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REGULARITY OF SOLUTIONS FOR QUASI-LINEAR
PARABOLIC EQUATIONS

YOSHIAKI IKEDA

§ 1. Introduction.

Let 2 be a bounded domain in n-dimensional Euclidian space E™
(n = 2), and consider the space-time cylinder @ = 2 x (0,T] for some
fixed T > 0. In this paper we deal with the Cauchy and Dirichlet
problem for a second order quasi-linear equation

1.1  wu, — divL(x, t,u, u,) + B, t,u,u;) =0 for (z,t) e @,
u(x,0) = #(x) in 2 and wu(x,t) = Y (x, )
for (x,t)el =02 X (0,T],
where 02 is a boundary of 2 which satisfies the following condition (4):
Condition (A). There exist constants p, and i, both in (0,1) such that,
for any sphere K(p) with center on 92 and radius p < p,, the inequality

meas [K(p) N 21 < (1 — 4,) X meas K(p) holds, where meas E means the
measure of a measurable set E.

1.2)

In the equation o/ = (o7}, - -, 97,) is a given vector function of (x, ¢, u, u,),
ou ou

ox, T axn)
denotes the spatial gradient of the dependent variable v = w(z,t). Also
div o7 refers to the divergence of the vector «(z,t,u,u,) with respect to
the variables © = z(,, - - -, 2,). The functions ¢(x) and +(x, ¢) in (1.2)
are bounded, measurable and belong to the spaces LA2) and L>[0, T ; LA()]
N L0, T'; H-*(f)] respectively, where  is a domain containing 2.

Throughout the paper we assume that &/ and B satisfy inequalities
of the form

p-L@, T, u,p) = a|pl* — c@, ) |ul* — f,1),
(1.3) |B(,t,u, p)| =< bz, ?) |p|*™! + d(=, ) |u]*" + g9(=,1),
| (@, t, u, p)| < @ [Pl + e(x, t) |ul*~ + h(x, 1),
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B is a given scalar function of the same variables, and u, = (
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for any n-dimensional real vector p and for any real number « > 2.
Here a, and @ are positive constants and the coefficients b,c,d, e, f,9,h
are non-negative functions of (x,t) and b7 ¢,d, eV, f, g, ¥~V Dbelong
to some space L?%Q), where p and ¢ are non-negative real numbers

satisfying

(1.4) nopam—2n+2a o gheng<n
ap 2aq

and

i 2 ci—e, p>1
(1.5) p  2q

for any sufficiently small ¢, > 0 when a = n .

A function w = w(x,t) which is measurable on @ will be said to
belong to the class L?»%(Q) if the iterated integral

1%0l.0 = {f (Llwlp dx)‘”“’dt}”q

is finite. If a function w(x) which is measurable on 2 possesses a
distribution derivative (u,,, - - -, %,,) and if |W||zo) + | Wsllzscey < o0, then
w(x) is said to belong to H“?(2), where |[w;|Fso = D 71 [|Us,|Frc0)-

The space Hyp?(2) is the completion of Cy(2) with respect to this
norm.

We denote by L4[0,T; H-?(2)] the space of functions w(z,t) with
the following properties:

(i) w(x,t) is measurable on Q,
(ii) for almost all te (0, T, w(x,t) e H-?(Q2),
(i) ||w(@, t)|z,000 € L0, T1.

The function u is said to be a weak solution of the problem (1.1),
(1.2) if u Dbelongs to the space H"“}0, T; L¥2)] N L~[0, T; L*(2] N
Le[0, T; H»*(2)] and if u satisfies the following conditions:

1.6) _rf {wd(,t) + (2, t, u, u)P, + B, t, u, u,)P}dxdt = 0
tod 2
for any ¢,t, 0=t <t <7T) and

.7 lim , u(x, H0(x, t)ydx = L #(2)0(x, 0)dx

t—0
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for any continuously differentiable function @ = &(z,t) with compact
support in £2. That the boundary value of u is equal to (x,t) on I" in
(1.2) means that w(x,t) — (x, T) € L=[0, T ; L*(2)] N L*[0, T'; Hy*(2)] for
w(x, t) € L°[0, T ; LA(D)] N L0, T ; H-*(2)], where & D 2.

