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Splitting, Bounding, and Almost
Disjointness Can Be Quite Different

Vera Fischer and Diego Alejandro Mejia

Abstract. We prove the consistency of

add(N) < cov(N) < p = s = g < add(M) = cof(M) < a = r = non(N) = c

with ZFC, where each of these cardinal invariants assume arbitrary uncountable regular values.

1 Introduction

_e splitting, the bounding, and the almost disjointness numbers, denoted s, b, and
a respectively, have been of interest for already a long time. _e splitting and the
bounding numbers, as well as the splitting and the almost disjointness numbers, are
independent, while an easy ZFC argument shows that b ≤ a (see [Bla10]). _e consis-
tency of s < b = a holds in the Hechler model (see [BD85]). In 1984, introducing the
powerful technique of creature forcing, S. Shelah [She84] obtained a generic extension
in which cardinals are not collapsed and b = ℵ1 < a = s = ℵ2. As this is a countable
support iteration of proper forcing argument (thus, restricted to force c at most ℵ2),
it remained interesting to generalize these results onmodels of larger continuum, i.e.,
models of c > ℵ2. Almost 15 years later, J. Brendle [Bre97] showed that consistently
b = κ < a = κ+, while in 2008 the ûrst author jointly with J. Steprāns [FS08] obtained
the consistency of b = κ < s = κ+, where κ is an arbitrary regular uncountable car-
dinal. Even though the constructions can be combined to produce the consistency of
b = κ < a = s = κ+, they cannot be further generalized to produce amodel in which
there is an arbitrarily large spread between the relevant cardinal characteristics.

To show the consistency of ℵ1 < d < a (without the assumption of a measurable),
where d is the dominating number, S. Shelah [She04] introduced a ground-breaking,
new technique, known as template iterations. Since this technique is central to the
current paper, we will add a few more lines regarding this construction. In his work,
Shelah generalizes the classical fsi (ûnite support iteration) of Suslin ccc posets to
the context of a ûnite-supported iteration along an arbitrary linear order, where the
iteration is constructed from a well-founded structure of subsets of the linear order,
known as a template. As an application, assumingCH andℵ1 < µ < λ regular cardinals
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with λℵ0 = λ, he constructs a template so that the iteration using Hechler forcing (the
standard ccc poset adding a dominating real) along this template produces a µ-scale
in the extension to get b = d = µ and, on the other hand, by an isomorphism-of-
names argument, there are nomad (maximal almost disjoint) families of size between
µ (including it) and λ (excluding it), so a = c = λ in the extension (because b ≤ a). In
this model s = ℵ1 and so all of s, b, and a are distinct in Shelah’s template extension.
_e same consistency result was obtained for λ singular with uncountable coûnality
and, later, for instances of λ of countable coûnality by Brendle [Bre03].

In [BreF11], using amethod known as matrix iteration, the ûrst author jointly with
J. Brendle, established the consistency of a = b = κ < s = λ, where κ < λ are ar-
bitrary regular uncountable cardinals. _is result depends heavily on a new method
of preserving the maximality of a certain maximal almost disjoint family along such
an iteration. In the same paper, it is shown that b = κ < s = a = λ, where κ is
above a measurable in the ground model, thus generalizing Shelah’s creature posets
result mentioned earlier. _e authors ask if any of the following two constellations
b < a < s, as well as b < s < a are consistent. Both remain very interesting open
questions.
As an attempt to get a model of ℵ1 < s < b < a, the second author [Mej15] in-

troduced the iteration of non-deûnable ccc posets along a template. He proved that if
θ < κ < µ < λ are uncountable regular cardinals, κ is measurable, θ<θ = θ, and
λκ = λ, then there is a ccc poset forcing s = p = g = θ, b = d = µ, and a = c = λ. Also,
non(N) = r = λ and (by a slight modiûcation of the forcing) add(N) = cov(N) = θ
hold in the extension. _e forcing construction is amatrix iteration involving paral-
lel template iterations, as in Shelah’s original template model, modulo a measurable
cardinal.

In this paper we show that ℵ1 < s < b < a consistently without the assumption
of measurability, which solves [Mej15, Question 8.1]. In addition, answering [Mej15,
Question 8.2], we show that given arbitrary regular uncountable cardinals θ0 < θ1 <

θ < µ < λ, there is a ccc generic extension in which

add(N) = θ0 < add(N) = θ1 < p = s = g = θ < add(M) = cof(M)

= µ < a = r = non(N) = c.

First, we want to address the consistency of ℵ1 < s = θ < b = µ < a = λ (all
regular cardinals) without the assumption of a measurable. Let ⟨Lλ , I

λ
⟩ denote the

template used in Shelah’s original consistency proof of d < a. To obtain the desired
constellation, it seems natural to iterate along ⟨Lλ , I

λ
⟩-Hechler forcing for adding a

dominating real and use Mathias–Prikry posets to guarantee that s = θ. To force
θ ≤ p (≤ s), we useMathias–Prikry posets (of size < θ) to add a pseudo-intersection
to every ûlter base of size < θ (by a quite standard counting argument adapted to
the context of template iterations). To force s ≤ θ, we aim to preserve a splitting
family of size θ that is generated in some middle step of the iteration (actually, this
splitting family is formed by θ-many Cohen reals). _e preservation results from
[Mej15, Sect. 5] and the fact that Hechler forcing preserves some sort of splitting
families (see [BD85]) provide ℵ1 < s < b < c. However, with the use of Mathias–
Prikry posets, the construction is not uniform enough for an isomorphism of names
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argument to go through, and it isnot clear how to provide b < a. Noticing that Shelah’s
template ⟨Lλ , I

λ
⟩ is not only equipped with a length but with a width, we construct a

poset by recursion on the width in such a way that small mad families are eliminated
at successor steps. To bemore precise, for δ ≤ λ, let ⟨Lδ , I

δ
⟩ be Shelah’s template with

width δ (see Section 6). We construct an increasing sequence of template iterations
(usingHechler forcing andMathias–Prikryposets) along these templates by recursion
on δ. In the successor steps, we expand the iteration along ⟨Lδ , I

δ
⟩ to an iteration

along ⟨Lδ
′

, I
δ′
⟩ for some δ′ ∈ (δ, λ) such that one a.d. (almost disjoint) family of size

ν ∈ [µ, λ) in the generic extension at δ is not mad in the generic extension at δ′. By
a book-keeping device for these a.d. families, the iteration along ⟨Lλ , I

λ
⟩, being the

direct limit of the previous iterations, forces that either a = λ or a < µ (but, as we aim
to force b = µ, the only option would be a = λ).

In order to achieve the above recursive construction,we need a better understand-
ing of isomorphims between generalized template iterations, i.e., iterations along a
template that involve non-deûnable iterands (see Lemma 3.9). It is known that two
template iterations ofHechler posets are isomorphic if the template structures are iso-
morphic (or just innocuously diòerent, as described in Deûnition 3.7), which is not
the case when non-deûnable posets are used in the iteration. In addition we need
to work with an extended notion of isomorphism between subsets of the underlying
template of generalized template iterations, see Deûnition 4.5.

_e previous construction can bemodiûed in a natural way to construct amodel
of ℵ1 < add(N) < cov(N) < s < b < a, but in order to preserve witnesses for add(N),
cov(N), and s (simultaneously) we need to further develop some already existing
preservation results regarding template iterations. _ere are two such results that are
of interest for us: [Mej15, _eorems 5.8 and 5.10]. _e ûrst of those theorems can-
not be applied to preserve witnesses of diòerent size along the same iteration, for
example, to preserve a witness to cov(N) that is smaller than a witness of s. _e
second theorem can be applied to standard fsi’s when they are viewed as template it-
erations, which is the reason why additional simpler consistency results, including
the groupwise density number, g, were obtained in [Mej15]. However, we do not
know if this second preservation theorem can be applied to obtain the consistency
of ℵ1 < add(N) < cov(N) < s < b < a modulo ameasurable. In view of this, one im-
portant achievement of this paper is that the second preservation theorem (_eorem
5.5) works for iterations along Shelah’s template; see Lemma 5.8 and_eorem 5.6.

Relying on this new preservation theorem, _eorem 5.6, we can show that a cer-
tain class of template iterations, to which we refer as pre-appropriate iterations (see
Deûnition 6.2(i)–(vii)), can preserve witnesses for add(N) ≤ θ0, cov(N) ≤ θ1, and
s ≤ θ. In addition, our pre-appropriate iterations force that add(M) = cof(M) = µ
and g = θ, the latter by an argument that already appears in [Mej15] using Lemma
2.1 (originally by Blass [Bla89]) and _eorem 5.10. Now, by a consequence (_eo-
rem 5.9) of the ûrst preservation theorem above, we show that in generic extensions
obtained via pre-appropriate iterations, r = non(N) = c = λ. In addition, we can
guarantee that our iterations provide lower bounds for add(N), cov(N) and p (≤ s)
(see the notion of appropriate iteration in Deûnition 6.2(8)–(10)). _us, in generic
extensions obtained via appropriate iterations, all cardinal characteristics, except the
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almost disjointness number, have the desired values (see Lemma 6.4). _e methods
which provide that a = λ in our ûnal extension, were discussed earlier. _us, we can
state our main result.

Main _eorem Let θ0 ≤ θ1 ≤ θ < µ < λ be uncountable regular cardinals with
θ<θ = θ and λ<λ = λ. _en there is a ccc poset that forces add(N) = θ0, cov(N) = θ1,
p = s = g = θ, add(M) = cof(M) = µ, and a = non(N) = r = c = λ.

_is paper is structured as follows. Sections 2 and 3 contain preliminary knowl-
edge of the paper, the latter section presented as a summary of the template iteration
theory in [Mej15, Sect. 3 and 4]. Additionally,we discuss isomorphisms of template it-
erations in Section 3. Section 4 deûnes Shelah’s templates and explains those features,
which are useful for our isomorphism-of-names arguments in the context of template
iterationswith non-deûnable posets. In Section 5we develop the preservation theory
for iterations along Shelah’s templates. Section 6 is devoted to the proof of theMain
_eorem, and Section 7 contains some open questions.

2 Preliminaries

2.1 Classical Cardinal Invariants

_is section contains some deûnitions and basic facts regarding the cardinal charac-
teristics of the continuum that we are to consider. Further information about them
can be found, for example, in [BaJ95,Bla10].
For f , g ∈ ωω , we say that f is eventually dominated by g, denoted f ≤∗ g, if for

all but ûnitely many n we have f (n) ≤ g(n). We say that f is (totally) dominated by
g, denoted f ≤ g, if for all n ∈ ω we have that f (n) ≤ g(n). _en D ⊆ ωω is called
a dominating family if every function in ωω is dominated by some element of D; b,
the (un)bounding number, is the least size of a subset of ωω whose elements are not
dominated by a single real in ωω . Dually, d, the dominating number, is the least size
of a dominating family.
For a, x ∈ [ω]ω , we say that a splits x if both a ∩ x and x ∖ a are inûnite. A subset

S of [ω]ω is called a splitting family if any inûnite subset of ω is split by somemember
of S. For x ∈ [ω]ω and F ⊆ [ω]ω , we say that x reaps F if x splits all elements of F.
_e splitting number, s is deûned as the least size of a splitting family. Dually, r, the
reaping number, is deûned as the least size of a subset of [ω]ω that cannot be reaped
by a single inûnite subset of ω.
A family A ⊆ [ω]ω is said to be almost disjoint (a.d.) if the intersection of any two

diòerent members of A is ûnite. An inûnite almost disjoint family is called amaximal
almost disjoint family (mad family), if it is maximal under inclusion among such a.d.
families. By a we denote the least size of a mad family and refer to it as the almost
disjointness number. Following standard practice, whenever a, b are subsets of ω, we
denote by a ⊆∗ b the fact that a ∖ b is ûnite. For C ⊆ [ω]ω say that x ∈ [ω]ω is a
pseudo-intersection of C if x ⊆∗ a for any a ∈ C. A family F ⊆ [ω]ω is called a ûlter
base if it is closed under intersections. _e pseudo-intersection number p is deûned as
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b b b b b

b b

b b b b b

ℵ1
add(N ) add(M) cov(M) non(N )

b d

cov(N ) non(M) cof(M) cof(N )
c

Figure 1: Cichoń’s diagram

the least size of a ûlter base without a pseudo-intersection. _e ultraûlter number u is
deûned as the least size of a ûlter base that generates a non-principal ultraûlter on ω.
A familyG of inûnite subsets ofω is groupwise-dense ifG is downward closed under

⊆∗ and, for any interval partition ⟨In⟩n<ω of ω, there exists an A ∈ [ω]ω such that
⋃n∈A In ∈ G. _e groupwise-density number g is the least size of a family of groupwise-
dense sets whose intersection is empty.
For an uncountable Polish spacewith a continuous (in the sense that the singletons

havemeasure zero) Borel probabilitymeasure, letM be the σ-ideal ofmeager sets and
letN be the σ-ideal of null sets. For I beingM orN, the following cardinal invariants
are deûned. Note that their values do not depend on the underlying Polish space:

add(I): _e additivity of I, which is the least size of a family F ⊆ I whose union is
not in I.

cov(I): _e covering of I, which is the least size of a family F ⊆ I whose union
covers all the reals.

non(I): _e uniformity of I, which is the least size of a set of reals not in I.
cof(I): _e coûnality of I, which is the least size of a coûnal subfamily of ⟨I, ⊆⟩.

