproteins

have been shown to interact directly with the endothelium,

the possibility that differences in the composition of TAG in

these particles may be responsible for the observed effects

on endothelial function should also be considered.

One mechanism linking fatty acids to vascular function is

the potential effect on insulin secretion, as insulin is an

important mediator of cardiovascular health(41). Consumption

of both fat loads caused a prompt increase in serum insulin

peaking at 60 min, with a concomitant increase in serum

C-peptide. Both saturated and unsaturated NEFA have been

shown to act directly on pancreatic b-cells to acutely increase

insulin secretion in vitro; however, in vivo, the impact of NEFA

on insulin depends on the prevailing glucose concentration,

with a limited effect of NEFA at low glucose concentrations(42).

Although the glucose load in the drinks was minimal, a small

increase in blood glucose concentration was observed at

30 min for all drinks, including the control, which suggests

that the early insulin peak observed for the two fat-containing

drinks reflects glucose-stimulated insulin secretion. Enhanced

insulin secretion at 60 min observed for the fat-containing

drinks, despite similar increases in glucose at 30 min for all

three drinks, illustrates the potentiating effect of oral fatty

acids on glucose-stimulated insulin secretion and influence

of fat ingestion on glucose homeostasis(43). It has long been

known that oral fat is the most potent stimulus to GIP

secretion. In vitro studies have shown that fatty acids can

directly influence the release of GIP from the K-cells of the

intestine, and that GIP binds to specific G-protein-linked

receptors on the surface of the pancreatic b-cells to stimulate

insulin secretion(42). Although the overall GIP responses were

similar for the two fats, there was a higher GIP concentration

at 90 min for the MUFA- v. the SFA-rich fat load, which may

have contributed to the second insulin response at 150 min

for the MUFA fat load, which was not observed for the SFA

fat load. The findings in the present study are consistent

with those of Thomsen et al.(20), who reported a greater

increase in GIP and GLP-1 after consumption of a mixed

Table 3. Circulating markers of endothelial function during the study days

(Mean values with their standard errors, n 10)

SFA MUFA Control

0 min 330 min 0 min 330 min 0 min 330 min
ANCOVA

Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM P

sI-CAM (ng/ml) 178 18 184* 20 174 16 168† 16 168 17 166 17 0·014
PAI-1 (ng/ml) 4·7 0·9 2·6 0·56 3·4 0·58 2·2 0·51 4·5 0·97 3·1 0·57 0·346
ET-1 (ng/ml) 1·16 0·06 1·24 0·07 1·22 0·05 1·24 0·07 1·20 0·08 1·20 0·04 0·815
NOx (mM) 13·4 2·1 9·2 1·3 10·9 1·4 8·7 1·1 11·2 1·4 7·1 1·1 0·127

sI-CAM, soluble intercellular cell adhesion molecule-1; PAI-1, plasminogen activator inhibitor-1; ET-1, endothelin-1; NOx, total nitrites.
* Mean value was significantly different from that of control (P,0·05).
† Mean value was significantly different from that of SFA (P,0·05).
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meal containing olive oil v. butter, as well as those of Brynes

et al.(44) who reported a trend towards greater GLP-1 levels

after consumption of olive oil v. butter or maize oil. In con-

trast, Zampelas et al.(45) found no differences in GIP response

after consumption of mixed meals rich in either SFA, n-6 PUFA

or n-3 PUFA. We have no direct evidence to link the more

adverse effect of a SFA- than a MUFA-rich fat load on arterial

stiffness to the differences that we have observed in circulating

incretin or insulin, but the protocol that we have used does

add further support for an acute impact of fatty acid compo-

sition on the entero-insular axis.

Previous studies of the effect of dietary fat on markers of

endothelial dysfunction have produced inconsistent findings.

Nappo et al.(46) found that consumption of a high-fat meal

increased circulating sI-CAM levels, but Dekker et al.(47)

found no effect of a series of high-fat meals varying in their

polyunsaturated:saturated ratio on either sI-CAM or soluble

vascular adhesion molecule-1 levels. The present study

found that acute elevation of NEFA during consumption of a

SFA-rich but not of a MUFA-rich fat load resulted in modestly

increased levels of sI-CAM, a circulating indicator of endo-

thelial inflammation, which has been proposed as a useful

marker of underlying coronary artery disease in healthy sub-

jects(48). Although there are a number of mechanisms whereby

elevation of NEFA may be linked with endothelial inflam-

mation and dysfunction(32,48,49), an increase in sI-CAM may

indicate imbalance in insulin signalling in the endothelium

since stimulation of the mitogen-activated protein kinase path-

way, but not of the phosphoinositide 3-kinase pathway,

results in an increase in the expression of cellular adhesion

molecules, including sI-CAM. This may have a significant

impact on endothelial function, as insulin signalling is a

mediator of vascular tone through the generation of NO via

the phosphoinositide 3-kinase pathway and the vasoconstric-

tor ET-1 via the mitogen-activated protein kinase pathway;

this latter pathway can also lead to the generation of pro-

thrombotic PAI-1(41). However, the present study found no

difference in the response to the different test drinks of circu-

lating markers of endothelium function (ET-1, NOx and PAI-1)

other than the modest increase that we have observed in

sI-CAM. There is therefore insufficient evidence to conclude

that the increase in arterial stiffness reported with the SFA-

rich fat load is related to the impairment of insulin signalling

pathways that regulate NO release or the expression of

these proteins.

The protocol used in the present study achieved a success-

ful threefold elevation of circulating NEFA, comparable with

that found in the study of Beysen et al.(26). Subjects in the pre-

sent study had higher fasting levels of NEFA (average 667

mmol/l) compared with the group of Beysen et al. (260–400

mmol/l), which may have contributed to the higher absolute

NEFA values that we observed following heparin adminis-

tration. A limitation of our sample processing meant that up

to 30 min could have elapsed before samples were stored at

4oC; this could have resulted in a degree of in vitro lipolysis

in the post-heparin samples and may have contributed to

the higher values that we have reported here.

In conclusion, the main finding of the present study is that

an acute elevation of serum NEFA following consumption of a

SFA-rich drink has an adverse impact on arterial stiffness and

sI-CAM levels. The study also confirms that ingestion of a fat

load leads to sustained increases in the incretin hormone

GIP, with some evidence for a more marked effect of MUFA

than for SFA. It is not possible to determine whether the effects

of different fats on vascular tone and endothelial inflammation

are related to differential effects on incretin or insulin

secretion and/or action at the endothelium. However, given

the known effects of NEFA elevation on other insulin-sensitive

tissues such as skeletal muscle and adipose tissue, further

elucidation of the effects of fat type on the sensitivity of the

endothelium to insulin is warranted.
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