In section 4 we shall prove the boundedness of the solution of the
problem (1.1), (1.2) when ¢(x) and +(x,t) are bounded. The same result
was obtained by D. G. Aronson and J. Serrin [2] for non-linear parabolic
equation (1.1) under the condition

{p'd(x, t,u,p) = a|pl — e |ul* — h*,
|B(x,t,u,p)| < b|p|' + d* ' |ul + g,

where coefficients a, b, - -+, g are non-negative constants.

In section 5 our main theorem states that if u is a weak solution
of the problem (1.1), (1.2), then # is Holder continuous in @ and that,
moreover if the boundary value y(x,t) of u is Holder continuous then
u is Holder continuous on @ = 2 x (0, T1.

This result extends theorems proved by Ladyzenskaya and Uralceva
[3] on some linear and quasi-linear parabolic equations, theorems proved
by Serrin [4] on quasi-linear elliptic equations, and those given by
Aronson and Serrin [1] on the quasi-linear parabolic equations

u, = div (@, t, u, u;) + B, t, u, u;)
under the conditions

p-&i(x,t,u,p) 2 a’lplz - czlulz - f2 ’
|B(x,t,u,p)| < b|p| 4 dlul + 9,
|, t,u,p)| S @|p|+ elul + R,

where o and @ are positive constants, while the coefficients b,¢, ---,h
are non-negative functions of (xz,%) and each coefficient is contained in
some space L?9(Q), where

1

p>2 and ﬂ+l<— for b,c,e, f, R
2p q 2

and

p>1 and J1—+l<1 for d, g .
2p p
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§ 2. Preliminaries.

In this section we shall state and prove several lemmas which are
often used later.

Using the Holder’s inequality we can easily prove the following
lemma:

LEMMA 2.1 (Aronson-Serrin [1]). If w is contained in L%% N L7,
then w is contained in LP?, where

12, L _ 2 2 Quz0i14p=1.
Y q r Y2 Q1 7
Moreover

“w”P,Px é “w“fldh'”w”[;yﬂ ’

ol = ([ ([, 1or dx)"”’dt)"“ .

LEMMA 2.2 (Aronson-Serrin [1]). Let w belong to the space
L0, T ; Hy*()]. Then

where

lwllar,e < K| Wsla,a s

where L* = 1 ——% when n > a, and o* is any finite number when
24 (44
a=n. The constant K depends only on a, n and 2. If n < a, then

K depends on the choice of a*.

LeEMMA 2.3, If w belongs to the space L>[0,T ; L)1 N L0, T ; Hy«(2)],
then w belongs to the space L*** for all exponents pairs (p’,q’) whose
Holder conjugate (p,q) satisfies

ﬂ+an—2n+2a <1 when o« < n

ap 2aq
and
% + ?C:i <1—¢ for any sufficiently small ¢, > 0 when o =n .
Moreover
(2'1) ”w”:l",aq' é KT”{”w”;,eo + ”w“l:”:,a}
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and for any ¢ > 0

(2.2) lwlip e = ellWsls,e + CEOT“ W5 »
wherev:(l——l—)l,x:i— 2 —|——1~>1,Kdepends only on
K q/ p/ 0(*(1' q/

a,n and meas 2, and C(e) depends only on e, a,n and meas 0.

Proof. Let x be a real number >1. Then by Hoélder’s inequality
and Lemma 2.1,

[W]lepr aqr = 1WI3prs,aqrA TV (meas Q)2 } -1~
and
10]5pe,0qe = 1 W1is,0 [[w]l5357

provided that

0<21=<a and 1 :_Z__I_a—-—l’ 1 - A
£kp’ o* 2 £q o
These relations imply
1=_¢ , P = 2 2 n i >1.
ICqI apl a*ql ql

From Young’s inequality and Lemma 2.2 we have (2.1) and (2.2).

LEMMA 2.4. If the function u(x) belongs to the space Hy*(2), then
it holds

I lul*de < KI |u,|* dx-[meas 2]%" .
2 2
Proof. By Holder’s inequality, it is clear that
ala*
I lul* de < (I Ju| dx) -(meas )~/ ,
2 2

—

n .
where a* = when « <#n and when « = n, o* is any number >a.

If « <n, then 1 — &* =2 and from Sobolev’s lemma we have our
« n

lemma.

If & = n, we take g8 < n such that g* = n‘B_—,B = a*. Then
7
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([, i dr) ™ -meas @y~ < (| juop dw)™ (meas 2=
Q2
= K(j Iumi" dm)(meas ‘Q)“/ﬂ(l-ﬁ/a)-('l—a/ﬁ‘
Q2

=K (L |z dx)(meas 2)am

§ 3. Fundamental inequalities.

