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The Born approximation of a potential in the context of the Calderón inverse
problem is an object that can be formally defined in terms of spectral data of the
Dirichlet-to-Neumann map of the corresponding Schrödinger operator. In this article,
we prove, in the case of radial potentials in the Euclidean ball and any fixed energy,
that the Born approximation is well-defined as a compactly supported radial
distribution, and that the Calderón problem can be reformulated as recovering a
potential from its Born approximation. In addition, we show that the Born
approximation depends locally on the potential and captures exactly its singularities,
and that the functional that maps the Born approximation to the potential is Hölder
continuous. We also prove that the Born approximation converges to the potential in
the high-energy limit. Moreover, we give an explicit formula for the Fourier transform
of the Born approximation at any fixed energy, and illustrate how it can be used as
the basis of an accurate procedure to approximate a potential from its
Dirichlet-to-Neumann map.

Keywords: Fixed energy Calderón problem; Dirichlet-to-Neumann map; Born
approximation; Gel’fand-Calderón problem; Schrödinger equation

1. Introduction

1.1. Outline of the article

The Calderón problem for a Schrödinger operator, also known as the Gel’fand-
Calderón problem, asks for the reconstruction of a potential from the knowledge of
certain boundary measurements of the solutions to the corresponding Schrödinger

© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society
of Edinburgh. This is an Open Access article, distributed under the terms of the Creative Commons
Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-
use, distribution and reproduction, provided the original article is properly cited.

1

https://doi.org/10.1017/prm.2025.10092 Published online by Cambridge University Press

https://orcid.org/0000-0002-0221-2889
mailto:fabricio.macia@upm.es
https://orcid.org/0000-0001-6028-9027
mailto:cj.merono@upm.es
https://orcid.org/0000-0001-5816-564X
mailto:daniel.sanchezmen@upm.es
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1017/prm.2025.10092
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equation; see [16, 17] and [29]. In this article, we are interested in the fixed-energy
version of this problem: given an open, bounded domain Ω ⊂ Rd, d ≥ 2, with
C1 boundary, an energy κ ∈ C and a real-valued potential q, consider the elliptic
boundary-value problem for the Helmholtz equation{

−∆u(x) + q(x)u(x)− κu(x) = 0, x ∈ Ω,

u|∂Ω = f.
(1.1)

The Dirichlet-to-Neumann (DtN) map associates the boundary value f with the
normal derivative on ∂Ω of the corresponding solution u to (1.1). Whenever κ is
not a Dirichlet eigenvalue of −∆+ q, this produces a well-defined linear operator

Λq,κ : C∞(∂Ω) −→ C∞(∂Ω)

f 7−→ ∂νu|∂Ω,
(1.2)

where ν is the vector field of exterior unit vectors normal to ∂Ω.
The Gel’fand-Calderón problem, in its simplest form, consists in reconstructing q

from the knowledge of Λq,κ for some fixed κ ∈ C. Since it is known that Λq,κ−Λ0,κ

is always an operator that is bounded in L2(∂Ω) (see for instance Section 2), it is
convenient to encode the inverse problem using the nonlinear map

Φκ : X −→ L2(L2(∂Ω))

q 7−→ Λq,κ − Λ0,κ,
(1.3)

where X is a class of admissible potentials for which the DtN map is defined. In
this article X will be a subset of Lp(Ω) for p> 1 and p ≥ d/2. The main issues one
is interested in are:

i) Uniqueness. Is every q ∈ X uniquely determined by Λq,κ? This amounts
to showing that Φκ is injective.

ii) Stability. Is the reconstruction process stable? That is, find a modulus
of continuity for Φκ. This is not possible in general, since (Φκ)−1 is not
continuous (see, for example, [1, 2, 26]). This is, therefore, an ill-posed inverse
problem. Nevertheless, one can ask for conditional stability when additional
requirements of regularity and boundedness are imposed on the class of
admissible potentials.1

iii) Reconstruction. Find an effective procedure to reconstruct q from Λq,κ,
in other words, compute (Φκ)−1. This is related to the problem of charac-
terization of the range Φκ(X ).

The uniqueness for d ≥ 3 was proved in [59], and later in [46, 48] with particular
emphasis on the case of fixed energy (see also [18, 31]). The two-dimensional case
was solved in [4, 47] for conductivities and [13, 15] for potentials. These results
are proved using the notion of Complex Geometric Optics solutions (CGO) from

1Put in a more abstract setting, for a given compact setK ⊂ X one tries to compute the modulus
of continuity of (Φκ)−1|Φκ(K), which exists since Φκ|K is a uniformly continuous homeomorphism.
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[25] (d ≥ 3) or different families of exponentially growing solutions of the equations
when d =2.

Conditional stability was proved in dimensions d ≥ 3 by [1] with a logarithmic-
type modulus on continuity, which was shown to be optimal in [43] (see also [37]
for a more detailed account of this issue). In dimension 2 it was proved in [7, 19]
(see also [27]). Improved stability at fixed energy was established in [34, 35, 49] in
dimension three and [53, 54] in two dimensions. The instability estimates of [43]
have been improved in the κ≠ 0 case in [33, 39].

Reconstruction is a difficult issue in general, both from analytical and numerical
points of view. The classical approach to uniqueness, based on exponentially grow-
ing families of solutions, leads to reconstruction strategies that involve analyzing a
certain scattering transform (see, for instance, [3, 46, 47]), that can be transformed
into numerical algorithms (see, among many others, [24, 36, 56]). A different type
of strategy, sometimes combined with the previous one, is based on linearization.
This serves as the basis of one-step linearization methods (see [32]), the so-called
Calderón method (see, for example, [11, 55]), the algorithm described in [10], and
has also been applied in deep learning approaches to the Calderón problem; see
[45]. This kind of linearization methods are successful from the numerical point of
view, but seem hard to justify rigorously. The main difficulty lies in proving the
existence of a certain Born-type approximation for the inverse problem.

In this work, we address this question, showing the existence of a Born approx-
imation for the inverse problem for radially symmetric potentials, and we analyze
how this leads to interesting uniqueness, stability, and characterization results. This
approach does not use any CGO-type construction.

This approach was initiated in [8, 9] in the context of the Calderón problem, and
is based on the notion of approximation in inverse scattering that can be traced
back to the work of Born [14]. It was successfully applied in [23] to the Gel’fand-
Calderón problem at zero energy; and a systematic exposition of this approach,
which in principle applies to any inverse problem, was given in [41]. In the present
context, it can be described as follows. The map Φκ is Fréchet differentiable and
satisfies Φκ(0) = 0; if for every q ∈ X it is possible to find qBκ ∈ B in some space B
of functions or distributions solving

dΦκ
0 (q

B
κ ) = Φκ(q) = Λq,κ − Λ0,κ, (1.4)

then one has in fact obtained a factorization of Φκ into a linear and a nonlinear
map:

(1.5)
X Φκ(X )

B

Φκ
B

Φκ

dΦκ
0

q Λq,κ − Λ0,κ

qB
κ

Φκ
B

Φκ

dΦκ
0

The objective is to exploit this factorization to obtain uniqueness, stability, recon-
struction and characterization results for the inverse problem. The main difficulty in
implementing this strategy is to show that there exists a solution of equation (1.4).
In this work we show that (1.4) can be solved and that the factorization (1.5)
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exists for the Gel’fand-Calderón problem at fixed energy κ ∈ R, assuming radial
symmetry on the potentials.