We will use the following characterizations of add(N) and cof(N) (see [BaJ95,
_m. 2.3.9]). Recall that a function ψ∶ω → [ω]<ω is called a slalom. For x ∈ ωω and
a slalom ψ, we say that ψ localizes x, denoted x ∈∗ ψ if for all but ûnitely many n,
x(n) ∈ ψ(n). For a function h∶ω → ω, denote by S(ω, h) the set of all slaloms ψ such
that ∣ψ(n)∣ ≤ h(n) for all n. If h(n) goes to inûnity, then add(N) is the least size of a
family of reals in ωω that cannot be localized by a single slalom in S(ω, h) and, dually,
cof(N) is the least size of a family of slaloms S ⊆ S(ω, h) such that any real in ωω is
localized by some slalom in S.

_e well known Cichoń’s diagram (Figure 1) illustrates all provable (in ZFC) in-
equalities between the relevant cardinal characteristics. _e vertical lines from bot-
tom to top and horizontal lines from le� to right represent ≤. Also, the dotted lines
mean add(M) = min{b, cov(M)} and cof(M) = max{d, non(M)}. In addition we
have p ≤ add(M), p ≤ s, p ≤ g, s ≤ d, g ≤ d, b ≤ a, b ≤ r, s ≤ non(I), cov(I) ≤ r
(where I is M or N), and r ≤ u. Note that the characteristics add(N), add(M), b, p
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and g are regular, and that there are no other ZFC provable inequalities between these
invariants.

_e following result is a very useful tool for consistency results about g.

Lemma 2.1 (Blass [Bla89,_m. 2]) If ⟨Wα⟩α≤θ is an increasing sequence of transitive
models of ZFC such that
(i) [ω]ω ∩ (Wα+1 ∖Wα) /= ∅,
(ii) ⟨[ω]ω ∩Wα⟩α<θ ∈Wθ ,
(iii) [ω]ω ∩Wθ = ⋃α<θ[ω]ω ∩Wα ,
then g ≤ θ in Wθ .

2.2 Forcing theory

Excellent references for the theory of forcing are [BaJ95, Je03,Kun11].
Let P and Q be partial orders. _en P is said to be a subposet of Q if P ⊆ Q (as

partial orders) and incompatibilities are preserved; that is, whenever p ⊥P q (that
is, there is no condition in P stronger than both p and q), p ⊥Q q. We say that P
is a complete suborder, also complete subposet of Q, which we denote P ⋖ Q, if P is
a subposet of Q and every maximal antichain of P is a maximal antichain of Q. If
M is a transitive model of ZFC and P ∈ M, then P ⋖M Q denotes the fact that P
is a subposet of Q and every maximal antichain A of P that is an element of M is a
maximal antichain ofQ.

Deûnition 2.2 (Mathias–Prikry type forcing) Let F be a ûlter subbase. Mathias–
Prikry forcing with F is the posetMF consisting of all pairs (s, a) such that s ∈ [ω]<ω ,
a ∈ F and sup(s + 1) ≤ min(a) where s + 1 = {k + 1 ∶ k ∈ s}, and ordered by
(t, b) ≤ (s, a) if and only if s ⊆ t, b ⊆ a, and t ∖ s ⊆ a.

MF is σ-centered. It adds a pseudo-intersection of F which is o�en referred to as
theMathias–Prikry real added byMF .

Deûnition 2.3 (Suslin ccc poset) A Suslin ccc poset S is a ccc posetwhose conditions
are reals (in some ûxed uncountable Polish space) such that the relations ≤ and ⊥ are
Σ1

1.

If S is a Suslin ccc poset, then S itself has a Σ1
1-deûnition, because x ∈ S if and only

if x ≤ x. Also, if M ⊆ N are transitive models of ZFC and S is coded in M, then
SM ⋖M SN .

Deûnition 2.4 ([Bre05]) Let S be a Suslin ccc poset.
(i) S is Suslin σ-linked if there exists a sequence {Sn}n<ω of 2-linked subsets of S

such that the statement “x ∈ Sn” is Σ1
1. Note that the statement “Sn is 2-linked”

is Π1
1.

(ii) S is Suslin σ-centered if there exists a sequence {Sn}n<ω of centered subsets of S
such that the statement “x ∈ Sn” is Σ1

1. Note that the statement “Sn is centered”
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Q1

Q0 P1

P0

Figure 2: Diagram of posets

is Π1
2, since the statement “p0 , . . . , p l have a common stronger condition in S”

is Σ1
1.

_e following are well-known examples of Suslin ccc notions, which will be used
in our applications. _eir order and incompatibility relations are Borel.
● Cohen forcing C.
● Random forcing B.
● Hechler forcing D, the canonical ccc forcing that adds a dominating real.
● Let h∶ω → ω non-decreasing and converging to inûnity. LOCh , the localization
forcing at h, consists of conditions of the form (s, F) where s ∈ ∏i<n[ω]≤h(i) and
F ∈ [ωω]≤h(n) for some n < ω. _e order is (s′ , F′) ≤ (s, F) if and only if s ⊆ s′,
F ⊆ F′, and {x(i) ∶ x ∈ F} ⊆ s′(i) for all i ∈ ∣s′∣ ∖ ∣s∣. LOC ∶= LOCid, where
id∶ω → ω is the identity function.

Moreover,C andD are Suslin σ-centered,whileLOCh andB are Suslin σ-linked. For
each of these posets, the statement “p0 , . . . , p l have a common stronger condition” is
Borel. _en for any Σ1

1-subset S of such a poset, the statement “S is centered” is Π1
1.

_e notion of correctness, which we state below and is introduced by Brendle
[Bre05], is essential for the construction of template iterations.

Deûnition 2.5 (Correct diagram of posets [Bre05, Def. 1.1]) For i = 0, 1, let Pi and
Qi be posets. If Pi ⋖ Qi for i = 0, 1, P0 ⋖ P1, and Q0 ⋖ Q1, say that the diagram
⟨P0 ,P1 ,Q0 ,Q1⟩ (see Figure 2) is correct if for each q ∈ Q0 and p ∈ P1, if they have a
common reduction in P0, then they are compatible inQ1. An equivalent formulation
is that, whenever p0 ∈ P0 is a reduction of p1 ∈ P1, then p0 is a reduction of p1 with
respect to Q0 ,Q1.

Deûnition 2.6 ([Bre05]) A Suslin ccc poset S is correctness-preserving if, given a
correct diagram ⟨P0 ,P1 ,Q0 ,Q1⟩, the diagram

⟨P0 ∗ ṠVP0 ,P1 ∗ ṠVP1 ,Q0 ∗ ṠVQ0 ,Q1 ∗ ṠVQ1
⟩

is also correct.

Brendle showed that all Suslin ccc posets listed above are correctness-preserving
(see [Bre05]). In addition, he conjectured that any Suslin ccc poset is correctness-
preserving; this remains an open question.
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3 Template Iterations

_is section contains deûnitions of template and template iterations, as well as a dis-
cussion of some of their basic properties. _e exposition follows [Mej15]. Proofs of
all statements can be found in [Mej15,Bre02, Bre05].
For a linear order L ∶= ⟨L, ≤L⟩ and x ∈ L, denote Lx ∶= {z ∈ L ∶ z < x}.

Deûnition 3.1 (Indexed template) An indexed template (or just a template) is a pair
⟨L, I ∶= ⟨Ix⟩x∈L⟩ where L is a linear order, Ix ⊆ P(Lx) for all x ∈ L and the following
properties are satisûed:
(i) ∅ ∈ Ix ;
(ii) Ix is closed under ûnite unions and intersections;
(iii) if z < x, then there is some A ∈ Ix such that z ∈ A;
(iv) Ix ⊆ Iy if x < y;
(v) I(L) ∶= ⋃x∈L Ix ∪ {L} is well founded by the subset relation.
For A ⊆ L and x ∈ L, Ix↾A ∶= {A∩ X ∶ X ∈ Ix} is the trace of Ix on A. Let

I↾A ∶= ⟨Ix↾A⟩x∈A
and1 I(A) ∶= ⋃x∈A Ix↾A∪ {A}.

If X ⊆ A ⊆ L, then (Ix ↾A)↾X = Ix ↾X for any x ∈ L; (I↾A)↾X = I↾X and
(I(A))(X) = I(X). As ⟨A, I↾A⟩ is an indexed template for any A ⊆ L, we can deûne
DpI∶P(L) → ON by DpI(X) ∶= rankI(X)(X). Although this is not a rank function
on P(L), we will use induction on α = DpI(X) to construct an iteration along ⟨L, I⟩.
When the template is clear from the context, we just denote Dp ∶= DpI.

Lemma 3.2 ([Mej15, Lemma 3.3]) Fix A ⊆ L. Dp ∶= DpI has the following proper-
ties.
(i) If Y ∈ I(A), then Dp(Y) ≤ rankI(A)(Y).
(ii) If X ⊆ A, then Dp(X) ≤ Dp(A).
(iii) Let x ∈ A. If Y ⊊ A∩ (Lx ∪ {x}) and Y ∩ Lx ∈ Ix↾A, then Dp(Y) < Dp(A). In

particular, Dp(X) < Dp(A) for all X ∈ Ix↾A
(iv) DpI↾A = Dp↾P(A).

Given an indexed template ⟨L, I⟩ and x ∈ L, deûne

Îx = {B ⊆ L ∶ (∃H ∈ Ix)(B ⊆ H)}.

_us, Îx is the ideal on P(Lx) generated by Ix (which might be trivial). Note that Îx
contains all the ûnite subsets of Lx and that B ∈ Îx if and only if B ∈ Ix↾(B ∪ {x}) for
any B ⊆ Lx .

_eorem 3.3 (Iteration along a template) Given a template ⟨L, I⟩, a partial order
P↾A is deûned by recursion on α = Dp(A) for all A ⊆ L as follows:

1I(A) ⊆ I(L)↾A = {A∩ X ∶ X ∈ I(L)}, but equality may not hold.
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(i) For x ∈ L and B ∈ Îx , Q̇B
x is a P↾B-name of a poset. _e following conditions

should hold.
(a) If E ⊆ B and P↾E ⋖ P↾B, then ⊩P↾B Q̇E

x ⋖VP↾E Q̇B
x .

(b) If E ∈ Îx such that P↾(B ∩ E) is a complete subposet of both P↾B and P↾E
and if q̇ is a P↾(B ∩ E)-name such that ⊩P↾E q̇ ∈ Q̇E

x and ⊩P↾B q̇ ∈ Q̇B
x , then

⊩P↾(B∩E) q̇ ∈ Q̇B∩E
x .

(c) If B′ ,D ⊆ B and ⟨P↾(B′ ∩D),P↾B′ ,P↾D,P↾B⟩ is a correct diagram, then the
diagram ⟨P↾(B′ ∩ D) ∗ Q̇B′∩D

x ,P↾B′ ∗ Q̇B′
x ,P↾D ∗ Q̇D

x ,P↾B ∗ Q̇B
x ⟩ is correct.

(ii) _e partial order P↾A is deûned as follows.
(a) P↾A consists of all ûnite partial functions p with domain contained in A such

that p = ∅ or if ∣p∣ > 0 and x = max(dom p), then there exists a B ∈ Ix↾A
such that p↾Lx ∈ P↾B and p(x) is a P↾B-name for a condition in Q̇B

x .
(b) _e order on P↾A is given by: q ≤A p if dom p ⊆ dom q and either p = ∅

or when p /= 0 and x = max(dom q) then there is a B ∈ Ix ↾A such that
q↾Lx ∈ P↾B and, either x ∉ dom p, p ∈ P↾B and q↾Lx ≤B p, or x ∈ dom p,
p↾Lx ∈ P↾B, q↾Lx ≤B p↾Lx and p(x), q(x) are P↾B-names for conditions in
Q̇B

x such that q↾Lx ⊩P↾B q(x) ≤ p(x).
Within this recursive deûnition, the following properties are proved:
(a) If p ∈ P↾A, x ∈ A and max(dom p) < x, then there exists B ∈ Ix ↾A such that

p ∈ P↾B.
(b) For D ⊆ A, P↾D ⊆ P↾A and for p, q ∈ P↾D, q ≤D p if and only if q ≤A p.
(c) P↾A is a poset.
(d) P↾A is obtained from posets of the form P↾B with B ⊊ A in the following way:

(i) If x = max(A) exists and Ax ∶= A∩ Lx ∈ Îx , then P↾A = P↾Ax ∗ Q̇Ax
x .