In this section we shall derive some fundamental inequalities for
weak solutions of the problem (1.1), (1.2), which are used in the follow-
ing sections.

Let u be a weak solution of the problem (1.1), (1.2) and for a real
number %, put

Ay@t) = {rel|ulx,t) = k} and B,({t) = {rve2|ulx,t) <k}.

We assume that the boundary value y-(x,t) and the initial value ¢(x)
belong to the spaces L=[0,T; L*(2)] N L[0,T; H>*(2)] and L*{) respec-
tively and they are bounded, i.e. there exists a positive constant M,
such that

(3.1 @)l <M, [¢@)|=<M,.

172 u
We put M = max (I u’dm) =|ulh., and U=-—.
2

05t<T M
Then, since u is a weak solution of (1.1), we have

62 U — % div o#(z, t, MU, MU,) + —Z‘]IIB(x, t, MU, MU, =0 .

Thus, it holds that
3.3) fj {Utd? + L /e, t, MU, MU )0,

tod 2 M
+ —;—I-B(x, t, MU, MUZ)(D}dxdt =0

for any differentiable function @(x,t) with compact support in 2.

It is clear that (8.3) is valid for @ e L>[0, T'; L*(2)] N L=[0, T ; Hy*(N].

Now we put «® = max (u, k) — k.

If k£ = M, then u'® ¢ L°[0, T ; L*(Q)] N L*[0, T ; Hy*(2)]. Hence, taking
@ = u® in (3.3), we have
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o 1 1
3.4 j j (U wy L omy g ”")d dt =0 .
3.4) I P i B T ke

u(k)

If we put U® = , then, letting t,— 0, we see,

1 0

— —{(U*)dxdt
) 2 0t « Vidz

J.tl Uu®dxdt = M rj
to J 4

to J Ax(t)

.M j (UPyds  as t,— 0,
2 Ax(t)

because of U*®(x,0) = 0.
It is obvious from the condition (1.3) that

r‘ f 1 uwdadt = f“ o - UPdadt
o Jawey M

0 J 4x(t)

> % (* peu@Fdodt — L [ j e(@, t) [ MU dadt
M Jo Jawy M Jo Jaw

1 (™
M .[o Lm) J (@, dwdt

and

r‘j 1 poumdpdt = f‘ BU®dzdt
o Jaxy M

o J 4t
< r‘f (b, M= |[UP =1 [UP| + d(z, )M |[U[~1 | U
o J 4w
+ 9(x, t) |U® }dxdt .

Thus we obtain

ALNUOL + ad UL,
(8.5) < J‘hj‘ {Mn-—lb [U@ 1| UB| 4 cM* |U|]* + dM=='|U=""||U®|
0 J4x®)

1
1 U"“}d dt |
+Mf+gl |tdx

where || U®|} ., = maxf w®)dx
0=ttt J ()

and

TPz, = j j (U dadt .
0 Ag(t)
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Using Young’s inequality, we see

(3.6) Ma—lb 'U:(ck) la—l ,U(k)l é _;_a/oMa—l 'U{(ﬂk} ,tx + CobaMa~l lU(Ic)la

and
3.7 Me'd |U="|U®| < C,M="d{| U + |U®|7}

where C, and C, are positive constants depending only on @, and a.

Since U = U® + % in A,(%), it follows that

3.8) Uk = afioer + (L)}
where C, is a positive constant depending only on «.
Moreover, since ||[U®|,. <1, it is clear that
(3.9) 1U®5e < 1UP,e -
Thus we have from (3.5)~(3.9),
(3.10) a(|UP (5. + 1T,
o[’ (@ +ctd+DIUTFL A+ N+ D

+ g|U®|)dxdt ,

where @, =min ( ]g

, Z" M““) and C is a positive constant depending only

on « and M.