In the radial case, the existence of qBκ for κ=0 has already been proved in [23], a
result that also implies a partial characterization of the set of DtN maps. A key step
in the proof involves the tools introduced by Simon [57] in the context of inverse
spectral theory of Schrödinger operators on the half-line, especially the notion of
A-amplitude. In [41], the authors show that, in fact, the A-amplitude coincides with
the notion of Born approximation for this one-dimensional inverse spectral problem.

Here, the proof of the existence of qBκ relies again on the analysis of a one-
dimensional inverse spectral problem, the difficulty being that the corresponding
Born approximation is no longer Simon’s A-amplitude. The existence of such a
Born approximation, which we call the Aκ-amplitude, is an important part of this
work. The main results of this article are:

i) Explicit description of dΦκ
0 and its inverse. We show that dΦκ

0 maps
potentials to operators that are rotationally invariant, and whose eigenvalues
are certain moments of the potential. Also, we give an explicit formula for
(dΦκ

0 )
−1. This is presented in Theorem 3.1 and Proposition 2.4.

ii) Existence of the Born approximation. This is stated in Theorem 1.
Using the explicit formula for (dΦκ

0 )
−1 and tools of spectral theory of

Schrödinger operators on the half-line, most particularly the existence of
an Aκ-amplitude (Theorem 4.4), we prove that qBκ , the Born approximation
at energy κ, exists as a radial distribution. We also present explicit formulas
for qBκ .

iii) Regularity of qBκ . In Theorem 2 we prove that qBκ coincides with an inte-
grable function outside the origin, that qBκ − q is one derivative smoother
than q, and that qBκ = q at the boundary.

iv) Injectivity of Φκ
B and stability of (Φκ

B)
−1. The map Φκ

B : q 7→ qBκ is
injective in a strong sense: two potentials coincide in a neighborhood of the
boundary if and only if their Born approximations at energy κ coincide in
that same neighborhood. In addition, (Φκ

B)
−1 is Hölder continuous, under

mild a priori conditions on the potentials, with respect to the L1 norm in
the complement of any arbitrarily small ball centered in the origin. This is
the scope of Theorem 3, which is derived from its one-dimensional analogue
Theorem 4.5.

v) High-energy/semiclassical limit. In Theorem 4 we show that the Born
approximation at energy κ converges to the potential q in the high-energy
limit κ → −∞. The analogous result for the direct problem, namely that
Φκ(q)−dΦκ

0 (q) converges to zero in the same regime, is proved in Proposition
2.5.

In (1.5), the maps dΦκ
0 and Φκ are continuous, but the ranges of each of them are

not closed. Hence (dΦκ
0 )

−1 and Φκ are both discontinuous and only conditionally
stable. Therefore, an important consequence of iv) is that the bad behavior of the
inverse of Φκ is captured by the linear approximation dΦκ

0 , since the non-linear
map (Φκ

B)
−1 is Hölder stable.
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1.2. Statement of the main results

From now on, we denote by Lp
rad([Bd,R) the closed subspace of radial functions

that belong to Lp(Bd,R). We will assume that d ≥ 2 and that

p ∈ R is admissible ⇐⇒ 1 < p ≤ ∞, and p ≥ d/2. (1.6)

Also, we define

νd :=
d− 2

2
, N0 := N ∪ {0}.

Recall that the Dirichlet spectrum of −∆ on the ball Bd can be expressed in terms
of the zeros of certain Bessel functions. The operator Λq,κ is well defined as soon as
q ∈ Lp

rad(Bd,R), with p admissible, and κ ∈ C \ SpecH1
0
(−∆+ q). Since q is radial,

the DtN operator commutes with the action of SO(d) on Sd−1; as a consequence,
its eigenfunctions are spherical harmonics (see Appendix B for the definition and
properties of spherical harmonics). More precisely, if Hd

` denotes the subspace of
spherical harmonics of degree ` ∈ N0 on Sd−1, then

Λq,κ|Hd
`
= λ`[q, κ] IdHd

`
. (1.7)

When q =0, the spectrum of Λ0,κ can be explicitly computed. If κ=0 then λ`[0, 0] =
` for every ` ∈ N0, and, if κ ∈ C \ SpecH1

0
(−∆) with κ≠ 0, then

λ`[0, κ] = `−
√
κ
J`+1+νd

(
√
κ)

J`+νd
(
√
κ)

, ∀` ∈ N0, (1.8)

where Jν is the Bessel function of the first kind of index ν ∈ C (see Lemma 4.2).
Given ` ∈ N0, the holomorphic function

ϕ`(z) :=
J`+νd

(z)

zνd
=

z`

2`+νd

∞∑
n=0

(−1)n

n!Γ(`+ νd + n+ 1)

(z
2

)2n
, z ∈ C, (1.9)

will play an important role throughout this work. For κ ∈ C, the κ-moments of q
are:

σ`[q, κ] :=
1

|Sd−1|

∫
Bd

q(x)ϕ`(
√
κ|x|)2 dx, ∀` ∈ N0. (1.10)

Note that the functions κ 7→ σ`[q, κ] are holomorphic in C.
The κ-moments appear in the expression of the Fréchet differential of Φκ at q =0.

In Proposition 2.4 we prove that, as soon as κ is not a Dirichlet eigenvalue of −∆ in
the ball, dΦκ

0 (q) is a bounded operator on L2(Sd−1) for every q ∈ L∞
rad(Bd,R). These

operators turn out to be invariant by the action of SO(d) and are characterized by
their restriction on spherical harmonics, which is precisely given by

ϕ`(
√
κ)2dΦκ

0 (q)|Hd
`
= σ`[q, κ] IdHd

`
, ∀` ∈ N0. (1.11)

Therefore, by (1.7), that a function qBκ satisfies dΦκ
0 (q

B
κ ) = Λq,κ−Λ0,κ is formally

equivalent to the fact that qBκ solves the following moment problem:

σ`[q
B
κ , κ] = (λ`[q, κ]− λ`[0, κ])ϕ`(

√
κ)2, ∀` ∈ N0. (1.12)
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Note right away that, by (1.8) and (1.9), the left-hand side of the identity (1.12) is
well defined as soon as κ ∈ C \ SpecH1

0
(−∆+ q) even if κ ∈ SpecH1

0
(−∆).

The existence of a solution for (1.12) is not guaranteed. In order to prove that a
solution exists, we need to allow for the possibility of qBκ being a distribution. Let
U ⊆ Rd be an open set. We denote by E ′(U) the space of distributions with compact
support in U, and E ′

rad(U) ⊂ E ′(U) the subset of radially symmetric distributions.
The definition (1.10) can be extended from L∞

rad(Bd,R) to the space E ′
rad(Rd) as

follows: for f ∈ E ′
rad(Rd), κ ∈ C and ` ∈ N0 define

σ`[f, κ] :=
1

|Sd−1|
〈
f, (ϕκ,`)

2
〉
E′×C∞ , where ϕκ,`(x) := ϕ`(

√
κ|x|), (1.13)

where 〈·, ·〉E′×C∞ denotes the duality pairing in E ′(Rd). This makes sense since

(ϕκ,`)
2 ∈ C∞(Rd).