(ii) If x = max(A) but Ax ∉ Îx , then P↾A is the direct limit of the P↾B where
B ⊆ A and B ∩ Lx ∈ Ix↾A.

(iii) If A does not have amaximum element, then P↾A is the direct limit of the P↾B
where B ∈ Ix↾A for some x ∈ A (in the case A = ∅, it is clear that P↾A = 1).

Note that by Lemma 3.2(iii) we have Dp(Ax) < Dp(A) in (i) and, in (ii) and (iii)
we have Dp(B) < Dp(A) for each corresponding B.

(e) If D ⊆ A, then P↾D ⋖ P↾A.
(f) If D ⊆ L, then P↾(A∩ D) = P↾A∩ P↾D.
(g) If D,A′ ⊆ A, then ⟨P↾(A′ ∩ D),P↾A′ ,P↾D,P↾A⟩ is a correct diagram.

Proof See [Bre05,_m. 2.2] or [Mej15,_m. 4.1].

We are particularly interested in ccc template iterations.

Lemma 3.4 Let P↾⟨L, I⟩ be a template iteration such that the following hold:
(i) for all x ∈ L, B ∈ Îx there are P ↾B-names ⟨Q̇B

x ,n⟩n<ω that witness that Q̇B
x is

σ-linked;
(ii) if D ⊆ B, then ⊩P↾B Q̇D

x ,n ⊆ Q̇B
x ,n for all n < ω.

_en P↾L has the Knaster condition.
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Proof See [Bre05, Lemma 2.3] and [Mej15, Lemma 4.5].

In our applications, we will be using template iterations of the following form.

Deûnition 3.5 Let ⟨L, I⟩ be an indexed template. An iteration P↾⟨L, I⟩ is standard
if
(i) L = LS ∪ LC is a disjoint union;
(ii) for x ∈ LS , Sx is a ûxed Suslin σ-linked correctness-preserving forcing notion

coded in the groundmodel;
(iii) for x ∈ LS and B ∈ Îx , Q̇B

x is a P↾B-name for SVP↾B

x ;
(iv) for x ∈ LC , Cx is a ûxed set in Îx , Q̇x is a P↾Cx-name for a σ-linked posetwhose

conditions are reals2;
(v) for x ∈ LC and B ∈ Îx the name Q̇B

x is either Q̇x in case Cx ⊆ B, or it is a name
for the trivial poset otherwise.

If θ is a cardinal, say that the iteration is θ-standard if, additionally, ∣Cx ∣ < θ for all
x ∈ LC .

Lemma 3.6 Let θ be a cardinal with uncountable coûnality and let P↾⟨L, I⟩ be a
θ-standard template iteration. _en for each A ⊆ L,
(a) P↾A is Knaster;
(b) if p ∈ P↾A then there is C ⊆ A of size < θ such that p ∈ P↾C;
(c) if ẋ is a P↾A-name for a real, then there is C′ ⊆ A of size < θ such that ẋ is a

P↾C′-name.

Proof See [Bre05, Lemma 2.4] and [Mej15, Lemma 4.6].

We will use Shelah’s notion of innocuous extension to give a suõcient condition
for the forcing equivalence of two distinct standard template iterations.

Deûnition 3.7 (Innocuous extension) Let ⟨L, I⟩ be an indexed template and θ an
uncountable cardinal. An indexed template ⟨L, J⟩ is a θ-innocuous extension of ⟨L, I⟩
if
(i) for every x ∈ L, Ix ⊆ Jx and
(ii) for any x ∈ L and X ∈ Ĵx , if ∣X∣ < θ, then X ∈ Îx .

Deûnition 3.8 Let ⟨L, I⟩ and ⟨L∗ , I
∗
⟩ be templates. A function h∶ ⟨L∗ , I

∗
⟩→ ⟨L, I⟩

is a template-isomorphism if and only if it is a bijection that satisûes for all x , y ∈ L∗:
(i) x < y if and only if h(x) < h(y) and
(ii) Ih(x) = {h[A] ∶ A ∈ I∗x}.

Lemma 3.9 Let θ be a cardinal with uncountable coûnality, let ⟨L, I⟩ and ⟨L∗ , I
∗
⟩

be templates and let h∶ ⟨L∗ , I
∗
⟩ → ⟨L, I⟩ be a template-isomorphism. Let ⟨L∗ , J⟩ be a

θ-innocuous extension of ⟨L∗ , I
∗
⟩. Let P↾⟨L, I⟩ and P∗↾⟨L∗ , J⟩ be θ-standard template

iterations such that the following hold:
2_ese reals belong to some ûxed uncountable Polish space Rx coded in the groundmodel.
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(1) h[L∗S ] = LS and h[L∗C] = LC ;
(2) for y ∈ L∗S , S∗y = Sh(y);
(3) if y ∈ L∗C , then h[C∗y ] = Ch(y), and, whenever there is a sequence ⟨ĥD ∶ D ⊆ C∗y ⟩ of

functions such that
(3.0) ĥD ∶P∗↾D → P↾h[D] is an isomorphism;
(3.1) Y ⊆ D implies ĥY ⊆ ĥD ;
(3.2) for z ∈ D ∩ L∗C and E ∈ P(D) ∩ Ĵz ; Q̇h[E]

h(z) is the name associated with Q̇∗E
z

via ĥE ;
(3.3) for p ∈ P∗↾D, dom(ĥD(p)) = h[dom p] and, if z = max(dom p), E ∈ Jz↾D,

p↾L∗z ∈ P∗↾E and p(z) is a P∗↾E-name for a member of Q̇∗E
z , then ĥD(p)↾

Lh(z) = ĥE(p↾L∗z ) and ĥD(p)(h(z)) is the P↾h[E]-name associated with
p(z) via ĥE ,

then Q̇h(y) is the name associated with Q̇∗
y via ĥC∗y .

_en, there exists a unique sequence ⟨ĥD ∶ D ∈ [L∗]<θ⟩ satisfying (3.0)–(3.3). Moreover,
ĥ ∶= ⋃{ĥD ∶ D ∈ [L∗]<θ} is an isomorphism fromP∗↾L∗ ontoP↾L, and, for any Y ⊆ L∗,
ĥ↾(P∗↾Y) = ⋃{ĥD ∶ D ∈ [Y]<θ} is an isomorphism onto P↾h[Y].

Remark 3.10 _e previous lemma is amore detailed version of [Bre02, Lemma 1.7]
and [Mej15, Lemma 4.8] that we present for constructive purposes. Note that, when-
ever z ∈ L∗ and E ∈ [L∗z ]<θ , E ∈ Ĵz if and only if h[E] ∈ Îh(z). _is is because ⟨L∗ , J⟩
is a θ-innocuous extension of ⟨L∗ , I

∗
⟩ and by properties (i) and (ii). For this reason,

(3.2) makes sense, as Q̇h[E]
h(z) is deûned if and only if Q̇∗E

z is. Moreover, the lemma
directly implies that the sequence in (3) exists and is unique for each C∗y .

However, properties (3.0)–(3.3) are restricted to subsetsD of size < θ because there
may be an E ∈ Ĵz of size bigger than or equal to θ such that h[E] ∉ Îh(z), so Q̇h[E]

h(z) is
undeûned. When Ĵz = Î∗z we do not have that problem.

Corollary 3.11 With the same hypotheses as in Lemma 3.9, assume further that Ĵz =
Î∗z for all z ∈ L∗. _en there is a unique sequence ⟨ĥY ∶ Y ⊆ L∗⟩ satisfying (3.0)–(3.3).
Moreover, ĥY = ĥL∗↾(P∗↾Y) for any Y ⊆ L∗.

Proof of Lemma 3.9 We construct ĥD by induction on DpJ(D) for D ∈ [L∗]<θ .
Let p ∈ P∗ ↾D. If dom p = ∅, then ĥD(p) is the empty sequence, so assume that
dom p is non-empty with maximum z. By _eorem 3.3(ii) there is E ∈ Jz ↾D such
that p↾L∗z ∈ P∗↾E and p(z) is a P∗↾E-name for a condition in Q̇∗E

z . By induction
hypothesis, we know ĥE . We split into cases to show that Q̇h[E]

h(z) is the P↾h[E]-name
associated with Q̇∗E

z via ĥE .

● z ∈ L∗S . By (1) h(z) ∈ LS and, by (2), Q̇h[E]
h(z) is a name for SVP↾h[E]

h(z) = S∗V
P∗↾E

z .
● z ∈ L∗C and C∗z ⊈ E. _en Ch(z) ⊈ h[E] and both Q̇∗E

z and Q̇h[E]
h(z) are names for the

trivial poset.
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● z ∈ L∗C and C∗z ⊆ E. _en, Ch(z) ⊆ h[E] and, by induction hypothesis, Q̇h(z) is
the name associated to Q̇∗

z via ĥC∗z , so Q̇h[E]
h(z) = Q̇h(z) is the name associated to

Q̇∗E
z = Q̇∗

z via ĥE (because ĥC∗z ⊆ ĥE).

Let ṙ be the P↾h[E]-name associated to p(z) via ĥE , which is indeed a name for a
condition in Q̇h[E]

h(z) . Put ĥD(p) = ĥE(p↾L∗z ) ∪ {(h(z), ṙ)}, which is a condition in
P↾h[D] (h[E] ∈ Îh(z) byRemark 3.10 but, in spite that itmay not be in Ih(z)↾h[D],we
can ûnd a B ∈ Ih(z)↾h[D] containing h[E] so ĥE(p↾L∗z ) ∈ P↾B and ṙ is a P↾B-name of
a condition in Q̇B

h(z)). Note that ĥD(p) does not depend on the chosen E because, if
we use some other E′ ∈ Jz↾D, then E′′ = E ∪ E′ ∈ Jz↾D and ĥE′′ extends both ĥE and
ĥE′ by induction hypothesis, so ṙ is the same name via any of those three functions
and ĥE(p↾L∗z ) = ĥE′′(p↾L∗z ) = ĥE′(p↾L∗z ). (3.0)–(3.3) are easily veriûed for ĥD .

To see uniqueness, let ⟨ĥ′D ∶ D ∈ [Lz]
<θ⟩ be another sequence satisfying (3.0)-(3.3).

By (3.3), ĥ′D = ĥD is easily veriûed by induction on DpJ(D) for D ∈ [L∗]<θ .
Now let Y ⊆ L∗ be arbitrary. Lemma 3.6 implies that P∗ ↾Y = ⋃{P∗ ↾D ∶ D ∈

[Y]<θ} and likewise for P↾h[Y], so ⋃{ĥD ∶ D ∈ [Y]<θ} deûnes an isomorphism
from P∗↾Y onto P↾h[Y].

Lemma 3.12 Let θ be a cardinalwith uncountable coûnality, ⟨L, I⟩ and ⟨L∗ , I
∗
⟩ tem-

plates and h∶ ⟨L∗ , I
∗
⟩ → ⟨L, I⟩ a template-isomorphism. Let P↾⟨L, I⟩ be a θ-standard

iteration. If ⟨L∗ , J⟩ is a θ-innocuous extension of ⟨L∗ , I
∗
⟩, then there is a θ-standard

iteration P∗⟨L∗ , J⟩ that satisûes (1)-(3) of Lemma 3.9.

Proof Deûne L∗S = h−1[LS], L∗C = h−1[LC], Sy = S∗h(y) for each y ∈ L∗S and C∗y =

h−1[Ch(y)] for each y ∈ L∗C , which is in Î∗y because ⟨L∗ , J⟩ is a θ-innocuous extension
of ⟨L∗ , I

∗
⟩ (see Remark 3.10). For a ûxed y ∈ L∗C , deûne ⟨ĥD ∶ D ⊆ Cy⟩ and P∗↾D

satisfying (3.0)-(3.3) by recursion on DpJ(D). _e uniqueness of this sequence can
be proved by induction onDpJ(D), which implies that Q̇∗

y is well-deûned as the P∗↾
Cy-name associated to Q̇h(y) via ĥCy . By _eorem 3.3, this is enough to know how
to deûne a standard iteration P∗⟨L∗ , J⟩ as in Deûnition 3.5 that satisûes the desired
requirements.

4 Shelah’s Template

In order to obtain ourmain result,we introduce aminormodiûcation to the template
that Shelah used to prove the consistency of d < a (without the use of ameasurable).
Our presentation is based on [Bre02, Sect. 3].

Given anordinal α, let α∗ denote a disjoint copy of αwith a linear order isomorphic
to the inverse order of α. Let ON∗

= {α∗ ∶ α ∈ ON} where ON is the class of all
ordinals. Members ofON are called positive,whilemembers ofON∗ are negative. We
order ON ∪ON∗ in the natural way (like the integers but without a neutral member
as 0 is positive and 0∗ is negative). For ξ ∈ ON ∪ON∗, ξ + 1 denotes the immediate
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successor of ξ and ξ − 1 the immediate predecessor of ξ. Note that 0∗ + 1 = 0, 0− 1 = 0∗,
ξ + 1 does not exists if and only if ξ = γ∗ for some limit ordinal γ, and ξ − 1 does not
exists if and only if ξ is a limit ordinal (positive).