If we put 6, =b* 4+ ¢ + d + 1, then 6, belongs to the space L?%(Q)
with p and ¢ satisfying the inequality (1.5). Thus from Lemma 2.3,
we see

f ”‘f 0, |U® | dudt
0 J Ak(t)

.11 = 10ullp,q 1T 2pr a0
= K0, ot U 2,0 + 1 U5 -

Similarly if we put 6, =c¢ + d + f, then 6,¢ L??. Thus we see
3.12) j “j 0,1 + k9)dwdt
0 J 4x(t)

t1 A 1/q’
= L+ B [0l (meas 4uepr dt) :
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and

(3.13) fj g|U®)| dwdt
0 Ax(t)

b1 - ((a—1)/a) X (1/q")
= 1005 1T ey ([ (meas Ayt a)

S KH(IUP: . + 1 U5 )
+ IIMIZ{&""”(F (meas Ak(t))Q’/P'dt)”q, )

0
If we take ¢, sufficiently so small that
Ktmwl”p,q +D<a,

then from (3.10)~(3.13) we have
B18) U + Vel = O + %9([" (meas Au@) 7w at)
0

where C is a positive constant depending only on «, M, a,, ||D], | ¢||, 4],

7]l and [g].
The following analogous inequality is obtained by the same calucu-

lation as above:

B.15)  [UPf. + UL, = OQ + k([ (meas Butyerrat)
0

for k£ < —M,.

The inequalities (3.14) and (38.15) are used to prove boundedness of
weak solutions u (see §4).

In the following, we derive other inequalities for weak solutions
which will be used in §5.

Let # be a bounded weak solution of (1.1), (1.2) and put

ltllwe = M, oz, )My + f(x,t) = filz,t) , d@, M + 9(x,t) = g,(x, ?)
and e(x, )Mt + h(z,t) = h(zx,t).
Then from the condition (1.3), we have
p-L(x, U, p) = 0 |PI* — S

(3.16) |B(z,t,u,p)| < b|p|*' + 91,
L@, t,u,D)| < a|p|*' + h, .
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We introduce the notation

K(p) = {z]| |2 — x| < p, o€ 2}, I',=K(op) NoR,
A, () = {z e K(p) |u(x, t) = k},
By (1) = {x € K(o) |u(z,t) < K},

and for p > o’

1 for xe K(p — o) ,
{=Lx;00) = Ljp'i—;/ﬂl‘ for z e K(p) — K(o) ,
0 outside K(p) ,

where K(o) is a concentric cube with K(p).

If we put @(x,t) = u®¢* for k = max wu, then
T pX[to,t1]

@eL~[0,T; LX) N L0, T; Hp*(D)]. (When K(p) C 2,k is an arbi-
trary number.) Since u is a weak solution of (1.1), (1.2), the equality
1.7) is valid for @ = u®¢*, that is for any ¢,t, 0t <t < T),

(317) juf {utu(k)ca + (u;k)(:a + aca_ICzu(k))'vQ{ + u(k)CaB}dxdt =0.
to J Ax,p(t)
Since {* is independent of the variable ¢, it follows that
3.18) wuU*L = —;-{(u"")z}, in A, (0) .

From the condition (3.16), we see
(3.19) uPLr ol = ay|uP "¢ — fi,

QUL ol S o U U 07 (G| 4 R
(3.20) < e JuPl L+ Co U Lf
+ Cl(lu(k)la ch]a + hf/(u—l)Ca) ,

and

u(k)CaB é b luék)]a—lca lu(lc)l + gl lu(k)l Cn

(3.21) < B |apa 1 O pa |y @ |a pa )| pa
SeluPltL* 4 Cb*|u [FC* 4+ g1 |u®| ¢

for an arbitrary positive number ¢, where C,,C;, and C, are constants
depending only on « and e.

Taking ¢ = ‘Zo , we have from (3.17)~(3.21),
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1 (EN2pa 1 (k) 27 a
(3.22) — (U dr — = (u®(x, t,))¢dx
2 J a0ty 2 J 4k, ptt0)
aO ¢ a fFa
+ —j f |ty |" Codwdt
2 to J 4g,p(t)
13
<G{[ [ @rmtre 4 guic 4 G e
0 k,p(t
+ [u® ||, }dadt}
forany t (0<¢t, <ttt 1)
First, we see from Lemma 3.3,

@29 [ [ bl gededt < 101l — 1 U
to %, p ()
+ e @O,

al2
where ||u®¢|js ., = max <J.(u<’”)2dx) .

toStsSta

Similarly we obtain
(3.20) f [ guwlgdsat
to J Ag,p(t)

t (a=1)/aq’
< 9.0 199 oy ([, (mess A ) 1)
< e(|usPCllz . + P20 + Clt — )</ [|u®C|f5 .,
e’
+ G llgl”Zfé""”(_r (meas Ak,,,(t))"'/"'dt) !
to

and
(3.25) f [ (f, + h/em)gedadt
to J Ag,p(t)
< 1+ 1 [ (measAk,p<t))q'w'dt)”"' .
to
From (8.22)~(8.25), by putting e = — % it holds
4(1 4 1|b1lp,0)