To state our first result, we define

Bd := L1
rad(Bd) + E ′

rad(Bd).

The elements of Bd are radial distributions in Bd that coincide with L1 functions
in a neighborhood of the boundary of Bd. This implies that the extension by zero
of a distribution in Bd is an element of E ′

rad(Rd). In this way, when convenient,
Bd can be identified with a subset of E ′

rad(Rd). We adopt this perspective in a few
points in this work, for example, to define the moments and the Fourier transform
of elements of Bd using (1.13) and (1.14). Note that (1.11) allows us to extend dΦκ

0

to Bd.
Let

Xp,κ(Bd) := {q ∈ Lp
rad(B

d,R) : κ 6∈ SpecH1
0
(−∆+ q)}.

We show, for potentials Xp,κ with p satisfying (1.6), the existence of qBκ as an
element of Bd and establish a formula for its Fourier transform that shows, in
particular, that qBκ is uniquely determined by (1.12) in Bd (see also Theorem 3.1).
The Fourier transform of f ∈ E ′

rad(Rd) is defined as

F(f)(ξ) := 〈f, e−iξ〉E′×C∞ , eζ(x) := eζ·x, x, ξ ∈ Rd, ζ ∈ Cd. (1.14)

We denote by Z`,d, ` ∈ N0, the zonal functions, which are characterized in terms
of P`,d : L2(Sd−1) −→ Hd

` , the orthogonal projection onto Hd
` , by

P`,du(x) =

∫
Sd−1

Z`,d(x · y)u(y) dy, u ∈ L2(Sd−1).

The zonal functions are directly related to the Legendre polynomials; more details
are given in Appendix B.

Theorem 1. Let κ ∈ R and p be admissible. For every q ∈ Xp,κ(Bd) there exists
a unique qBκ ∈ Bd such that

σ`[q
B
κ , κ] = (λ`[q, κ]− λ`[0, κ])ϕ`(

√
κ)2, for all ` ∈ N0. (1.15)
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The Fourier transform of this distribution can be obtained from the expression:

F(qBκ )(ξ) = (2π)d
∞∑
`=0

(λ`[q, κ]− λ`[0, κ])ϕ`(
√
κ)2Z`,d

(
1− |ξ|2

2κ

)
. (1.16)

If we further assume κ /∈ SpecH1
0
(−∆) then it also holds that

F(qBκ )(ξ) = 〈eζ1 , (Λκ,q − Λκ,0)eζ2〉L2(Sd−1) , (1.17)

with ζ1, ζ2 ∈ Cd satisfying ζ1 + ζ2 = −iξ and ζ1 · ζ1 = ζ2 · ζ2 = −κ.

We will refer to qBκ as the Born approximation of q at energy κ. Its explicit recon-
struction formula (1.16) can be used to numerically approximate q ; see Section 1.3
below. On the other hand, the identity (1.17) shows that qBκ can also be obtained
by complex geometrical optics solutions as was done for κ=0 in [8].

Our next result shows, among other properties, that qBκ always coincides with a
locally integrable function outside the origin. In fact, the Born approximation is as
singular as the potential is, except possibly at the origin.

We define the weighted L1-space L1
s(Bd) := {f ∈ L1

loc(Bd\{0}) : ‖f‖L1
s(Bd) <∞}

where s ∈ R and

‖F‖L1
s(Bd) :=

∫
Bd

|F (x)||x|2(s−νd) dx. (1.18)

Theorem 2. Let κ ∈ R and p be admissible. For every q ∈ Xp,κ(Bd), there exists
an `q ≥ 0 and a real and radial function qsκ ∈ L1

`q
(Bd) such that qBκ |Bd\{0} = qsκ. In

fact,

qBκ − q ∈ C(Bd \ {0}), (qBκ − q)|Sd−1 = 0, (1.19)

and qBκ − q belongs to Cm+1(Bd \ {0}) if q ∈ Cm(Bd \ {0}) for any m ∈ N0.
If in addition, p > d/2, κ < (j0,1)

2, and q−κ ≥ 0 a.e. in Bd, then qBκ ∈ L1
rad(Bd).

Remark 1.1. The identity qBκ |Bd\{0} = qsκ holds in the sense of distributions and

shows that qBκ can be identified with a locally integrable function on Bd \ {0}.
In other words, qBκ is a regularization of the singular function qsκ in the sense of
[28, Chapter 1]. Note that (1.19) implies that q|Sd−1 = qBκ |Sd−1 when q has a well-
defined trace on the boundary. See Proposition 4.6 for a more precise estimate of
the pointwise behavior of |qBκ − q| on Bd \ {0}.

We prove two important properties of the map (Φκ
B)

−1: a strong local form of
injectivity and Hölder continuity under uniform Lp(Bd) bounds for the potentials.

Theorem 3. Let κ ∈ R, p be admissible and b ∈ (0, 1). Let Ub := {x ∈ Bd : b <
|x| < 1}.

i) For every q1, q2 ∈ Xp,κ(Bd) let qB1,κ and qB2,κ the respective Born approxima-
tions. Then

qB1,κ(x) = qB1,κ(x) a.e.in Ub ⇐⇒ q1(x) = q2(x) a.e.in Ub.
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8 F. Macià, C. Meroño, D. Sánchez-Mendoza

ii) For every K> 0 there exist ε(b, κ) > 0 and C(b, κ,K) > 0 such that, for
every q1, q2 ∈ Xp,κ(Bd) satisfying

max
j=1,2

‖qj‖Lp(Ub)
< K,

∥∥qB1,κ − qB2,κ
∥∥
L1(Ub)

< ε(b, κ),

one has

‖q1 − q2‖L1(Ub)
< C(b, κ,K)

(∥∥qB1,κ − qB2,κ
∥∥
L1(Ub)

)1/(p′+1)

, (1.20)

where p′ is the Hölder conjugate exponent of p.

We finally show that in the high-energy limit κ→ −∞, the Born approximation
at energy κ recovers the potential.

Theorem 4. Let q ∈ L∞(Bd,R), κ ∈ R, ξ ∈ Rd, and ζ1, ζ2 ∈ Cd be such that
ζ1 + ζ2 = −iξ, and ζ1 · ζ1 = ζ2 · ζ2 = −κ. Then, locally uniformly in ξ, we have

lim
κ→−∞

〈eζ1 , (Λq,κ − Λ0,κ)eζ2〉L2(Sd−1) = Fq(ξ). (1.21)

In particular, whenever q ∈ L∞
rad(Bd,R), in which case qBκ is always defined when

κ ≤ −‖q‖L∞(Bd), we have

lim
κ→−∞

FqBκ (ξ) = Fq(ξ), for all ξ ∈ Rd. (1.22)

Remark 1.2.

i) Notice that the statement (1.21) is valid even if q is not radial. Moreover, it
will be clear from the proof of (1.21) that the analogous result holds for any
bounded domain Ω ⊆ Rd with C1 boundary.

ii) The convergence in (1.22), which involves entire functions, takes place in
Fourier space. At this moment, it is not clear that this convergence can be
expressed in a natural way in physical space; however, this should be possible
at least for some classes of potentials.

iii) The following is proved in Proposition 2.5:

lim
κ→−∞

Tr|Φκ(q)− dΦκ
0 (q)| = lim

κ→−∞
Tr|Λq,κ − Λ0,κ − dΦκ

0 (q)| = 0.