Deûnition 4.1 (1) Deûne SO as the class of non-empty ûnite sequences x where
x(0) is an ordinal and x(k) ∈ ON ∪ON∗ for all 0 < k < ∣x∣. Order SO as x < y if
and only if either
(i) there is a k < min{∣x∣, ∣y∣} such that x↾k = y↾k and x(k) < y(k),
(ii) x ⊆ y and y(∣x∣) is positive, or
(iii) y ⊆ x and x(∣y∣) is negative.
Note that < is a linear order on SO and thatON, with the canonical well-order, is
embedded there. _erefore, we identify the ordinalswith the sequences of length
1 in SO.

(2) Say that A ⊆ SO is a tree if, whenever t ∈ A and t end-extends a sequence s, then
s ∈ A.

(3) For non-zero ordinals γ and δ deûne the set

Lδ ,γ = {x ∈ SO ∶ x(0) < γ and δ∗ < x(k) < δ for all 0 < k < ∣x∣}

linearly ordered by < (the order from SO). Here, γ is the length of Lδ ,γ , while δ is
its width. As before, themembers of γ are identiûed with the sequences of length
1 in Lδ ,γ . Clearly, Lδ ,γ is a tree.

(4) Let Σ = ⟨Sβ ∶ β < τ⟩ be a partition of δ∗ where τ is an ordinal and let βΣ ∶ δ∗ → τ
be deûned by βΣ(ξ) = β when ξ ∈ Sβ . Say that x ∈ Lδ ,γ is Σ-relevant if and only
if the following hold:
(i) ∣x∣ ≥ 3 is odd;
(ii) for i < ∣x∣, x(i) is positive if and only if i is even;
(iii) the sequence {βΣ(x(i − 1))}i∈rx is decreasing, where

rx ∶= {i < ∣x∣ ∶ i ≥ 2 is even, x(i) < τ}
and

(iv) ∣x∣ − 1 ∈ rx .
For Σ-relevant x ∈ Lδ ,γ , let JΣ ,γx ∶= {z ∈ Lδ ,γ ∶ x↾(∣x∣ − 1) ≤ z < x}. Deûne IΣ ,γ

as the family of ûnite unions of the following basic sets:
● Lδ ,γα (the segment of objects < α = ⟨α⟩) where α ∈ γ + 1 (for α = γ it is Lδ ,γ).
● JΣ ,γx where x ∈ Lδ ,γ is Σ-relevant.
● {z} where z ∈ Lδ ,γ .

For x ∈ Lδ ,γ , put IΣ ,γ
x ∶= {A ⊆ Lδ ,γx ∶ A ∈ IΣ ,γ} and I

Σ ,γ
= ⟨I

Σ ,γ
x ⟩x∈Lδ ,γ .

Note that any basic set is convex in Lδ ,γ and that anymember of IΣ ,γ can bewritten
as a disjoint union of basic sets and this disjoint union is unique. _is is because, for
any two basic sets, either one is contained in the other, or they are disjoint in which
case their union is not convex and, thus, not a basic set. Moreover,

IΣ ,γ
= IΣ ,γ

(Lδ ,γ) = ⋃
x∈Lδ ,γ

I
Σ ,γ
x ∪ {Lδ ,γ}.
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Lemma 4.2 ⟨Lδ ,γ , I
Σ ,γ

⟩ is an indexed template.

Proof See [Bre02, Lemma 3.2].

Deûnition 4.3 Let θ be an uncountable regular cardinal and let S = ⟨Sη⟩η<ν be
a sequence of Suslin σ-linked correctness-preserving forcing notions coded in the
ground model where ν ≤ θ. A (S, θ)-standard iteration along a template ⟨L, I⟩ is a
θ-standard iteration P↾⟨L, I⟩ (see Deûnition 3.5) where
(i) ⟨LS ,η⟩η<ν is a partition of LS ,
(ii) for x ∈ LS ,η , Sx = Sη and
(iii) for x ∈ LC , Q̇x is forced by P↾Cx to have size < θ. By ccc-ness, without loss of

generality we can even say that the domain of Q̇x is an ordinal γx < θ (in the
groundmodel, not just a name).

Until the end of this section, ûx θ and S as above, γ and δ non-zero ordinals, a par-
tition Σ = ⟨Sβ ∶ β < θ⟩ of δ∗, L = Lδ ,γ and I = I

Σ ,γ
. Wewill prove some combinatorial

properties of ⟨L, I⟩ that are necessary for our isomorphism-of-names arguments on
a (S, θ)-standard iteration along ⟨L, I⟩.

Lemma 4.4 If A ⊆ L has size less than θ, then ∣I(A)∣ < θ.

Proof Without loss of generality, we can assume that A is a tree. It is easy to note
that {A∩ Lα ∶ α ≤ γ} has size < θ. To see that {A∩ JΣ ,γx ∶ x is Σ-relevant} has size less
than θ, note that if x is Σ-relevant and A∩ JΣ ,γx /= ∅, then x′ ∶= x↾(∣x∣ − 1∣) ∈ A and

{A∩ JΣ ,γx′⌢⟨ξ⟩ ∶ ξ ∈ θ} = {A∩ JΣ ,γx′⌢⟨ξ⟩ ∶ ξ < ρ}

for some ρ < θ. _erefore I(L)↾A has size < θ, and so I(A).

For a (S, θ)-standard iteration P ↾ ⟨L, I⟩ where LC = ∅ (as in Shelah’s original
construction), the produced poset depends only on the template structure. _at is, if
A, B ⊆ L are isomorphic as linear orders, as trees and as templates (more precisely if
they satisfy conditions (i)–(x) of Deûnition 4.5), then P↾A and P↾B are isomorphic
partial orders. An isomorphism between them can be constructed canonically from
an isomorphism between A and B. However, if LC /= ∅, such an isomorphism does
not necessarily exist.

Deûnition 4.5 Let P↾⟨L, I⟩ be a (S, θ)-standard iteration as in Deûnition 4.3. Say
that A ⊆ L is c.i.s. (closed-in-support with respect to P↾⟨L, I⟩) if for any x ∈ A∩ LC we
have Cx ⊆ A. We abbreviate closed-in-support tree as c.i.s.t..

If A, B ⊆ L are c.i.s.t., they are P↾⟨L, I⟩-isomorphic if there exists a P↾⟨L, I⟩-iso-
morphism h∶A→ B, that is, a bijection that satisûes, for all x , y ∈ A:
(i) ∣h(x)∣ = ∣x∣,
(ii) h(x)↾k = h(x↾k) for all 0 < k ≤ ∣x∣,
(iii) x < y if and only if h(x) < h(y),
(iv) for k < ∣x∣, x(k) is positive if and only if h(x)(k) is positive,
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(v) if ∣x∣ = ∣y∣ = k + 1, x↾k = y↾k and y(k) = x(k) + 1 is positive, then h(y)(k) =
h(x)(k) + 1,

(vi) the dual of the previous statement with y(k) negative, that is, if x↾k = y↾k and
y(k) = x(k) − 1 is negative, then h(y)(k) = h(x)(k) − 1,

(vii) if {xξ}ξ<β is a sequence in A, z ∈ A, ∣z∣ = k+ 1, ∣xξ ∣ = k+ 1 and xξ↾k = z↾k for any
ξ < β and {xξ(k)}ξ<β is an increasing sequence of positive ordinals with limit
z(k), then h(z)(k) is the limit of {h(xξ)(k)}ξ<β ,

(viii) the dual of the previous statement for a decreasing sequence of negative ordi-
nals,

(ix) Ih(x)↾B = {h[X] ∶ X ∈ Ix↾A} for all x ∈ A,
(x) for all η < ν, h[A∩ LS ,η] = B ∩ LS ,η ,
(xi) if x ∈ LC ∩ A, then h[Cx] = Ch(x) and, whenever there is a sequence

⟨ĥD ∶ D ⊆ Cx⟩ of functions such that
(a) ĥD ∶P↾D → P↾h[D] is an isomorphism,
(b) X ⊆ D implies ĥX ⊆ ĥD ,
(c) for z ∈ D∩ LC and E ∈ P(D)∩ Îz , Q̇h[E]

h(z) is the name associated with Q̇E
z via

ĥE and,
(d) for p ∈ P↾D, dom(ĥD(p)) = h[dom p] and, if z = max(dom p), E ∈ Iz↾D,

p↾Lz ∈ P↾E and p(z) is a P↾E-name for a member of Q̇E
z , then ĥD(p)↾

Lh(z) = ĥE(p↾Lz) and ĥD(p)(h(z)) is the name associated with p(z) via
ĥE ,

then Q̇h(x) is the name associated with Q̇x via ĥCx .

By Corollary 3.11 there exists an isomorphism ĥ∶P↾A→ P↾B such that

⟨ĥ↾(P↾D) ∶ D ⊆ A⟩

is the unique sequence satisfying (a)–(d) above.

We need to guarantee that for subsets of L of size < θ there are only a few isomor-
phism-types.

Lemma 4.6 If θ<θ = θ and P↾⟨L, I⟩ is a (S, θ)-standard iteration as in Deûnition
4.3, then there are at most θ-many diòerent types of P↾⟨L, I⟩-isomorphic c.i.s. subtrees
of L of size < θ.

Proof Given a c.i.s.t. A ⊆ L of size < θ, we can ûnd a tree T ⊆ Lθ ,θ of size < θ and a
function h∶A→ T satisfying Deûnition 4.5(i)–(viii). Let J be the template on T such
that Jh(x) = {h[X] ∶ X ∈ Ix↾A} for all x ∈ A. _e function h allows us to partition
T into the sets TC = h[A ∩ LC] and TS ,η = h[A ∩ LS ,η] for η < ν and to construct a
(S, θ)-standard iteration along ⟨T , J⟩ isomorphic (in the sense of Corollary 3.11) to
P↾⟨A, I↾A⟩ by Lemma 3.12. Here, note that ∣J(T)∣ < θ by Lemma 4.4.

_erefore, it is enough to prove that there are θ-many (S, θ)-standard iterations
along subtrees of Lθ ,θ of size < θ with a template structure that has < θ sets. As θ<θ =
θ, there are θ-many subtrees of Lθ ,θ size < θ, so ûx T to be one of them. Now, there
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are at most ((2∣T∣)<θ)∣T∣-many indexed templates J of (T , <) such that ∣J(T)∣ < θ.
On the other hand, we can partition T into pieces of the form {TS ,η}η<ν ∪ {TC} in
(ν + 1)∣T∣-many ways (recall that ν ≤ θ). A�er ûxing one such indexed template and
one such partition, there are at most (2∣T∣)∣TC ∣-ways to choose a sequence ⟨C′x⟩x∈TC
where each C′x ∈ Ĵx , and we ûx one such sequence.
According toDeûnition 4.3, for ûxed TS ,η (η < ν), TC and ⟨C′x⟩x∈TC , a (S, θ)-stan-

dard iteration P↾⟨T , J⟩ depends only on the choice of the ordinals γx < θ and the
P↾C′x-names for σ-linked partial orders for γx . _ere are θ ∣TC ∣ = θ-many choices of
⟨γx⟩x∈TC so, ûxing one of these choices, we show by induction on DpJ(Y) for Y ⊆ T
that there are at most θ-many (S, θ)-standard iterations along ⟨Y , J↾Y⟩ and that the
poset produced by such an iteration has size ≤ θ. Consider cases on Y according to
_eorem 3.3(d).
● Y has amaximum z and Yz = Y ∩ Tz ∈ Ĵz . _en any desired standard iteration has

the form P↾Y = P↾Yz ∗ Q̇Yz
z . If z ∈ TS , then the choice of Q̇Yz

z is ûxed and there
are as many (S, θ)-standard iterations along Y as there are along Yz , which by the
induction hypothesis are ≤ θ and, as P↾Yz has size ≤ θ, it forces the continuum ≤ θ,
so P↾Y has size ≤ θ. If z ∈ TC and C′z ⊆ Yz , as ∣P↾C′z ∣ ≤ θ and θ<θ = θ, then there are
at most θ-many (nice) P↾C′z-names for partial orders for γz . _erefore, there are at
most θ-many (S, θ)-standard iterations along Y . _e case C′z ⊈ Yz is easy.

● Y has amaximum z but Yz ∉ Ĵz . Here, a (S, θ)-standard iteration along Y satisûes
P↾Y = limdirX∈B P↾X where B ∶= {X ⊆ Y ∶ X ∩ Tz ∈ Jz ↾Y}. B has size < θ,
because ∣Jz↾Y ∣ ≤ ∣J(T)↾Y ∣ < θ so, by the induction hypothesis, there are at most
θ<θ = θ-many ways to deûne P↾Y .