(3.26) 1 w®)dx — lf (u®(z, t))¢dx

2 Jap,, 2 J 4k,

a ]
+ _°f f u® | cedadt
4 Jeod ar,pt

a/2
‘K{J“ J’ |[u® | |£,]* dedt + max <I [ut Czdx)
to J Ag,p(t) tosStsty Ar,p(t)

IA
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1/q*
X (t — Lyl + ( * (meas Ak,,,(t))«'/p'dt) =10
to
for any ¢t (¢, <t <t). From this we have the following two inequalities

(3.27) max L o w®(z, )¢ de < I(t) + L (u®(z, t))Cde ,

toStsty %, p(t0)

(3.28) I e cedadt < I(t,)

to Ar,p(t)

for any ¢, (05¢, <t D).

§ 4. Boundedness of weak solutions.

In this section we concern with boundedness of a weak solution «
when # is bounded on the parabolic boundary 0Q =92 X (0,T]U X
{t = 0}, that is, when (xz,t) and 4(x) are bounded.

LEMMA 4.1 (Stampacchia [5]). Let Z(k) be a non-negative and non-

inecreasing function defined for k =k, If the inequality

- c
B0 S 55

holds for h > k =k, and g > 1, then
E(ky+ d?) =0,

[EZ(k)IF

where d* = C[E(J,)]F~12s#/¢-D,
Now we can prove the following.

THEOREM 4.1. Suppose that 4 (x,t) and #(x) are bounded. Then a
weak solution of the problem (1.1), (1.2) is bounded in Q.

Proof. Let M, be a positive constant such that
Wz, )| = M, and |¢(x)| <M, (M,>1)
and let

. U _ ) 1/2
U= y where M = max wdx) .
M osesr \J 2

Then the inequality (8.14) and (3.15) hold for U.

Now, put k, = M0<2 — _217) (h=0,1,2,---) and
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k) = f (meas A, ()77 dt .

Then it follows that

; t1 , a'/p’ a/acq’
h+1 T fip h+l = Uj, X
(k k )aﬂ(k )a/q £ < (J <J‘ ( (kh))anl’ d ) dt)
0 Axep, (8)
= U e e = K[ l5 0 + [[uf™ 120 < Chip(kn)™

where C is a positive constant depending only on «, M,, M, a,, ||b], || ¢l

Idll, | ]I and [[g].
If we put Z(k) = u(k)~7*, then

4.1 (i — EEEn,) = ChiIE(RDT .
Since £ > 1, from the preceding lemma 4.1 we have
gk, +d)=0,

that is, u(x,t) is bounded from above in 2 Xx (0,¢,].

Similarly, from the inequality (3.15) we see that u(x,t) is bounded
from below in 2 x (0, ¢,].

Repeating the same argument on £ X (Nt, (N + Dt,] inductively,
we conclude that u is bounded in Q.

§ 5. Holder continuity of weak solutions.

In this section we prove Holder continuity of a weak solution u of
the problem (1.1), (1.2). The method presented here is based on the
idea of [3].

Throughout this section, we assume that there is a positive constant
M, such that |u] £ M, in Q.

First we shall state some lemmas.

LEMMA 5.1 (Theorem 6.3 in [5]). Let u(x) e H**(K(p)) and let A(k, p)
= {xe K(p)|uw(x) = k}. If there exist two constants k, and 6 with
0 <60 <1 such that meas A(k,, p) < 0 meas K(p), then the following ine-
quality holds:

(5.1) (h — k)[meas A(h, p)]-¥» C j [u,(t)| dt

[A(k,0)—A(R,p)]

for h > k > k,, where C is a positive constant depending only on 6 and n.
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LEMMA 5.2. Suppose that meas A, () §%Icnp", where k, = meas K(1).

Then for any B in (%, 1) , there exist positive numbers a and 6 (0<6<1)

depending only on B such that if
E= max u(x,t) aond 2M, =2 H= max (u(x,t) — k) > o,

EIINK(p) 2€ Ap, p(t)
tE€[to,to+apa] t€lto,to+apal

where 7:1—<ﬂ+ an—-2n+2a) when a <n and r=1—(l+
ap 2aq p

i) when o« = n, then
2q

meas Ay, .z (£) < 6 meas K(p)
for telty,t, + ap"l.