This relation complements (1.22), to actually show that the non-linear map
Φκ is asymptotically linear in the high-energy limit and that Φκ

B converges
to the identity as κ→ −∞.

The local uniqueness phenomenon proved in the first part of Theorem 3 is illus-
trated in Fig. 4, whereas the phenomenon of recovery of singularities in Theorem
2 is illustrated in Figs. 1, 3 and 4. Evidence for the convergence of the Born
approximations to the potential in physical space is presented in Fig. 3 below.

Theorems 1 to 4 are proved in Section 5. The analogues of Theorems 1, 2 and 3
in the case κ=0 have been proved in [23]. These results can be recovered from the
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ones in this work in the limit κ→ 0. For instance, the classical Hausforff moments,
which played the same role as the κ-moments here, can be obtained from σ`[q, κ]
by

4`+νdΓ(`+ d/2)2 lim
κ→0

σ[q, κ]

κ`
=

1

|Sd−1|

∫
Bd

q(x)|x|2` dx, ∀` ∈ N0. (1.23)

The proofs of the main results in [23] rely on tools from the inverse spectral theory
of Schrödinger operators on the half-line, mainly results involving the notion of
A-amplitude of a Schrödinger operator introduced by Simon in [57], and further
developed in [6, 30, 51, 52], among many other works. In our case, these tools
are not directly applicable, which leads us to introduce and prove the existence
of an Aκ-amplitude that encodes spectral information in a similar way as Simon’s
A-amplitude does, but is better adapted to our setting. The main results on the
Aκ-amplitude are stated in Section 4.2 and proved in Section 6.

We note that the approach based on one-dimensional inverse spectral theory has
been applied in the context of the Steklov problem for warped product manifolds in
[20–22]. In particular, the results in [22] imply stability and uniqueness results for
the radial Calderón problem, both for the conductivity and Schrödinger cases. We
also mention that spectral theory methods had already been used in the context of
the radial Calderón problem in [38, 58].

1.3. Numerical reconstruction

In this subsection, we show the capabilities of the Born approximation as an
effective tool to approximate the potential; numerical methods based on this strat-
egy are described in [9] in the case κ=0. The key remark is that the Fréchet
differential dΦκ

0 coincides with the differential of Φ0 around the constant func-
tion −κ ∈ R \ SpecH1

0
∆, and that Λq,0 = Λq+κ,κ. Therefore, for such κ, given

q ∈ L∞
rad(Bd,R) such that 0 is not a Dirichlet eigenvalue of −∆ + q, one should

have:

q ≈ −κ+ dΦ0
−κ(Λq,0 − Λ0,κ) = −κ+ (q + κ)Bκ .

When κ is chosen appropriately, so that q + κ is small in some norm, one can
expect this function to be well-approximated by (q+κ)Bκ . Recall that, by Theorem
1, the Born approximation (q+κ)Bκ is constructed solely in terms of Spec(Λq,0) (the
dependence on κ being explicit). A possible choice of κ that can be implemented
numerically consists in ensuring that

∫
Bd(q + κ)Bκdx = F(q + κ)Bκ (0), which is a

quantity that depends only on Spec(Λq,0) and κ, is the smallest possible. It is
therefore natural to choose κ = κ∗ defined by the equation

F(q + κ∗)
B
κ∗
(0) = 0.

Numerical experiments suggest that if κ∗ exists, it can be obtained by the iterative
fixed point scheme

κn+1 = κn −
F(q + κn)

B
κn

(0)

|Bd|
.
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10 F. Macià, C. Meroño, D. Sánchez-Mendoza

Figure 1. Plots of q(x) = 2 − χ( 1
3
, 2
3
)(|x|) (blue) and (q + κ)Bκ − κ (orange). a) κ=0,

‖ · ‖L1(B3) = 0.66066. b) κ = −2, ‖ · ‖L1(B3) = 0.12155. c) κ = −1.5, ‖ · ‖L1(B3) = 0.05551.
d) κ = κ∗ = −1.73614, ‖ · ‖L1(B3) = 0.05084.

We illustrate these ideas in Figs. 1 and 2 where we plot the radial profiles of
q : B3 → R and the corresponding (q + κ)Bκ − κ for

κ = 0, κ = −q|Sd−1 , κ = −1

2

(
sup
B3

q + inf
B3
q

)
, κ = κ∗.

In the caption of each plot, we include the L1(B3) norm of the difference of the
functions plotted. Notice that in all eight plots, except for Fig. 2 (A) where the
Gibbs phenomenon is too strong, (q+κ)− (q+κ)Bκ is a continuous function outside
x =0 that vanishes at S2, as stated in Theorem 2.

The Julia code used to produce these figures can be found in [42].

2. Radial Dirichlet-to-Neumann maps

We start by deriving some simple properties of the DtN map associated to a radial
potential q. Let κ ∈ C and consider the Dirichlet problem:{

−∆v + qv − κv = 0 in Bd,

v|Sd−1 = f ∈ C∞(Sd−1).
(2.1)

This problem has a unique solution provided that q ∈ Lp
rad(Bd,R), with p admis-

sible, and κ is not a Dirichlet eigenvalue of −∆+ q. In addition, the radiality of q
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The Born approximation for the fixed energy Calderón problem 11

Figure 2. Plots of q(x) = cos(4π |x|) − 5 (blue) and (q + κ)Bκ − κ (orange). a) κ=0,
‖ · ‖L1(B3) = 16.4772. b) κ=4, ‖ · ‖L1(B3) = 0.51683. c) κ=5, ‖ · ‖L1(B3) = 0.07038. d)
κ = κ∗ = 4.96727, ‖ · ‖L1(B3) = 0.07200.

Figure 3. Plots of q(x) = 2 − χ( 1
3
, 2
3
)(|x|) (blue) and qBκ (orange). a) κ=0, ‖ · ‖L1(B3) =

0.66066. b) κ = −10, ‖ · ‖L1(B3) = 0.56134. c) κ = −100, ‖ · ‖L1(B3) = 0.35731. d) κ =
−1000, ‖ · ‖L1(B3) = 0.17218.
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12 F. Macià, C. Meroño, D. Sánchez-Mendoza

Figure 4. Plots of qi (solid) of q3(x) := 3, q2(x) := q3(x) − χ(0, 2
3
)(|x|), q1(x) := q2(x) −

χ(0, 1
3
)(|x|) and their respective Born approximations qBi,κ (dashed) at κ = −1.

implies that

E` := L2
rad(Bd)⊗ Hd

` ⊂ L2(Bd),

is an invariant subspace of −∆+ q.2 More precisely, the following result holds.