● Y does not have amaximum. A similar argument as in the previous caseworks.

5 Preservation Properties

_e preservation properties discussed in this section were developed for fsi of ccc
posets by Judah and Shelah [JS90], with improvements by Brendle [Bre91]. _ese
are summarized and generalized in [Gol93] and in [BaJ95, Sect. 6.4 and 6.5]. _e
presentation in this section is based on [Mej13,Mej15].

Context 5.1 Fix an increasing sequence ⟨⊏n⟩n<ω of 2-place closed relations (in the
topological sense) in ωω such that for any n < ω and g ∈ ωω ,

(⊏n)
g
= { f ∈ ωω

∶ f ⊏n g}

is (closed) nwd (nowhere dense).
Put ⊏= ⋃n<ω ⊏n . _erefore, for every g ∈ ωω , (⊏)g is an Fσ meager set.
For f , g ∈ ωω , say that g ⊏-dominates f if f ⊏ g. _en F ⊆ ωω is a ⊏-unbounded

family if no function in ωω ⊏-dominates all the members of F. Associate with this
notion the cardinal b⊏, which is the least size of a ⊏-unbounded family. Dually, say
thatC ⊆ ωω is a⊏-dominating family if any real inωω is⊏-dominated by somemember
of C. _e cardinal d⊏ is the least size of a ⊏-dominating family. Given a set Y , say that
a real f ∈ ωω is ⊏-unbounded over Y if f /⊏ g for every g ∈ Y ∩ ωω .
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Context 5.1 is deûned for ωω for simplicity, but in general the same notions apply
by changing the space for the domain or the codomain of ⊏ to another uncountable
Polish space whosemembers can be coded by reals in ωω .
From now on, ûx θ0 an uncountable regular cardinal.

Deûnition 5.2 (Judah and Shelah [JS90], [BaJ95, Def. 6.4.4]) A forcing notion P is
θ0-⊏-good if the following property holds.3 For any P-name ḣ for a real in ωω there
exists a nonempty Y ⊆ ωω (in the groundmodel) of size < θ0 such that for any f ∈ ωω

that is ⊏-unbounded over Y , we have ⊩ f /⊏ ḣ. A forcing notion is said to be ⊏-good,
if it is ℵ1-⊏-good.

_is is a standard property intended to preserve b⊏ small and d⊏ large in forcing
extensions. A subset F of ωω is said to be θ0-⊏-unbounded if for any X ⊆ ωω of size
< θ0, there exists an f ∈ F that is ⊏-unbounded over X. Clearly, if F is such a family,
then b⊏ ≤ ∣F∣ and θ0 ≤ d⊏. On the other hand, θ0-⊏-unbounded families of the
groundmodel remain such in generic extensions of θ0-⊏-good posets. _us, if λ ≥ θ0
is a cardinal and d⊏ ≥ λ in the groundmodel, then the inequality is preserved by such
generic extension. It is also known that the property of Deûnition 5.2 is preserved
under fsi of θ0-cc posets. Also, if P ⋖ Q andQ is θ0-⊏-good, then so is P.

Lemma 5.3 ([Mej13, Lemma 4]) Every poset of size < θ0 is θ0-⊏-good. In particular,
C is ⊏-good.

Example 5.4 (1) Preserving splitting families: For A, B ∈ [ω]ω and n < ω, deûne
A ∝n B if and only if either B ∖ n ⊆ A or B ∖ n ⊆ ω ∖ A, so A ∝ B⇔ (B ⊆∗

A or B ⊆∗ ω ∖ A). Note also that A /∝ B if and only if A splits B, so s = b∝ and
r = d∝. Baumgartner and Dordal [BD85] proved that D is∝-good.

(2) Preserving null-covering families: Let ⟨Ik⟩k<ω be the interval partition of ω such
that ∣Ik ∣ = 2k+1 for all k < ω. For n < ω and f , g ∈ 2ω deûne f ⋔n g⇔ (∀k ≥

n)( f↾Ik /= g↾Ik) and let f ⋔ g⇔ (for all but ûnitelymany k we have f↾Ik /= g↾Ik).
Clearly, (⋔)g is a co-null Fσ meager set. _is relation is related to the cardinal
characteristics of covering and uniformity of the null ideal, because cov(N) ≤

b⋔ ≤ non(M) and cov(M) ≤ d⋔ ≤ non(N) (see [Mej13, Lemma 7]). By [Bre91,
Lemma 1∗] for every inûnite cardinal ν < θ0, ν-centered forcing notions are
θ0-⋔-good.

(3) Preserving “union of null sets is non-null”: Fix H ∶= {idk+1
∶ k < ω} (where

idk+1
(i) = ik+1) and let S(ω,H) ∶= ⋃h∈H S(ω, h). For n < ω, x ∈ ωω and a

slalom ψ ∈ S(ω,H), let x ∈∗n ψ if and only if (∀k ≥ n)(x(k) ∈ ψ(k)), so x ∈∗ ψ
if and only if for all but ûnitely many k we have x(k) ∈ ψ(k). By Bartoszyński’s
characterization (see Subsection 2.1) applied to id and to a function g that dom-
inates all the functions in H we obtain add(N) = b∈∗ and cof(N) = d∈∗ . Judah
and Shelah [JS90] proved that given an inûnite cardinal ν < θ0, every ν-centered

3[BaJ95, Def. 6.4.4] has a diòerent formulation, which is equivalent to our formulation for θ0-cc
posets (recall that θ0 is uncountable regular). See [Mej13, Lemma 2] for details.
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forcing notion is θ0-∈∗-good. Moreover, as a consequence of results of Kambu-
relis [Kam89], any subalgebra4 of B is ∈∗-good.

We recall the following preservation result for template iterations.

_eorem 5.5 Let P↾⟨L, I⟩ be a template iteration such that L does not have a maxi-
mum, [L]<ω ⊆ I(L) and P↾L is θ0-cc. Assume, for any A ∈ I(L) ∖ {∅}:
(i) if A has amaximum x and Ax ∶= A∩ Lx ∈ Îx , then Ax ∈ Ix ;
(ii) if A has a maximum x, Ax ∶= A ∩ Lx ∉ Îx and ḣ is a P↾A-name for a real, then

there exists an increasing sequence ⟨Bn⟩n<ω inBA ∶= {B ⊆ A ∶ B∩Lx ∈ Ix↾A} such
that ḣ is a P↾C-name for a real,where C ∶= ⋃n<ω Bn , and P↾C = limdirn<ω P↾Bn ;

(iii) if A does not have a maximum and ḣ is a P↾A-name for a real, then there exists
an increasing sequence ⟨Bn⟩n<ω in BA ∶= {B ∈ Ix↾A ∶ x ∈ A} as in (ii);

(iv) for all x ∈ L and B ∈ Ix , ⊩P↾B Q̇B
x is θ0-⊏-good.

_en P↾L is θ0-⊏-good.

Proof _e proof is the same as [Mej15,_m. 5.10], but in this case, prove by induc-
tion on rankI(L)(A) for A ∈ I(L) that P↾A is θ0-⊏-good.

Until the end of this section, ûx γ, δ, τ non-zero ordinals, δ and τ with uncountable
coûnality, L = Lδ ,γ , Σ = ⟨Sβ ∶ β < τ⟩ a partition of δ∗, I = IΣ ,γ , I = I

Σ ,γ
, and Ix = I

Σ ,γ
x .

For x ∈ L Σ-relevant, denote Jx = JΣ ,γx . Recall that any member of I is written as a
unique ûnite disjoint union of basic sets (see Deûnition 4.1). For a ∈ L, denote by
[a]− the set of sequences x ∈ L such that x end-extends a↾(∣a∣ − 1), ∣x∣ ≥ ∣a∣, and
x(∣a∣ − 1) < a(∣a∣ − 1). Denote by [a]+ the set of sequences in L that end-extend
a↾(∣a∣− 1) but are not in [a]− (that is, x ∈ [a]+ if and only if either x = a↾(∣a∣− 1), or
∣x∣ ≥ ∣a∣, x end-extends a↾(∣a∣ − 1) and x(∣a∣ − 1) ≥ a(∣a∣ − 1)).

_eorem 5.6 LetP⟨L, I⟩ be a template iteration and supposeP↾L has the ccc. Assume
that for all x ∈ L and B ∈ Ix , ⊩P↾B Q̇B

x is θ0-⊏-good. _en, P↾L is θ0-⊏-good.

Proof By Lemma 5.8 the conditions of_eorem 5.5 are satisûed (note that condition
(ii) there is irrelevant).

Lemma 5.7 Let a ∈ L with ∣a∣ ≥ 2 and a(∣a∣ − 1) = 0, B a countable collection of
basic sets contained in [a]− such that no initial segment of L is in B.5 _en, there is a
countable collection E of pairwise disjoint basic sets contained in [a]− such that
(a) any member of B is contained in a (unique) member of E,
(b) any member of E contains somemember of B,
(c) E does not contain initial segments of L and
(d) no pair ofmembers of E are contained in any basic set included in [a]− that is not

an initial segment of L.

4Here, B is seen as the complete Boolean algebra of Borel sets (in 2ω) modulo the null ideal.
5_is assumption is relevant only when a = ⟨0, 0⟩ because [a]− = L0 . Otherwise, [a]− does not

contain basic sets which are initial segments.

https://doi.org/10.4153/CJM-2016-021-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-021-8


520 V. Fischer and D. A. Mejia

Furthermore, the same statement holds when [a]− is replaced by [a]+.

Proof For B ∈ B let xB be the unique member of [a]− such that either B = JxB or
B = {xB} where, in the ûrst case, xB is Σ-relevant. Deûne zB according to those two
cases. In the ûrst case, zB = xB↾m where m ≥ ∣a∣ is minimal such that xB↾(m + 1) is
Σ-relevant; in the second case, let zB = xB↾m wherem ≥ ∣a∣ is minimal (if exists) such
that either m < ∣xB ∣ and xB⌢⟨max{0, xB(m)}⟩ is Σ-relevant, or m = ∣xB ∣ and xB⌢{0}
is Σ-relevant; otherwise, if there is no such m, put zB = ∅.

Let H = {zB ∶ B ∈ B} ∖ {∅}, which is a subset of [a]−. For each y ∈ H, let
y′ = y⌢{ηy} where

ηy = sup({0} ∪ {xB(∣zB ∣) + 1 ∶ B ∈ H, zB = y, ∣zB ∣ < ∣xB ∣ and xB(∣zB ∣) ≥ 0}) .

As B is countable and δ, τ have uncountable coûnalities, ηy < min{δ, τ} so y′ ∈ L
(even in [a]− with length larger than ∣a∣), and it is Σ-relevant. _enwe have E = {Jy′ ∶
y ∈ H} ∪ {B ∈ B ∶ zB = ∅} is as desired.

_e same argument works for [a]+.

Lemma 5.8 For A ∈ I ∖ {∅}:
(a) If x = max(A), then A∩ Lx ∈ Ix .
(b) Let P⟨L, I⟩ be a template iteration, and suppose P↾L has the ccc. If A does not have

amaximum and ḣ is aP↾Aname for a real, then there exists an increasing sequence
⟨Bn⟩n<ω in A ∶= {B ∈ Ix↾A ∶ x ∈ A} such that
(i) ḣ is a P↾C-name, where C ∶= ⋃n<ω Bn , and
(ii) P↾C is the direct limit of ⟨P↾Bn⟩n<ω .

Proof Note that the only basic sets of I that have a maximum are the singletons.
_erefore, if A ∈ I and x = max(A), it is clear that A∖ {x} is still a union of basic sets
of I, so (a) holds.

We prove (b). If ḣ is a P↾B-name for some B ∈ A, then Bn ∶= B works, so we
assume that this is not the case. As A ∈ I ∖ {∅}, A = ⋃k≤M Ek for some M < ω and
{Ek}k≤M is a sequence of basic sets of I such that Ek < Ek+1 (that is, every member
of Ek is less than every member of Ek+1) for k < M. _us, EM cannot be a singleton,
because A does not have amaximum.