Proof. We choose ¢(x) as follows:

1 for xe K(p — ap) ,
(@ p,0 —ap) = { L2 =%l for weK(p) — K(o — ap)
ap
0 outside of K(p) ,

where ¢ is any number in the interval (0,1). For such a ¢ and te
[ty t + ap], it follows from the inequality (3.27) that

(BE)(meas Ay, pu,-.,)
< j (u — kyds < j woycds
Ak, p—op(t)

Ar,p(t)

af
= %{J‘L ‘[ I’u(k) I“ lc:cl“ dxdt + max (‘[ Iu(k) Iz Czdx) z(t _ to)au/(u—l)
to J 4g,p(0) + A p ()

+ ([, tmess aurrame} + [ e e

Az, p(b0)

Since, from the hypotheses,

(op)

(t — to)av/(a-l) ”u(k)C”g’w S Ha(t . to)av/(a—l)lczlzpa'nﬂ é Hak.’allzpnaau/(a—l) s

I Ha
j j WP |Col Ao < 2 (t — tEap”
to J 4k, o (8) 0)”

([ meas ax,,oneat)™ < & — 9w ey
to

é (t — to)llq'Hax:b/P'pﬂ/P'—ﬂr é aVQ'HaIC:E/p'pn
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and
j {u®(z, t)}Cdx < —l—lcnp"H2 ,
Ak, p(b0) 2

it follows that

meas Ay, pz,,-.,()
1
24

, 1) and choose 4 (0 <6 <1) and ¢ > 0 such

(5.2) < %_Ha—?{_% + QMg g aau/<a-1)x;1},cnpn +

Y3
Eno" .

Now we take e (‘/17

that the inequality

1

g5 <00 or

holds. Then if we choose the number a sufficiently small, the right hand
side of (5.2) is smaller than 6x,(1 — 0)"p". Hence we obtain

(5.3) meas Ay, ,x,,,,(1) < 0 meas K(1 — o)p) for telt, t, + apl,

from which we have the lemma.

In what follows, we take g = %

We introduce standard cylinders Q(rp) whose bases are the ball K(rp)
with heights equal to a(rp)®, where @ is a positive constant chosen in
Lemma 5.2, that is,

Q(rp) = K(rp) X [t, — a(rp)*, t.], t, > a(re)® .
Write

m=maxu, pm=minu and o= — .
Q(8p) Q(8p)

LEMMA 5.3. For any 6,> 0 and for any p <1, there exists an
s(6,) > 0 such that for any cylinder Q(8p) C Q, either

(5.4) 0 < 20

where r=1——(i+ on — 21 + 2“) when n>a, and =1 — (l + L)
ap 2aq P 2q

when o« = n, or
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(31
.5) f o meas A, e o (OdE < 0,07,
t1—a(4p)®
or
b1
(5.6) f 10685 B i (D S 0,07
t1—a(4p)x

Proof. Let r be an integer >2. Since g, + —;-";— < — ‘;)7’ it is

obvious that at least one of the following inequalities holds:
meas A,,_ . ult, — a(dp)) < %Ifn(‘lp)"
and

meas sz+(a}/2’),4p(t1 —adp)”) =< %Kn(‘lp)" .

Suppose for example that the first one holds. We shall prove that
then (5.5) will be satisfied if o > 2%,
From Lemma 5.2, for all tel[t, — a(4p)* t.]

meas A,,_ /9,4, < 0k,(40)" ,

so that, for such a ¢, Lemma 5.1 may be applied on account of the fact
that

E>k=u — -2 .
2'r+2

We denote by D,(t) the set
Ay,_(m/zf),4,.(t) - Apl—(m/zl+1),4,,(t) > r+2=<4=<s.

Using Lemma 5.1, we have

@ 1)
—__m A <
ky™(4p)2¢*! €as A,,—watrn p(t) = 9p+1

[meas Al‘l— (w/21+1),49(t)]1_1/n

< %[ | daz .