Lemma 2.1. Let p be admissible and q ∈ Lp
rad(Bd). Let ` ∈ N0

κ ∈ C \ SpecH1
0
((−∆+ q)|E`

),

and f ∈ Hd
` . Then (2.1) has a unique solution v ∈ H1(Bd), that is of the form

v(x) = b`(|x|, κ)f(x̂), ∀x ∈ Bd. (2.2)

In particular, when q=0, SpecH1
0
(−∆|E`

) = {j2`+νd,k
: k ∈ N} where (j`+νd,k)k∈N

is the set of zeros of J`+νd
and

b`(r, κ) =
ϕ`(

√
κr)

ϕ`(
√
κ)

, r ∈ R+. (2.3)

Moreover, when κ ≤ 0 one has∫
Bd

|ϕ`(
√
κr)|2 dx ≤ |Sd−1||ϕ`(

√
κ)|2

2(`+ νd + 1)
. (2.4)

Proof. After writing q(x) = q0(|x|) and changing (2.1) to polar coordinates, one
finds that, if a function in H1(Bd) of the form (2.2) is a solution of (2.1), then b`

2One uses the standard identification (v ⊗ f)(x) = vrad(|x|)f(x̂), where x̂ := x/|x| for every
x ∈ Rd \ {0}.
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The Born approximation for the fixed energy Calderón problem 13

must solve

− 1

rd−1

d

dr

(
rd−1 d

dr
b`(r, κ)

)
+

(
`(`+ d− 2)

r2
+ q0(r)− κ

)
b`(r, κ) = 0, r ∈ (0, 1),

(2.5)

with b`(1, κ) = 1. The Liouville change of variables w`(t) := b`(e
−t, κ)e−νdt (see, for

instance, [12, Chapter 10.9]) transforms (2.5) into a one-dimensional Schrödinger
equation on the half-line:

(−∂2t +Q(t))w`(t) = −(`+ νd)
2w`(t), Q(t) = e−2t(q0(e

−t)− κ), t ∈ R+,

with w`(0) = 1, which is uniquely solvable in L2(R+). See Lemma 4.1 for a proof
of this and Lemma 4.2 for a proof of (2.3). We now prove (2.4). First, note that
this is an identity when κ=0. For κ< 0, (1.9) implies

∫
Bd

∣∣∣∣ϕ`(
√
κ|x|)

ϕ`(
√
κ)

∣∣∣∣2 dx = |Sd−1|
∫ 1

0

∣∣∣∣∣I`+νd
(
√
|κ|r)

I`+νd
(
√
|κ|)

∣∣∣∣∣
2

r dr.

The conclusion follows from the identity

Iν(r)

Iν(s)
<
(r
s

)ν
,

valid as soon as ν > −1/2 and 0 < r < s (see [50]). �

Remark 2.2.

i) By uniqueness of solutions of (2.1) with Dirichlet condition b`(1, κ) = 1 one
necessarily must have:

b`(·, κ) = b`(·, κ). (2.6)

ii) Identity (2.2) implies

Λq,κf = ∂rb`(1, κ)f, ∀f ∈ Hd
` . (2.7)

In other words, the spectrum of Λq,κ consists of the eigenvalues:

λ`[q, κ] = ∂rb`(1, κ), ∀` ∈ N0.

iii) When κ ∈ R, it is possible to give a meaningful definition of the eigenvalues
λ`[q, κ] for every ` large enough, even when κ is a Dirichlet eigenvalue of
−∆+q, see [23, Definition 2.4]. In [23, Lemma 2.1] it is shown that (2.1) has a
unique solution of the form (2.2) that belongs toH1

loc(Bd\{0})∩L2
νd−1/2(B

d).

Integration by parts shows the following important result, known as
Alessandrini’s identity.
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14 F. Macià, C. Meroño, D. Sánchez-Mendoza

Lemma 2.3. Let p be admissible and κ ∈ C\SpecH1
0
(−∆). If q ∈ Lp(Bd,R) is such

that κ is not a Dirichlet eigenvalue of −∆+ q then, for every f, g ∈ L2(Sd−1),

〈g, (Λq,κ − Λ0,κ)f〉L2(Sd−1) =

∫
Bd

q(x)u(x) v(x) dx, (2.8)

where{
(−∆+ q − κ)v = 0, in Bd,

v = f, on Sd−1,

{
−∆u− κu = 0, in Bd,

u = g, on Sd−1.
(2.9)

Proof. First take f, g ∈ H1/2(Sd−1). Green’s formula, when applied to a solution v
of (2.9) and any function u ∈ H1(Bd) with u|Sd−1 = g, gives:

〈g,Λq,κf〉L2(Sd−1) =

∫
Bd

(q(x)− κ)u(x) v(x) dx+

∫
Bd

∇u(x)∇v(x) dx.

This yields, as soon as q is real-valued,

〈g,Λq,κf〉L2(Sd−1) = 〈Λq,κg, f〉L2(Sd−1) .

Formula (2.8) then follows by particularizing those identities to q =0 and subtract-
ing. In addition, (2.8) shows that Λq,κ − Λ0,κ is bounded on L2(Sd−1): for some
C = Cq,d > 0,

〈g, (Λq,κ − Λ0,κ)f〉L2(Sd−1) ≤ ‖q‖L∞(Bd) ‖u‖H1/2(Bd) ‖v‖H1/2(Bd)

≤ C ‖f‖L2(Sd−1 ‖g‖L2(Sd−1) ,

and therefore (2.8) holds for f, g ∈ L2(Sd−1) as claimed. �

Using Lemma 2.1 and Lemma 2.3, it is not difficult to compute the Fréchet
differential of Φκ at q =0.

Proposition 2.4. Let q ∈ L∞
rad(Bd,R) and κ ∈ C \ SpecH1

0
(−∆). The Fréchet

differential dΦκ
0 applied to q is a bounded operator dΦκ

0 (q) : L
2(Sd−1) −→ L2(Sd−1)

invariant under rotations that satisfies:

ϕ`(
√
κ)2dΦκ

0 (q)|Hd
`
= σ`[q, κ] IdHd

`
, ∀` ∈ N0.

Proof. From Lemma 2.3 one can check that

〈g, dΦκ
0 (q)f〉L2(Sd−1) =

∫
Bd

q(x)u(x)w(x) dx,

where u is the same as in (2.9), and w satisfies that (−∆ − κ)w = 0 on Bd and
w|Sd−1 = f . Note that the previous expression ensures that dΦκ

0 (q) is a bounded
linear operator on L2(Sd−1). Taking f = g = Y` with Y` ∈ Hd

` normalized
in L2(Sd−1), by Lemma 2.1 and (2.6) we find that w(x) = b`(|x|, κ)Y`(x̂) and
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The Born approximation for the fixed energy Calderón problem 15

u(x) = b`(|x|, κ)Y`(x̂), where b` satisfies (2.3), since we are in the case q =0.
Therefore, we have

〈Y`, dΦκ
0 (q)Y`〉L2(Sd−1) =

∫
Bd

q(x)b`(|x|, κ)b`(|x|, κ)|Y`(x̂)|2 dx =
σ`[q, κ]

ϕ`(
√
κ)2

,

by (1.10), since q is radial and the integral in the angular variable is 1. �

In the next result we show that asymptotically as κ → −∞ the spectrum of
Λq,κ − Λ0,κ converges uniformly to the rescaled moments of q.