Given ḣ a P ↾ A-name for a real in ωω , by ccc-ness there is a set of conditions
{pn ∶ n < ω} inP↾Adetermining thename ḣ (i.e., theunion of themaximal antichains
that decide ḣ(i) for each i < ω). _en, for each n < ω, there exists a Cn ∈ A such that
pn ∈ P↾Cn , without loss of generality, ⋃k<M Ek ⊆ Cn . By cases on EM we construct
an increasing sequence ⟨Bn⟩n<ω of sets in A such that
(∗) for any x ∈ A and H ∈ Ix↾A there is an n0 < ω such that H ∩⋃n<ω Bn = H ∩ Bn0 .
Note that it is enough to prove (∗) when H ⊆ A∩ Lx is a basic set.
(1) EM = Lξ for some ξ ≤ γ, which implies M = 0. Consider the following cases

● ξ = 0. For n < ω, let Cn be the family of pairwise disjoint basic sets of the
(unique) decomposition of Cn , which are clearly contained in [⟨0, 0⟩]−. Put
C = ⋃n<ω Cn and ûnd E as in Lemma 5.7 applied to C. _en E is inûnite (if not,
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ḣ is a P↾B-name for some B ∈ A), so enumerate E = {Hk ∶ k < ω} and put
Bn = ⋃k≤n Hk for n < ω.
_us, (∗) holds because, if x ∈ L0 and H ⊆ Lx is basic, then H ⊆ [⟨0, 0⟩]− is not
an initial segment and H intersects at most one Hk by Lemma 5.7 (recall that,
if two basic sets have non-empty intersection, then one of them is contained in
the other).

● ξ = η+1. We can assume that Lη ⊆ Cn for all n < ω. _en the disjoint decompo-
sition of Cn into basic sets are Lη and subsets of either [⟨η, 0⟩]+ or [⟨η+ 1, 0⟩]−.
Let C0

n be the family of these basic sets contained in [⟨η, 0⟩]+ and, similarly, let
C1

n be the family corresponding to [⟨η+ 1, 0⟩]−. Put Ci = ⋃n<ω C
i
n and let Ei be

as in Lemma 5.7 applied to Ci for i ∈ {0, 1}. Put E = E0 ∪ E1, which is inûnite.
Enumerate E = {Hk ∶ k < ω} and put Bn = Lη ∪⋃k≤n Hk for n < ω.
Now let x ∈ Lη+1 and H ⊆ Lx be basic. If H intersect Lη , then it must be
contained in it so n0 = 0 works for (∗). If H ∩ Lη ∩∅ then either H ⊆ [⟨η, 0⟩]+
or H ⊆ [⟨η + 1, 0⟩]−, but in any case H intersects at most one Hk . _us, (∗)
holds.

● ξ is a limit ordinal. We can assume that, for n < ω, the disjoint decomposi-
tion of Cn into basic sets are Lαn ∈ A, for some αn < ξ, and basic subsets of
[⟨ξ, 0⟩]−. Let Cn be the family of the latter basic sets. Without loss of general-
ity, if cf(ξ) = ω then {αn}n<ω is an increasing sequence of ordinals converging
to ξ; otherwise, the sequence is constant α. Put C = ⋃n<ω Cn and ûnd E by
Lemma 5.7 applied to C. E = {Hk ∶ k < ν} for some ν ≤ ω (ν = ω when
cf(ξ) > ω), so put Bn = Lαn ∪⋃k<min{n+1,ν} Hk for n < ω.
Let x ∈ Lξ and H ⊆ Lx be basic. If H intersects [ξ]− = {x ∈ L ∶ x(0) < ξ}, then
H is contained in it. If cf(ξ) = ω, then H is contained in some Lα i , so n0 can be
found as in (∗); otherwise, n0 = 0 works when cf(ξ) > ω; if H ∩ [ξ]− = ∅, then
H ⊆ [⟨ξ, 0⟩]− so H intersects at most one Hk and n0 as in (∗) can be found.

(2) EM = Jx for some Σ-relevant x. Let m = ∣x∣. In each of the following cases (∗) can
be proven as before. We just show (∗) for the last case.
● x(m−1) = 0. For n < ω, let {Ek ∶ k < M}∪C0

n∪C
1
n be the decomposition of Cn

into disjoint basic sets, where C0
n ⊆ [x]− and C1

n ⊆ [x⌢⟨0⟩]−. Put Ci = ⋃n<ω C
i
n

and ûnd Ei as in Lemma 5.7 applied to Ci for each i ∈ {0, 1}. _en E = E0 ∪E1

is inûnite (if not, ḣ is a P↾B-name for some B ∈ A), so enumerate E = {Hk ∶
k < ω} and put Bn = ⋃k<M Ek ∪⋃k≤n Hk for n < ω.

● x(m − 1) = η + 1. Let x0 = x↾(m − 1)⌢{η} and x 1 = x. We can assume that
Jx0 ⊆ Cn for all n < ω. _en the disjoint decomposition of Cn into basic sets
are Ek , for k < M, Jx0 and subsets of either [x0⌢⟨0⟩]+ or [x 1⌢⟨0⟩]−. Let C0

n be
the family of these basic sets contained in [x0⌢⟨0⟩]+ and deûne C1 likewise. Put
Ci = ⋃n<ω C

i
n and let Ei ⊆ [x i] be as in Lemma 5.7 applied to Ci for i ∈ {0, 1}.

Put E = E0 ∪ E1, which is inûnite. Enumerate E = {Hk ∶ k < ω} and put
Bn = ⋃k<m Ek ∪ Jx0 ∪⋃k≤n Hk for n < ω.

● x(m−1) is a limit ordinal. We can assume that, for n < ω, the disjoint decompo-
sition of Cn into basic sets are Ek , for k < M, Jxn where xn = x ↾ (m − 1)⌢{αn}
for some αn < x(m − 1), and basic subsets of [x⌢⟨0⟩]−. Let Cn be the fam-
ily of the latter basic sets. Without loss of generality, if cf(x(m − 1)) = ω,
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then {αn}n<ω is an increasing sequence with limit x(m − 1); otherwise, the se-
quence is constant α (so ⟨xn⟩n<ω is also constant). Put C = ⋃n<ω Cn and ûnd E
by Lemma 5.7 applied to C. _en E = {Hk ∶ k < ν} for some ν ≤ ω (ν = ω when
cf(x(m − 1)) > ω), so put Bn = ⋃k<M Ek ∪ Jxn ∪⋃k<min{n+1,ν} Hk for n < ω.
To see (∗), let y ∈ A and H ⊆ A ∩ Ly be basic. If H intersects [x⌢⟨0⟩]−, then
H is contained in it and intersects at most one Hk , so n0 as in (∗) exists. If
H ∩ [x⌢⟨0⟩]− = ∅ then it is clear that n0 = 0 works when cf(x(m − 1)) > ω;
otherwise, H is contained in ⋃k<M Ek ∪ Jxn0 for some n0 < ω.

It is clear that {Bn ∶ n < ω} ⊆ A is ⊆-increasing and that ḣ is a P ↾C-name (by
Lemma 5.7(a)), where C = ⋃n<ω Bn ⊇ ⋃n<ω Cn , so it remains to prove that P↾C =

limdirn<ω P↾Bn . Let p ∈ P↾C and x = max(dom p), so there exists a D ∈ Ix↾C such
that p↾Lx ∈ P↾D and p(x) is a P↾D-name of a member of Q̇D

x . _en D = C ∩ H for
some H ∈ Ix . By (∗) applied to A ∩ H, there exists an n0 < ω such that Bn0 ∩ H =

Bn0 ∩ (A ∩ H) = C ∩ (A ∩ H) = D and x ∈ Bn0 , so D ∈ Ix ↾Bn0 , which implies
p ∈ P↾Bn0 .

We will need the following results.

_eorem 5.9 ([Mej15,_m. 5.17]) Let θ be an uncountable regular cardinal and let
P↾ ⟨L, I⟩ be a standard template iteration (see Deûnition 3.5). Assume the following
hold:
(i) If ẋ is a P↾L-name for a real, then it is a P↾A-name for some A ⊆ L of size < θ.
(ii) For every x ∈ LS and B ∈ Îx , P↾B forces that Q̇B

x is ⊏-good.
(iii) W ⊆ L is a coûnal subset of size λ ≥ θ such that, for all z ∈ W , Lz ∈ Iz and there

is a P↾(Lz ∪ {z})-name ċz for a ⊏-unbounded real over VP↾Lz .
_en P↾L forces d⊏ ≥ λ.

_eorem 5.10 (New reals not added at other stages [Mej15,_m. 5.12]) Let P↾⟨L, I⟩
be a standard template iteration (see Deûnition 3.5), x ∈ L such that Lx ∶= Lx ∪{x} ∈ Îz
for all z > x in L and let ḟ be a P↾Lx -name of a real such that ⊩P↾Lx

ḟ ∉ VP↾Lx . _en
P↾L forces that ḟ ∉ VP↾(L∖{x}).

6 Proof of the Main Theorem

Main _eorem Let θ0 ≤ θ1 ≤ θ < µ < λ be uncountable regular cardinals with
θ<θ = θ and λ<λ = λ. _en there is a ccc poset that forces add(N) = θ0, cov(N) = θ1,
p = s = g = θ, add(M) = cof(M) = µ, and a = non(N) = r = c = λ.

_roughout this section, ûx regular uncountable cardinals θ0 ≤ θ1 ≤ θ < µ < λ
such that θ<θ = θ and λ<λ = λ. We can assume6 that there are
(I) a θ0-∈∗-unbounded family of size θ0,
(II) a θ1-⋔-unbounded family of size θ1,
(III) a θ-∝-unbounded family of size θ.

6_is is forced by Cθ (the standard poset that adds θ-many Cohen reals).
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Fix Σ = ⟨Sβ ∶ β < θ⟩ a sequence of pairwise disjoint sets, each ofwhich is co-initial

in λ∗ and such that λ∗ = ⋃β<θ Sβ . For δ ≤ λ, let ⟨Lδ , I
δ
⟩ be the template deûned

as follows. Put Lδ = Lδ ,λ⋅µ as in Deûnition 4.1, where λ ⋅ µ denotes the product as
ordinals and let Σδ = ⟨Sβ ∩ δ∗ ∶ β < θ⟩. Deûne Iδ = IΣδ ,λ⋅µ (see Deûnition 4.1).

Note that x ∈ Lδ is Σδ-relevant if and only if it is Σ-relevant. For brevity,we simply
call such sequences relevant. For such relevant x, we denote Jδx = Jδ ,Σδx . _e sequence
of templates ⟨(Lδ , I

δ
)⟩δ≤λ has the following property.

Lemma 6.1 If θ ≤ δ ≤ δ′ ≤ λ, then Iδ = Iδ
′

↾Lδ . So for x ∈ Lδ we have Iδx = Iδ
′

x ↾Lδ .

Proof Observe that Lδα = Lδ
′

α ∩ Lδ where α ∈ λµ and Jδ
′

x ∩ Lδ is either equal to Jδx
when x ∈ Lδ , or is the empty set when x ∉ Lδ .

Deûnition 6.2 An iteration P⟨L, I⟩ is called pre-appropriate if it is a (⟨D⟩, θ)-stan-
dard iteration where the following hold.

(1) ⟨L, I⟩ = ⟨Lδ , I
δ
⟩ for some 0 < δ ≤ λ.

(2) L = LH ∪ LA ∪ LR ∪ LF is a disjoint union, LS = LH and LC = L ∖ LH .
(3) LH ∩ λ ⋅ µ is coûnal in λ ⋅ µ and has size λ.
(4) If x ∈ LH , then for B ∈ Îx , Q̇B

x = ḊVP↾B
.

(5) For every x ∈ LF there are ûxed Cx ∈ Îx of size < θ and a P↾Cx-name Ḟx for a
ûlter base of size < θ. Q̇x =MḞx ; that is, for B ∈ Îx ,

Q̇B
x =

⎧⎪⎪
⎨
⎪⎪⎩

MḞx , in case Cx ⊆ B,
trivial poset, in case Cx /⊆ B.

(6) For x ∈ LR , there are ûxed Cx ∈ Îx of size < θ and Q̇x is a P ↾Cx-name of a
subalgebra of BVP↾Cx of size < θ1.

(7) For x ∈ LA, there are ûxedCx ∈ Îx of size < θ and Q̇x is aP↾Cx-name of a σ-linked
subposet of LOCVP↾Cx

of size < θ0.
We call such an iteration appropriate if it also satisûes the following:
(8) If Ḟ is a P↾L-name for a ûlter base of size < θ, then there is x ∈ LF such that
⊩P↾L Ḟ = Ḟx .

(9) If Q̇ is a P↾L-name of a subalgebra of B of size < θ1, then there is an x ∈ LR such
that ⊩P↾L Q̇ = Q̇x .

(10) If Q̇ is a P↾L-name of a σ-linked subposet of LOC of size < θ0, then there is an
x ∈ LA such that ⊩P↾L Q̇ = Q̇x .

Lemma 6.3 Let P↾⟨L, I⟩ be a pre-appropriate iteration. If A ⊆ L, then
● P↾A has the Knaster property,
● if p ∈ P↾A, then there is C ⊆ A of cardinality (strictly) smaller than θ such that

p ∈ P↾C,
● if ḣ is a P↾A-name for a real, then there is C ⊆ A of cardinality (strictly) smaller than

θ such that ḣ is a P↾C-name for a real.
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Proof Directly from Lemma 3.6.