De(t)

From this we have, putting ¢, = ¢, — a(4p)",

a t1 «
5.7) PRCT G —cd
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1 t1 a—1
< a « .
<% (Lo fDM [ U] dxdt)(fto meas Du(t)dt)

On the other hand, if we take {(x) = {(x; 8p,4p) in (3.28) with

t, = t, — a(4p)*, then we obtain

t1 b1
j j | dzdt < f j " dadt
toJ Dag to J Ap;— (0/2%),8p(8)

(5.8) < ‘K{a(4p)"[—2§°lp7lcn(8p)"] + (a4apa)zxv/(a—1)%(8‘0)na/2ﬁ::/2

+ (a4apa)1/q'(8npnlcn)1/p’}
é Clwa{pn __l_ pa(av/a—1)+an/2 _I_ pa—(a/q)+n—(n/q)—ar} é Clco"p" ,
where C, is a positive constant depending only on a, &, and % in (3.28),

and we used the fact that

ae( a”)—l-n—“gn, a—f‘_—{—n—ﬁ—argn.
a—1 2 q p

Therefore the inequalities (5.7) and (5.8) yield
1 ala— 1
(5.9) (f meas Am_(m,zm),,,,,(t)dt) ' Cyrreyee J “ meas Du(t)dt .
to to

We sum up these inequalities with respect to ¢ from r + 2 to s and
obtain
t1 af(a—1)
(s—r— 1)( f mean Aﬂl_(m,2,+1),4,,(t)dt)
to

é Cz(pn+a)1/(a—l) Jﬁl K(4‘0)dt — CZZZ'n+2aa(pn+a)1/(a—l)pn+a — C3(pn+a)a/(a—l) .

Hence we have
121 C (a=1)/a
(5.10) Lo meas A,,_ e (Bt < <s—_f+—1') e

Therefore we have the inequality (5.5) by choosing s such that

(L)(a—l)/a — 9.
s—r+1

LEMMA 5.3'. Suppose that the oscillation o, = osc{u,Q(8p)} of u on
the intersection I'(8p) of the cylinder Q(8p) with I' satisfies o, < Lp*, for

some positive number e.
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Then for any 6,>0 one can find an s@,) >0 such that for any pair
of coaxial cylinders Q(4p) and Q(8p) satisfying the condition
meas [K(4p) — K(4p) N 2] = byp",

at least one of the three inequalities o = osc {u, Q(8p)} <20 (,=min 7, ¢),
(5.5) and (5.6) holds.

The proof is analogous to the proof of Lemma 5.3, so we omit it
here.

LEMMA 5.4. There exists a 6, > 0 such that if
max  meas A;, () < " in Q2p)

telti—a(2p)®,t1]
and tf

k = max u(z, t) , H=maxu—k) > o,
r'(2p) Q(2p0)

then
meas Ay, zp,(t) =0, telt, — aps t].
Proof. We introduce the notation

H _ «_ ap” — P
“275, th—tx“ap“zhs Ph—P+2n,

#, = max (meas Ay, ,,®) , Cn =85 pry Prsd) » (h=0,1,2,...)

teltn,t1l

kh=k+§—

Evidently, for any h.

(kpyy — kp)*meas Ay, 0ne (D < (u — kp)*dx

Ak Pp 41 (8

= (u*»)Crda .

Akps 5 (0)

Integrating by ¢ and using Lemma 2.4 and (3.28) we have

(kh+1 — k) I‘ measAth‘th(t) < J" J' (u*»)ags drdt
th th

Ak 05 (t)

13
=k([ [ queorss + sl @lndedtug”
th J Ay, 05 ()
< o Pt oy + B+ RO WA
(Ph. - Ph+x)a i
for any ¢t > t,. Choose t =t,,,, Then we obtain
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C’1 { ‘u;:a/n #;/2+a/n ﬂ};a/n—l/p
Prir = + + }
MU= s — En)* (Enpy — t)  (nsi—tn) 07 (tnys — t)Ve)

from which, taking account of the definition of k,,p,,t, we arrive at
the inequality

Yna = C2°Myte

where ¢ = & — 1 >0,y, = 7" and C, is a positive constant depending
n P 0

only on % in (3.28).
Now we choose 4, such as

1

(5.11) 0, < T

Then if y, < 6,, we have

Yu S 6,270,

Taking such a 6, and letting % tend to + oo, we have that y, — 0,
i.e., that

meas Ay pp, () =0 for telt, — aps t].
In what follows we fix 6, (1 > 6, > 0) satisfying condition (5.11) and

a sufficiently small number p, such that

(g(le)a—zaap/(a—1)(4P0)a2u/<a—1>+(na/Z)po—n — % ,

where % is a positive constant in (3.27) of (3.28).
LEMMA 5.5. For 6, > 0, there exists a 6, > 0 such that if

k > max u(z, 1) , H=maxu—k) >y, 0= pos

I (4p) Q4p)

then inequality

(.12) f‘ meas A, ,()dt < 0"
ti—a(4p)a
implies
(5.13) meas Ay, up2(t) < 00",  telt, — a2, ti].