Proposition 2.5. Let q ∈ L∞
rad(Bd;R). For every κ ≤ −‖q‖L∞(Bd) and ` ∈ N0,

we have

∣∣λ`[q, κ]− λ`[0, κ]− ϕ`(
√
κ)−2σ`[q, κ]

∣∣ ≤ ‖q‖2L∞(Bd)

2(`+ νd)((`+ νd)2 − ‖q‖L∞(Bd) − κ)
.

Proof. Let Y` ∈ Hd
` be normalized. We apply (2.8), (2.9) with f = g = Y`, so that

u(x) = b`(|x|, κ)Y`(x̂) by Lemma 2.1 and (2.6), since now κ = κ. Thus we have

λ`[q, κ]− λ`[0, κ] = 〈Y`, (Λq,κ − Λ0,κ)Y`〉L2(Sd−1) =

∫
Bd

q(x)b`(|x|, κ)Y`(x̂)v(x) dx,

where v satisfies (2.9) with f = Y`. Let h(x) := v(x)−b`(|x|, κ)Y`(x̂). Inserting this
in the previous identity and using that Y` is normalized, yields

λ`[q, κ]− λ`[0, κ] = ϕ`(
√
κ)−2σ`[q, κ] +

∫
Bd

q(x) b`(|x|, κ)Y`(x̂)h(x) dx.

The function h satisfies(−∆+ q(x)− κ)h(x) = −q(x)b`(|x|, κ)Y`(x̂), x ∈ Bd,

h|Sd−1 = 0.

Denoting by Rq(κ) the Dirichlet resolvent (−∆ + q − κ)−1, we can write h =
−Rq(κ)(qgκ) with gκ(x) := b`(|x|, κ)Y`(x̂). Since −∆+ q and Rq(κ) leave invariant
the subspace E` we have

‖Rq(κ)|E`
‖L(L2(Bd)) ≤

1

dist(κ,Spec(−∆+ q)|E`
)
,

Using that qgκ ∈ E` we can estimate∣∣λ`[q, κ]− λ`[0, κ]− ϕ`(
√
κ)−2σ`[q, κ]

∣∣ = | 〈qgκ,Rq(κ)(qgκ)〉L2(Bd) |

≤
‖qgκ‖2L2(Bd)

dist(κ,Spec(−∆+ q)|E`
)

≤
‖q‖2L∞(Bd)

∫
Bd |ϕ`(

√
κ|x|)|2dx

|ϕ`(
√
κ)|2 |Sd−1|dist(κ,Spec(−∆+ q)|E`

)
.

https://doi.org/10.1017/prm.2025.10092 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2025.10092


16 F. Macià, C. Meroño, D. Sánchez-Mendoza

Clearly, SpecH1
0
((−∆ + q)|E`

) ⊆ SpecH1
0
(−∆|E`

) + [−‖q‖L∞(Bd) , ‖q‖L∞(Bd)] which
implies the bound:

dist(κ,Spec(−∆+ q)|E`
) ≥ j2`+νd,1

− ‖q‖L∞(Bd) − κ > (`+ νd)
2 − ‖q‖L∞(Bd) − κ,

the last estimate following from the inequality ν < jν,1 on the first zero of Jν for
ν > 0, [40, Equation (2.4)]. The result then follows taking (2.4) into account. �

3. Fourier representation formulas

In this section we prove an explicit formula to reconstruct a distribution
from its moments. The result below can be viewed as an explicit formula for
(dΦκ

0 )
−1|E′

rad(Rd). In particular, it implies that, as soon as qBκ ∈ Bd exists, it is
uniquely determined by (1.12) in Bd.

Theorem 3.1. Let f ∈ E ′
rad(Rd) and let κ ∈ C \ {0}. Then for ξ ∈ Rd we have

Ff(ξ) = (2π)d
∞∑
`=0

σ`[f, κ]Z`,d

(
1− |ξ|2

2κ

)
, (3.1)

where the series are absolutely convergent.

Note that taking the limit κ→ 0 in (3.1) recovers the representation for κ=0
that was obtained in [8, 23], see (1.23).

Proof. We first assume that f ∈ L1
rad(Rd) has compact support. Then we can choose

R> 0 such that f is identically 0 outside RBd. Fix ξ ∈ Rd and let ζ1, ζ2 ∈ Cd be
such that

ζ1 + ζ2 = −iξ, ζ1 · ζ1 = ζ2 · ζ2 = −κ. (3.2)

Writing f(x) = f0(|x|), we have

Ff(ξ) =
∫ R

0

f0(r)r
d−1 〈erζ1 , erζ2〉L2(Sd−1) dr

=

∫ R

0

f0(r)r
d−1

( ∞∑
`=0

〈P`,derζ1 ,P`,derζ2〉L2(Sd−1)

)
dr

=
∞∑
`=0

∫ R

0

f0(r)r
d−1

〈
P`,derζ1 ,P`,derζ2

〉
L2(Sd−1)

dr,

where P`,d denotes the orthogonal projection of L2(Sd−1) onto Hd
` . The exchange

of series and integral is justified by Fubini’s Theorem and the bound:

sup
r∈[0,R]

∞∑
`=0

∣∣∣〈P`,derζ1 ,P`,derζ2〉L2(Sd−1)

∣∣∣ ≤ sup
r∈[0,R]

‖erζ1‖L2(Sd−1) ‖erζ2‖L2(Sd−1) <∞.
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The Born approximation for the fixed energy Calderón problem 17

Then, (3.1) follows for E ′
rad(Rd) ∩ L1

rad(Bd) from 2(ζ1 · ζ2) = −(|ξ|2 − 2κ), and the
identity

〈
P`,derζ1 ,P`,derζ2

〉
L2(Sd−1)

= (2π)dϕκ,`

(√
κr
)2
Z`,d

(
ζ1 · ζ2
κ

)
,

which is a consequence of Lemma B.3.
We now prove (3.1) for f ∈ E ′

rad(Rd) by a density argument. Let N ∈ N0 be the
order of f as a distribution, and let R> 0 be such that supp f ⊆ RBd. Also, choose
any η ∈ C∞

c,rad(Rd,R+) with
∫
Rd η(x)dx = 1 and construct the approximate identity

ηε(x) := ε−dη(x/ε) for ε ∈ (0, 1). Then f ∗ ηε ∈ C∞
c,rad(Rd) with

supp(f ∗ ηε) ⊆ supp f + ε supp η ⊆ supp f + ε

(
max

x∈supp η
|x|
)
Bd,

and lim
ε→0

f ∗ ηε = f in E ′(Rd). Therefore,

Ff(ξ) = 〈f, e−iξ〉E′×C∞ = lim
ε→0

〈f ∗ ηε, e−iξ〉E′×C∞ = lim
ε→0

F(f ∗ ηε)(ξ)

= lim
ε→0

(2π)d
∞∑
`=0

σ`[f ∗ ηε, κ]Z`,d

(
1− |ξ|2

2κ

)
.