Lemma 6.4 If ⟨L, I⟩ = ⟨Lδ , I
δ
⟩ for some δ ≤ λ of uncountable coûnality, then any

pre-appropriate iteration P↾⟨L, I⟩ forces add(N) ≤ θ0, cov(N) ≤ θ1, s ≤ θ, g ≤ θ,
add(M) = cof(M) = µ, and non(N) = r = c = λ. If appropriate, equalities are forced
for the ûrst four cardinals and p = θ.

Proof By the preservation _eorem 5.6, P↾L is θ0-∈∗-good, θ1-⋔-good, and
θ-∝-good. By hypotheses (I), (II), and (III), each respective family is preserved in
the forcing extension, so they witness add(N) ≤ θ0, cov(N) ≤ b⋔ ≤ θ1, and s ≤ θ.
For α ∈ LH ∩ λ ⋅ µ let dα be the dominating real added at α and let cα be the Cohen

real added at α in the iteration (recall that Hechler forcing adds Cohen reals). As
Lα ∈ Iα , dα is Hechler over VP↾Lα and cα is Cohen over the same model. _erefore,
{dα ∶ α ∈ LH ∩ λ ⋅ µ} forms a scale of coûnality µ in VP↾L , so b = d = µ in that model
(also use Lemma 6.3). On the other hand,P↾L forces non(M) ≤ µ ≤ cov(M), because
of the µ-coûnal Cohen reals added, so add(M) = cof(M) = µ is clearly forced.
For α < θ we put Wα = VP↾Zα and Wθ = VP↾L where ⟨Zα⟩α<θ is an increasing

sequence of subsets of L whose union is L and (Zα+1 ∖ Zα) ∩ LH ∩ λ ⋅ µ /= ∅. As a
consequence of_eorem 5.10, ⟨Wα⟩α≤θ satisûes the hypothesis of Lemma 2.1, so g ≤ θ
holds in VP↾L .

In VP↾L , it is clear that c ≤ λ, because P↾L has size L. On the other hand, λ ≤ d⋔ ≤
non(N) and λ ≤ r by _eorem 5.9, because D is ⋔-good and∝-good.

Now, if the iteration is appropriate, it further forces θ0 ≤ add(N), θ1 ≤ cov(N), and
θ ≤ p ≤ s (recall that p ≤ g). We show the second one (the others are proven similarly).
In VP↾L , let B be a family of Borel null sets of size < θ1 so there is a transitivemodel
N of a large enough fragment of ZFC such thatB ⊆ N (the Borel codes) and ∣N ∣ < θ1.
By Deûnition 6.2(8), there is an x ∈ LR such that Qx = BN , so Qx has already added
a random real over N andB does not cover that real.

To prove the Main _eorem, we need to construct an appropriate iteration that
forces a = λ. _e following lemma is essential to construct this iteration.

Main Lemma Let θ ≤ δ < λ. Let P↾⟨Lδ , I
δ
⟩ be a pre-appropriate iteration and let Ȧ

be a P↾Lδ-name for an almost disjoint family such that θ+ ≤ ∣Ȧ∣ < λ. _en there is δ′,
δ < δ′ < λ, and an appropriate iteration P′ = P′↾⟨Lδ

′

, I
δ′
⟩ such that

(a) P′↾Lδ = P↾Lδ , and
(b) ⊩P′↾Lδ′ “Ȧ is not maximal”.

Proof _is proof is inspired by [Bre02,_m 3.3].
Let Ȧ = {ȧє ∶ є < ν} for some θ+ ≤ ν < λ be a P↾⟨Lδ , Iδ⟩-name for an almost

disjoint family. For every ȧє there is a Bє ⊆ Lδ of size < θ such that ȧє is a P↾Bє-name
for a real. Wemay assume that Bє is c.i.s.t.. Indeed, start with an arbitrary B0є of size
less than θ such that ȧє is a P↾B0є -name (by Lemma 6.3 such B0є exists) and, for n ∈ ω,
deûne Bn+1

є as the closure of Bn
є ∪ {Cδx ∶ x ∈ Bn

є ∩ LδC} under initial segments. Take
Bє = ⋃n∈ω Bn

є .
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By the ∆-system lemma (because θ<θ = θ) we can assume that ⟨Bα ∶ α < θ+⟩ is
a ∆-system with root R that is also a c.i.s.t. (so Cδx ⊆ R for x ∈ R ∩ LδC). By Lemma
4.6 we thin out the ∆-system so that, for all α /= β, there is a P↾⟨Lδ , Iδ⟩-isomorphism
ϕα ,β ∶Bα → Bβ , which li�s to an isomorphism Φα ,β ∶P↾⟨Bα , I↾Bα⟩ → P↾⟨Bβ , I↾Bβ⟩
(see Deûnition 4.5). Moreover, we can assume that
● ϕα ,β↾R is the identity map,
● ϕα ,β[Bα ∩ LδF] = Bβ ∩ LδF , ϕα ,β[Bα ∩ LδR] = Bβ ∩ LδR , ϕα ,β[Bα ∩ LδA] = Bβ ∩ LδA,
● if x ∈ Bα ∩ LδF , then Φα ,β sends Ḟδx to Ḟδϕα ,β(x) (recall that ϕα ,β[Cδx] = Cδϕα ,β(x)),
● Φα ,β sends ȧα to ȧβ ,
● ϕ−1

α ,β = ϕβ ,α and ϕβ ,γ ○ ϕα ,β = ϕα ,γ , likewise for the induced isomorphisms.

By shrinking again, we also assume that there is a ρ0 < θ such that, for any α < θ+,
x ∈ Bα and k < ∣x∣, if x(k) is negative, then x(k) ∈ Sρ for some ρ < ρ0.

Let T ⊆ Lθ ,θ be a tree of size < θ that represents ⟨Bα⟩α<θ+ , that is, for each α <

θ+ there is a bijection xα ∶T → Bα satisfying Deûnition 4.5(i)–(viii) and such that
ϕα ,β ○ xα = xβ for any β /= α.

Let S ⊆ T be a tree that represents the root of the ∆-system, that is, xα[S] = R
for each α < θ+. Note that for all α, β in θ+ and all t ∈ S we have xα(t) = xβ(t).
Furthermore, we can assume that whenever s ∈ S ∪ {∅} and t ∶= s⌢⟨ξ⟩ ∈ T/S then,
for all α < θ+, we have that
● xα(t)(∣s∣) > θ, in case ξ is positive, and
● xα(t)(∣s∣) < θ∗, in case ξ is negative.

Now, let {tη ∶ η < κ} with κ < θ enumerate {s⌢⟨ξ⟩ ∶ s ∈ S ∪ {∅}, s⌢⟨ξ⟩ ∈ T/S}.
Consider the coloring F∶ [θ+]2 → κ deûned as follows: for α < β let

F(α, β) = min{η < κ ∶ either xα(tη)(∣tη ∣ − 1) > xβ(tη)(∣tη ∣ − 1)
and tη(∣tη ∣ − 1) is positive, or xα(tη)(∣tη ∣ − 1) < xβ(tη)(∣tη ∣ − 1)

and tη(∣tη ∣ − 1) is negative}

when such a η exists, otherwise put F(α, β) = 0.
We will use the following reformulation of the Erdös–Rado theorem.

Claim If F∶ [θ+]2 → κ, where κ < θ and θ<θ = θ, then there is a homogeneous set of
size θ.

Proof Similar to [Kun11, Lemma III.8.11].

_us, we can ûnd an F-homogeneous set of size θ. It should have color 0, since
otherwise we will have an inûnite decreasing chain of ordinals. Without loss of gen-
erality, this homogeneous set is θ.
For every s ∈ S ∪ {∅}, ξ and η such that s⌢⟨ξ⟩, s⌢⟨η⟩ are in T/S, denote by υs⌢⟨ξ⟩

the limit of {xα(s⌢⟨ξ⟩)(∣s∣)} (which is a supremum if ξ is positive, or an inûmum
otherwise). We assume the following:
● if ξ < η are positive, then
– either υs⌢⟨ξ⟩ < x0(s⌢⟨η⟩)(∣s∣) (when υs⌢⟨ξ⟩ < υs⌢⟨η⟩),
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– or xα(s⌢⟨η⟩)(∣s∣) < xβ(s⌢⟨ξ⟩)(∣s∣) for all α < β < θ (when υs⌢⟨ξ⟩ = υs⌢⟨η⟩).7
● if ξ < η are negative, then
– either x0(s⌢⟨ξ⟩)(∣s∣) < υs⌢⟨η⟩,
– or xα(s⌢⟨ξ⟩)(∣s∣) > xβ(s⌢⟨η⟩)(∣s∣) for all α < β < θ.
Recall that any object in Lδ contains only elements of (δ∗ , δ) from the second

coordinate on. Now, choose γ∗ ∈ Sρ0 such that δ < γ < λ (exists because Sρ0 is co-
initial in λ∗) and let δ′ < λ be any ordinal larger than γ (we can also allow for δ′ to be
a successor ordinal).

We deûne xν ∶T → Lδ
′

as follows.
● If t ∈ S, then xν(t) = x0(t) ∈ R.
● If t = s⌢⟨ξ⟩ ∈ T/S with s ∈ S ∪ {∅}, then
– if ξ is positive, then

xν(t) =
⎧⎪⎪
⎨
⎪⎪⎩

xν(s)⌢⟨υs⌢⟨ξ⟩ , γ∗⟩⌢x0(t)(∣s∣) if ∣s∣ /= 0,
xν(s)⌢⟨υs⌢⟨ξ⟩ , γ∗⟩⌢⟨ξ⟩ if ∣s∣ = 0,

– if ξ is negative, then xν(t) = xν(s)⌢⟨υs⌢⟨ξ⟩ , γ⟩⌢x0(t)(∣s∣).
● If t ∈ T , then xν(t) = xν(t↾m)⌢x0(t)↾[m, ∣t∣) were m is the minimal (if exists)

such that t↾m ∈ T/S,.
Put Bν = {xν(t) ∶ t ∈ T}, which is a subset of Lδ

′

that is isomorphic (as a linear
order) with T via xν . _us, ϕα ,ν ∶= xν ○ x−1

α ∶Bα → Bν is an order isomorphism for all
α < θ. Moreover, Bν ∩ Lδ = R and ϕα ,ν↾R is the identity map. Let ϕν ,α = ϕ−1

α ,ν . Note

that ϕ0,ν is also a template-isomorphism(seeDeûnition 3.8) between ⟨B0 , I
δ
↾B0⟩ and

⟨Bν , J⟩, where Jz = {ϕ0,ν[X] ∶ X ∈ Iδϕν ,0(z)↾B0} for each z ∈ Bν .

Claim 6.5 ⟨Bν , Iδ
′

↾Bν⟩ is a θ-innocuous extension of ⟨Bν , J⟩.

Proof Similar to the argument in [Bre02,_m 3.3].

Let

Lδ
′

F ∶= LδF ∪ ϕ0,ν[LδF ∩ B0] ∪ {⟨η, γ, γ, γ⟩ ∶ η ∈ λ ⋅ µ, η ≡ 0 mod 3},

Lδ
′

R ∶= LδR ∪ ϕ0,ν[LδR ∩ B0] ∪ {⟨η, γ, γ, γ⟩ ∶ η ∈ λ ⋅ µ, η ≡ 1 mod 3},

Lδ
′

A ∶= LδA ∪ ϕ0,ν[LδA ∩ B0] ∪ {⟨η, γ, γ, γ⟩ ∶ η ∈ λ ⋅ µ, η ≡ 2 mod 3},

let Lδ
′

C = Lδ
′

A ∪ Lδ
′

R ∪ Lδ
′

F and Lδ
′

H = Lδ
′

/Lδ
′

C , which contains LδH . Fix a bijection g∶ λ →
λ × θ and an enumeration {Cζ ,β ∶ β < λ} of [Lδ

′

λ⋅ζ]
<θ (which is a subset of Îδ

′

λ⋅ζ) for
each ζ < µ. When z is an ordered pair, (z)0 denotes its ûrst coordinate and (z)1 its
second.
For x ∈ Lδ

′

C ,
● if x ∈ LδC , then let Cδ

′

x ∶= Cδx ;
● if x = xν(t) for some t ∈ T let Cδ

′

x ∶= ϕ0,ν[Cδx0(t)] (note that this does not disagree
with the previous bullet);

7In that case, there is a club subset of θ with that property (for ûxed s⌢⟨ξ⟩, s⌢⟨η⟩).
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● if x = ⟨η, γ, γ, γ⟩ and η = λ ⋅ ζ + 3 ⋅ ρ + i where ζ < µ, ρ < λ and i < 3, let
Cδ

′

x = Cζ ,(g(ρ))0 .