Proof. Put { = {(x; 4p,2p). Then we have from (3.27)
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(%)Bmeas Avipup,) < ¥ {% f meas A, (H)dt

/2

+ (- r)“"/“'"”H“(max meas Ak,4,,(t))a
(5.14) ¢

¢ g
+ ( (meas A,c,,,,,(t))q’/f"dt) }
+ H’ meas Ak,4p(T) ’ t, — a(4‘0)a - -
From (5.12), it is clear that

(5.15) 1 I’ meas Ay, ()dt < 60" .
p T
Since t — 7 < a(4p)* and p < p,, it holds that

af2
(t — < ,»/(a—n(max meas Ak,4,,(t))
t

(5.16) 1
__<_ aav/(a—l)(4p)av/(a—l)+an/2 é Eazpn(%(zM)a—Z)—l .

If ¢/ = 9/, then
(f (meas Awm)q""'dt) = ( meas A, 4p(t)dt> (doymv -

- 1 +ap’
§4/p n/qg/q nar’

where ¢ =1 — (i + l)
ap q

On the other hand, if p’ > ¢/, then the Holder’s inequality yields

't 1/q* 43
( (meas Ak,4,,(t))‘1'/1"dt) Y < ( [ (meas Ay, )AL (¢ — g)/a v
< {a(Ap) Ve~V GU gD < (41T VD GUP grkar

Thus, putting 6] = max (6", 6/%) and C, = max (42" ~/p", 4n0/p'~1/a7),
we obtain

1/q*
(517) ( t (meas Ak,4p(t))q'/p’dt) q é Clﬂfpn.'—arl .
Finally we choose ¢ in the interval [{, — a(4p), t, — a(2p)*] such that
(5.18) meas A, (1) < — 00"
HTE (4 — 29
Then, from (5.13) ~ (5.18) we have
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(519 meas Ayuna ) S CRID00 + Ol + p o b oo h |

From (5.19), we obtain the lemma, while ¢, satisfies
%MV%&C%+—£L431W
“4* — 29l = 2
We put u(p) = rgax U, o) = Iél(i?u and w(p) = (o) — :(p). Then
4

(0)
the following Lemma was proved by G. Stampacchia [5]:

LEMMA 5.6. If w(p) < 708p) with 0 <5 <1, then there exist a
constant A in interval (0,1) and positive constant K such that

o(p) < Kp* .
Now we can prove the main theorem:

THEOREM 5.1. A weak solution u of the problem (1.1), (1.2) is Holder
continuous in Q.

Proof. Let (x,,t) be any point of @ and choose p, > 0 so small
that Q(8p,) is contained in @, where Q(8p) = K(8py) X (t, — a(8py), t]
and K(8p) = {x € 2||x — x| < 8py}.

First we choose 6, as in Lemma 5.4 and we choose 6, as in Lemma
5.5. Then we take s(f) as in Lemma 5.3.

Now suppose that o(8p) = 2:*%’. Then either the inequality (5.5) or
(5.6) in Lemma 5.3 holds. If the inequality (5.5) is valid, then from
Lemma 5.5, we have

meas A,,_,+2,) < 00" for telt, — ao)=t] .

Therefore Lemma 5.4 gives

um0§&—£— in Qo) ,

+3

so that
(5.20) o) = (1= 5i5)o8e) .
This and Lemma 5.6 imply
w(p) < Kp*:

https://doi.org/10.1017/5S0027763000017207 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017207

172 YOSHIAKI IKEDA

If the inequality (5.5) does not hold, then (5.6) is valid and, con-
sidering —u instead of #, we have (5.20) by the similar argument to
the above.

THEOREM 5.2. Let u be a weak solution of the problem (1.1),(1.2).
If the boundary value (x,t) belongs to the class C**0R), then u is
Hélder continuous on Q@ = 2 X (0, T1.

The proof is analogous to the proof of the preceding theorem, with
the sole difference that Lemma 5.8’ is used instead of Lemma 5.3.
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