We wish to apply the dominated convergence theorem to conclude the proof. To
this end we bound the terms of the series separately. For the moments σ`[f ∗ ηε, κ]
we have

|σ`[f ∗ ηε, κ]| =
1

|Sd−1|

∣∣∣〈f, ηε ∗ ϕ2
κ,`

〉
E′×C∞

∣∣∣ ≤ Cf,R

|Sd−1|
∥∥ηε ∗ ϕ2

κ,`

∥∥
CN (RBd)

≤ Cf,R,d

∥∥ϕ2
κ,`

∥∥
CN (RBd)

.

From the definition of ϕ` in (1.9) immediately follows that Cd 3 z 7−→
ϕ`(
√
κ(z · z))2 is an entire function bounded by |z|2` e|κ||z|2 . Hence, a Cauchy

estimate with poly-discs of unit radius gives

∥∥ϕ2
κ,`

∥∥
CN (RBd)

≤ N ! (R+ d)
2`
e|κ|(R+d)2 = Cf,R,κ,d(R+ d)2`.

The definition of the Legendre polynomial P`,d (see Appendix B) implies that the
complex phases of all its terms align when we evaluate it at iR; therefore

|Z`,d(z)| =
N`,d

|Sd−1|
|P`,d(z)| ≤ Cd`

d−2 |P`,d(i |z|)| ≤ Cd`
d−2(|z|+ 1)` |P`,d(i)| ,

z ∈ C.
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To estimate |P`,d(i)| we use again its definition from Appendix B and the Cauchy
integral formula with γ = {z ∈ C : |z − i| = 1} to obtain

|P`,d(i)| =
2−

d−3
2 R``!

2π

∣∣∣∣∣
∫
γ

(1− z2)`+
d−3
2

(z − i)`+1
dz

∣∣∣∣∣
≤ 2−

d−3
2 R``!(1 + 22)`+

d−3
2 =

Γ(d−1
2 )`!

Γ(`+ d−1
2 )

(
5

2

)`+ d−3
2

≤ Cd `

(
5

2

)`

.

Putting all these bounds together, we see that we can indeed apply the dominated
convergence theorem in order to exchange limit and series. The proof is then finished
by the convergence of f ∗ ηε to f in E ′(Rd). �

4. Weyl-Titchmarsh functions and the Born approximation

4.1. Weyl-Titchmarsh functions and DtN maps

Let us start by providing a description of Λq,κ that is well-suited for our pur-
poses. We will relate Λq,κ to the Dirichlet-to-Neumann map of a one-dimensional
Schrödinger operator on the half-line:{

(−∂2t +Q(t))vz(t) = −z2vz(t), in R+,

vz(0) = 1.
(4.1)

When the potential Q ∈ L1
loc(R+) is in the limit-point case, for instance, when

Q ∈ A1(R+) ⇐⇒ |||Q||| := sup
x∈R+

∫ x+1

x

|Q(t)|dt <∞, (4.2)

there exists βQ > 0 such that, when z ∈ C+ \ [0, βQ], problem (4.1) has a unique
solution vz ∈ L2(R+). One then defines the Weyl-Titchmarsh function as:

mQ(−z2) := ∂tvz(0). (4.3)

The connection of mQ with radial Dirichlet-to-Neumann maps is as follows. Given
a potential q ∈ Lp

rad(Bd,R), with p admissible, and f ∈ Hd
` then, provided that

κ ∈ C \ SpecH1
0
(−∆+ q), the unique solution u ∈ H1(Bd) of{

(−∆+ q − κ)u = 0, in Bd,

u = f, on Sd−1,
(4.4)

can be written in the form

u(x) = |x|−νdv`+νd
(− log |x|)f(x̂), with x̂ = x/|x|, (4.5)

where vz ∈ L2(R+) solves the boundary value problem (4.1) for the potential Q
given by

Q(t) := e−2t(q0(e
−t)− κ), q(x) = q0(|x|), x ∈ R+. (4.6)

It turns out that mQ completely characterizes Λq,κ.
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Lemma 4.1. Let p be admissible, q ∈ Lp
rad(Bd;R) and κ ∈ C \ SpecH1

0
(−∆ + q).

Then the potential Q given by (4.6) is in A1(R+), and, if in addition p > d/2,
then Q ∈ L1(R+). Therefore, (4.1) has a unique solution that is in L2(R+), and
the spectrum of Λq,κ can be expressed in terms of the Weyl-Titchmarsh function of
Q as

λ`[q, κ] = −mQ

(
−(`+ νd)

2
)
− νd, ` ∈ N0.

Proof. That Q ∈ A1(R+) can be checked by noticing that, since (1.6) implies
2p− d ≥ 0

‖q − κ‖pLp(Bd)

|Sd−1|
=

∫ ∞

0

|Q(t)|pe(2p−d)tdt ≥
∫ ∞

0

|Q(t)|pdt ≥
(∫ x+1

x

|Q(t)|dt
)p

.

When 2p− d > 0 one can improve this to:

‖q − κ‖pLp(Bd)

|Sd−1|
=

∫ ∞

0

|Q(t)|pe(2p−d)tdt ≥
(
2p− d

p− 1

)p−1

‖Q‖pL1(R+). (4.7)

This ensures that Q satisfies the condition (4.2), that (4.1) has a unique square-
integrable solution, and thatmQ is well defined. Let f ∈ Hd

` , and let v`+νd
∈ L2(R+)

solve (4.1), so that u given by (4.5) solves (4.4). Then Λq,κf = λ`[q, κ]f where

λ`[q, κ] = ∂r
[
r−νdv`(− log r)

] ∣∣∣∣
r=1

= −∂tv`+νd
(0)− νd = −mQ(−(`+ νd)

2)− νd,

as claimed. �

Let us apply the preceding result to the potential

Qκ(t) := −κe−2t, κ ∈ R, (4.8)

which corresponds via (4.6) to the constant potential −κ. When κ=0, it is not
difficult to check that its Weyl-Titchmarsh function equals m0(−z2) = −z. When
κ≠ 0, mQκ

can be explicitly computed as well.

Lemma 4.2. Suppose κ ∈ C \ {0}. For every z ≥ 0 such that Jz(
√
κ) 6= 0,3 the

problem

(−∂2t +Qκ)vz = −z2vz, vz(0) = 1,

has a unique solution uz(·, κ) ∈ L2(R+). This solution and the Weyl-Titchmarsh
function of Qκ are, respectively,

uz(t, κ) :=
Jz(

√
κe−t)

Jz(
√
κ)

, mQκ

(
−z2

)
= −z +

√
κ
Jz+1(

√
κ)

Jz(
√
κ)

. (4.9)

3This condition is always fulfilled when κ ∈ C \ R+, since all the roots of Jz are real as soon as
z > −1.
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In particular, for every ` ∈ N0 such that κ ∈ C \ SpecH1
0
(−∆|E`

), the radial profile

in (4.5) of the corresponding solution of (4.4) with q=0 and f ∈ Hd
` is

1

rνd
uz(− log r, κ) =

ϕ`(
√
κr)

ϕ`(
√
κ)

, (4.10)

and, provided that κ ∈ C \ SpecH1
0
(−∆), the spectrum of Λ0,κ is the sequence

∂rϕ`(
√
κ)

ϕ`(
√
κ)

= `−
√
κ
J`+1+νd

(
√
κ)

J`+νd
(
√
κ)

, ` ∈ N0.