Note that, for α ≤ ν, if x ∈ Bα ∩ Lδ
′

C , then Cδ
′

x ⊆ Bα .
We construct a (⟨D⟩, θ)-standard iteration P′↾⟨Lδ

′

, I
δ′
⟩ such that

(i*) Lδ
′

H are the coordinates where (full) Hechler forcing is used, while Lδ
′

C are the
coordinates where ccc posets of size < θ are used according to what we natu-
rallymean for coordinates in Lδ

′

A (localization poset), Lδ
′

R (random) and in Lδ
′

F
(Mathias–Prickry);

(ii*) for X ⊆ Lδ , P′↾X = P↾X;
(iii*) for z ∈ LδC , Q̇′

z = Q̇z ;
(iv*) there is a forcing isomorphism Φν ,0∶P′↾Bν → P↾B0 that li�s ϕν ,0 (in the sense

of (viii*) and (ix*) below) and Φν ,0↾(P↾R) is the identity;
(v*) for each ζ < µ and β < λ, {Ḟ′ζ ,β ,α ∶ α < θ} enumerates8 all (nice)P′↾Cζ ,β-names

for ûlter bases of size < θ and, if η = λ ⋅ ζ + 3 ⋅ ρ for some ρ < λ and if z =

⟨η, γ, γ, γ⟩, then Q̇z =MḞ′ζ ,g(ρ)
;

(vi*) for each ζ < µ and β < λ, {Ḃζ ,β ,α ∶ α < θ} enumerates all (nice) P′↾Cζ ,β-names
for subalgebras of B of size < θ1 and, if η = λ ⋅ ζ + 3 ⋅ ρ + 1 for some ρ < λ and if
z = ⟨η, γ, γ, γ⟩, then Q̇z = Ḃζ ,g(ρ);

(vii*) for each ζ < µ and β < λ, { ˙LOCζ ,β ,α ∶ α < θ} enumerates all (nice) P′↾Cζ ,β-
names for σ-linked subposets of LOC of size < θ0 and, if η = λ ⋅ ζ + 3 ⋅ ρ + 2 for
some ρ < λ and if z = ⟨η, γ, γ, γ⟩, then Q̇z = ˙LOCζ ,g(ρ).

Conditions (v*), (vi*), and (vii*) guarantee that P′↾⟨Lδ
′

, Iδ
′

⟩ is an appropriate itera-
tion. For instance, if Q̇ is a P′↾Lδ

′

-name for a subalgebra of random forcing of size
< θ1, by Lemma 6.3 there exists C′ ⊆ Lδ

′

of size < θ such that Q̇ is (forced to be equal
to) a P′↾C′-name, so there is ζ < µ such that C′ ⊆ Lδ

′

λ⋅ζ and there exists a β < λ such
that C′ = Cζ ,β . By (vi*), Q̇ = Ḃζ ,β ,α for some α < θ so Q̇ = Q̇z where z = ⟨η, γ, γ, γ⟩,
η = λ ⋅ µ + 3 ⋅ ρ + 1 and ρ = g−1(β, α).
By Claim 6.5 and Lemmas 3.12 and 3.9, there is a (⟨D⟩, θ)-template iteration

P′↾⟨Bν , I
δ′
↾Bν⟩ and a forcing isomorphism Φν ,0∶P′↾Bν → P↾B0 satisfying:

(viii*) Φν ,0↾(P′↾ϕ0,ν[X])∶P′↾ϕ0,ν[X]→ P↾X is an isomorphism for any X ⊆ B0 and
(ix*) Q̇ϕ0,ν(x) is theP′↾Cδ

′

ϕ0,ν(x)-name associatedwith Q̇x viaΦν ,0 for any x ∈ B0∩LδC .

It is clear thatP′↾R = P↾R andΦν ,0↾(P↾R) is the identitymap. _erefore, as Lδ∩Bν =

R, we can easily extend P′↾⟨Bν , I
δ′
↾Bν⟩ to an iteration P′↾⟨Lδ ∪ Bν , I

δ′
↾(Lδ ∪ Bν)⟩,

satisfying (i*). Furthermore, as (Lδ ∪Bν)∩{⟨η, γ, γ, γ⟩ ∶ η ∈ λ ⋅ µ} = ∅,we can extend
the iteration to P′↾⟨Lδ

′

, I
δ′
⟩ satisfying, additionally, (v*)–(vii*). Observe that, for any

0 < α < ν, Φν ,α ∶= Φ0,α ○Φν ,0∶P′↾Bν → P↾Bα is a forcing isomorphism that li�s ϕν ,α
and satisûes similar properties as (iv*), (viii*), and (ix*).

Let ȧν be the P′↾Bν-name corresponding to ȧ0 via Φν ,0. To ûnish the proof, we
show that ⊩P′↾Lδ′ ∀є < ν(ȧє ∩ ȧν is ûnite). Fix є < ν. As ∣Bє ∣ < θ and ⟨Bα ∶ α < θ⟩

8_is family of names has size at most θ, because ∣P′↾Cζ ,β ∣ ≤ θ as noted in the proof of Lemma 4.6.
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forms a ∆-system, there is an αє < θ such that ∀α ∈ [αє , θ)(Bα ∩ Bє ⊆ R). Moreover,
wemay assume that
(∗∗) For any s ∈ S ∪ {∅} and t = s⌢⟨ξ⟩ ∈ T/S, if ξ is positive, then

sup{ y(∣s∣) ∶ y ∈ Bє , y↾∣s∣ = xν(s) and y(∣s∣) < xν(∣s∣)} < xαє(∣s∣),

and if ξ is negative, then

inf{ y(∣s∣) ∶ y ∈ Bє , y↾∣s∣ = xν(s) and y(∣s∣) > xν(∣s∣)} > xαє(∣s∣).

Take any α ∈ [αє , θ) ∖ {є} and consider themapping ϕ∶Bν ∪ Bє → Bα ∪ Bє where

x ↦ ϕ(x) =
⎧⎪⎪
⎨
⎪⎪⎩

ϕν ,α(x) if x ∈ Bν ,
x if x ∈ Bє .

From (∗∗), ϕ∶ ⟨Bν ∪ Bє , J
′
⟩→ ⟨Bα ∪ Bє , I

δ′
↾(Bα ∪ Bє)⟩ is a template isomorphism

where J′z = {ϕ−1[X] ∶ X ∈ Iδϕ(z)↾(Bα ∪ Bє)} for any z ∈ Bν ∪ Bє . Furthermore,

Claim 6.6 ⟨Bν ∪ Bє , I
δ′
↾(Bν ∪ Bє)⟩ is a θ-innocuous extension of ⟨Bν ∪ Bє , J

′
⟩.

Proof Similar to the argument in [Bre02,_m 3.3].

_erefore, by Lemma 3.9 and items (i*)–(iv*), (viii*) and (ix*), there is a forcing
isomorphism Φ∶P′↾(Bν ∪ Bє) → P↾(Bα ∪ Bє) li�ing ϕ; moreover, Φ↾(P′↾Bν) =

Φν ,α and Φ↾(P′↾Bє) is the identitymap (these by uniqueness in Lemma 3.9) so ȧν is
identiûed with ȧα via Φ and ȧє is identiûed with itself. As ⊩P↾(Bα∪Bє) ∣ȧα ∩ ȧє ∣ < ℵ0,
we conclude that ⊩P′↾(Bν∪Bє) ∣ȧν ∩ ȧє ∣ < ℵ0.

As a consequence of the previous proof, we obtain the following corollary.

Corollary 6.7 Let δ < λ and P↾⟨Lδ , I
δ
⟩ be a pre-appropriate iteration. _en there is

δ′, δ < δ′ < λ, and an appropriate iteration P′ = P′↾⟨Lδ
′

, I
δ′
⟩ such that P′↾Lδ = P↾Lδ .

Proof Choose any γ, δ < γ < λ and let δ′ be any ordinal strictly between γ and λ.
_enP′ = P′↾⟨Lδ

′

, I
δ′
⟩ isdeûned exactly as in thepreviousproof (just ignore anything

related to Bν , B0, ϕ0,ν , and Φν ,0).

Proof of theMain_eorem Fix a bookkeeping function h∶ λ → λ× λ such that h is
a bijection, and for all α ∈ λ if h(α) = (ξ, η), then α ≥ ξ. By recursion, we deûne a
sequence ⟨Pα↾⟨Lδα , I

δα
⟩⟩α≤λ of appropriate iterations as follows.

Basic step α = 0. Let P↾⟨Lθ+ , I
θ+

⟩ be a pre-appropriate iteration with Lθ+
H = Lθ+ (that

is, D is used everywhere). By Corollary 6.7, ûnd δ0 ∈ (θ+ , λ) and an appropriate
iteration P0↾⟨Lδ0 , I

δ0
⟩.

Successor step. Let ⟨Ȧα ,η ∶ η < λ⟩ enumerate all (nice) Pα↾Lδα -names of almost dis-
joint families of size in [θ+ , λ) (such enumeration has size λ because λ<λ = λ and
∣Pδα↾Lδα ∣ = λ). By the Main Lemma, we can ûnd δα+1 ∈ (δα , λ) and an appropriate
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iteration Pα+1↾⟨Lδα+1 , I
δα+1

⟩ such that ⊩Pα↾Lδα+1 “Ȧh(α) is not maximal" (Ȧh(α) has
already been deûned, because ξ ≤ α when h(α) = (ξ, η)).

Limit step. Let δ = supξ<α{δξ} so Lδ = ⋃ξ<α Lδξ . If α < λ, then δ < λ, but α = λ
implies δ = λ. _en I

δξ
x = Iδx↾Lδξ for any x ∈ Lδξ and ξ < α by Lemma 6.1. Let

LδH = ⋃ξ<α LδξH , L
δ
F = ⋃ξ<α LδξF and likewise for LδR and LδA. In addition, for every

x ∈ LδC we can ûnd ξ < α such that x ∈ LδξC . _en deûne Cδx = Cδξx and Q̇δ
x = Q̇δξ

x ,
which does not depend on the choice of ξ. _is allows us to deûne a pre-appropriate
iteration P̂↾⟨Lδ , I

δ
⟩ such that P̂↾Lδξ = Pξ↾Lδξ for any ξ < α. It is clear that the iteration

P̂↾⟨Lδ , I
δ
⟩ is appropriate when cf(α) ≥ θ, in which case δα = δ and Pα↾⟨Lδα , I

δα
⟩ =

P̂↾⟨Lδ , I
δ
⟩; moreover, this is the direct limit of Pξ↾Lδξ for ξ < α, since any condition

p ∈ Pα↾Lδα is restricted to a subset of size < θ by Lemma 6.3; if cf(α) < θ, we just
ûnd δα ∈ (δ, λ) and an appropriate iteration Pα↾⟨Lδα , I

δα
⟩ such that Pα↾Lδ = P̂↾Lδ

by Corollary 6.7.
AsPλ↾⟨Lλ , Iλ⟩ is an appropriate iteration, by Lemma 6.4we only need to show that

⊩Pλ↾Lλ a ∉ [θ+ , λ) (because Pλ↾Lλ already forces b = µ ≥ θ+ and b ≤ a is probable
in ZFC). Let Ȧ be a Pλ↾Lλ-name for an almost disjoint family of size in [θ+ , λ) (by
ccc-ness, this size can be decided). As Pλ↾Lλ is the direct limit of Pδα↾Lδα for α < λ,
we can ûnd ξ, η < λ such that Ȧ = Ȧξ,η , so, if h(α) = (ξ, η), then Pα+1↾Lδα+1 already
forces that Ȧ is not maximal.

7 Questions

J. Brendle [Bre03] modiûed Shelah’s original template iteration technique to incor-
porate a product-like forcing as a complete suborder of the entire template iteration.
_is modiûed template iteration produces the consistency of a being of countable co-
ûnality. Recently, the ûrst author, jointly with A. Törnquist (see [FT15]), showed that
the minimal size of a maximal coûnitary group ag , as well as some other close com-
binatorial relatives of the almost disjointness number, like ap , ae , can be of countable
coûnality. _e following question remains of interest.

Question 7.1 Can the iteration techniques developed in this paper be further devel-
oped to expand the results by including the case in which a, ag , ap , or ae are singular,
or even of countable coûnality?

_e iteration of eventually diòerent forcing along Shelah’s original template pro-
duces the consistency of a = ℵ1 < non(M) < ag (see [Bre02, _m. 4.11]). It is un-
known whether this consistency result could be improved as follows.

Question 7.2 Is it consistent that ℵ1 < a < non(M) < ag?

In his work on template iterations, Shelah [She04] (see also [Bre07]) also con-
structed, using a measurable cardinal κ, a ccc poset that forces κ < u < a. As this
poset also forces u = b = s, the consistency of b = s < a is clear modulo ameasurable
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cardinal. However, it is not known whether these consistency results can be obtained
from ZFC alone.

Question 7.3 Is it consistent with ZFC alone that
(1) b = s < a?
(2) b = s = ℵ1 < a = ℵ2 (see [BreR14])?
(3) u < a?

Question 7.3(2) is a very important and challenging problem. It is closely related
to the famous Roitman’s problem (still open) on whether “d = ℵ1 implies a = ℵ1” is
provable in ZFC.
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