Proof. The solution uz(t, κ) can be explicitly computed as follows. Since κ≠ 0, we
can set uz(t, κ) = wz(

√
κe−t, κ), and direct computation gives that wz(·, κ) is a

solution of Bessel’s equation

s2w′′
z (s, κ) + sw′

z(s, κ) +
(
s2 − z2

)
wz(s, κ) = 0, s ∈ C.

The condition uz(0, κ) = 1 translates into wz(
√
κ, κ) = 1; and this forces

wz(s, κ) =
Jz(s)

Jz(
√
κ)
,

which gives the claimed formula for uz(·, κ). This is well defined due to the assump-
tion on κ. The expression for mQκ

(−z2) = ∂tuz(0, κ) can be obtained using that,
for ν ≥ 0,

sJ ′
ν(s) = νJν(s)− sJν+1(s), ∀s ∈ C.

Identity (4.10) follows by taking into account that SpecH1
0
(−∆|E`

), the spectrum

of the restriction of the Dirichlet Laplacian −∆ on Bd to functions with angular
component in Hd

` , is precisely the set of solutions of ϕ`(
√
κ) = 0. Finally, the

calculation of the spectrum of Λ0,κ is obtained by (4.9) and the last identity of
Lemma 4.1. �

4.2. Fixed energy Aκ-amplitude

For s ∈ R, we introduce the space L1
s(R+) consisting of those functions F ∈

L1
loc(R+) such that

‖F‖L1
s(R+) :=

∫ ∞

0

|F (x)|e−2st dt.

In his seminal paper [57], Simon proved that for all Q ∈ L1(R+) there is a zQ > 0
and a function AQ ∈ L1

zQ(R+) such that

mQ(−z2)−m0(−z2) =
∫ ∞

0

AQ(t)e
−2zt dt, (4.11)

for all z such that Re(z) ≥ zQ. The function AQ is known as the A-amplitude
of the potential Q. The class of potentials for which this holds was later widened
to Q ∈ L∞(R+) by Gesztesy and Simon in [30]. Finally Avdonin, Mikhaylov and
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Rybkin extended this result in [6] for potentials in L1
loc(R+) such that (4.2) holds.

In particular, they proved the existence of AQ ∈ L1
zQ(R+) with

zQ := 2e(|||Q|||+
√
|||Q|||), (4.12)

such that (4.11) holds.
We will generalize the notion of A-amplitude to obtain a similar representation

formula to (4.11) when m0 is replaced by mQκ
for the same class of potentials used

in [6]. This will lead to the notion of Aκ-amplitude, whose existence we prove and
analyze some of its properties (local uniqueness and stability, among others). This
will allow us to prove the existence of the Born approximation for the fixed-energy
Calderón problem and obtain many of its properties.

Let us start by analyzing the Weyl-Titchmarsh function of the potentials Qκ

defined in (4.8).

Lemma 4.3. For every κ ∈ R \ {0} there exists a function AQκ
∈ L1

zκ(R+) such
that

mQκ
(−z2)−m0(−z2) =

∫ ∞

0

AQκ
(t)e−2zt dt,

for all z ∈ C+ satisfying Re(z) ≥ zκ, where zκ is any real number such that

zκ ≥ 0, zκ >
κ√
|κ|

− j0,1. (4.13)

Proof. This follows from the fact that Jz(
√
κ) has no non-negative zeros for κ fixed

if κ< 0. If κ> 0, then the largest zero zL satisfies jzL,1 =
√
κ, and there are no

zeros when z is in the region determined by the condition jz,1 >
√
κ. Since from

[40, Equation (2.4)] we have the lower bound jz,1 ≥ z + j0,1 when z ≥ 0, it follows
that Jz(

√
κ) has no zeros if z + j0,1 >

√
κ and z ≥ 0. In other words, non-negative

zeros are contained in the interval [0,
√
κ − j0,1] when

√
κ ≥ j0,1, and there are

no zeros in [0,∞) if
√
κ < j0,1. By [51, Theorem 1.3] we conclude the existence of

AQκ
∈ L1

zκ(R+) where zκ is defined in the statement. �

Define

αQ(t) :=

∫ t

0

|Q(s)| ds. (4.14)

The main properties of the Aκ-amplitude that are proved in this article are
contained in the following two theorems.

Theorem 4.4. Let Q ∈ A1(R+) and κ ∈ R. There exists a unique function AQ,κ ∈
L1
s(R+), where s := max(zQ, zκ), such that

mQ(−z2)−mQκ(−z2) =
∫ ∞

0

AQ,κ(t)uz(t, κ)
2 dt,

for all z ∈ C with Re(z) ≥ s, with uz(·, κ) given by (4.9). The function AQ,0

coincides with AQ, the usual A-amplitude of Q. Moreover,
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i) AQ,κ −Q ∈ C(R+) and limt→0+(AQ,κ −Q)(t) = 0.
ii) There exists Cκ > 0 such that, for every x ∈ R+, the following estimate

holds:

|AQ,κ(t) +Qκ(t)−Q(t)| ≤ Cκ(1 + αQ(t))e
t(αQ(t)+|κ|)

∫ t

0

|Q(s)−Qκ(s)|ds.

(4.15)

iii) If Q ∈ Cm([0,∞)) for some m ∈ N0, then AQ,κ−Q belongs to Cm+1([0,∞)).
iv) If Q ≥ 0 a.e. in R+, Q(1 + | · |) ∈ L1(R+), and κ < (j0,1)

2, then AQ,κ ∈
L1(R+).

The function AQ,κ will be called the Aκ-amplitude of Q. We also prove that the
correspondence that maps a potential to its Aκ-amplitude is injective, and that its
inverse is locally Hölder continuous.

Theorem 4.5. For every a> 0 the following statements hold.

i) Let Q1, Q2 ∈ A1(R+).

AQ1,κ|(0,a) = AQ2,κ|(0,a) ⇐⇒ Q1|(0,a) = Q2|(0,a).

ii) For every 1 < p ≤ ∞ and M> 0 there exist ε(κ, a, p), C1(κ, a, p,M) > 0 such
that for every Q1, Q2 ∈ A1(R+) satisfying

‖Qj‖Lp((0,a)) < M, j = 1, 2,

∫ a

0

|AQ1,κ(t)−AQ2,κ(t)| dt < ε(κ, a, p),

(4.16)
one has∫ a

0

|Q1(t)−Q2(t)| dt < C1(κ, a, p,M)

(∫ a

0

|AQ1,κ(t)−AQ2,κ(t)| dt
)1/(p′+1)

.

The proofs of these results will be presented in Section 6.

4.3. From the Aκ-amplitude to the Born approximation

Some rather straightforward consequences of Theorem 4.4 in the context of the
Calderón problem are gathered in the next result. Recall our convention:

q(x)− κ = |x|−2Q(− log |x|), x ∈ R+. (4.17)

Proposition 4.6. Let κ ∈ R and p be admissible. Take q ∈ Xp,κ(Bd), and let Q
be given by (4.6). Denote by AQ,κ the Aκ-amplitude of Q and write

qsκ(x) :=
AQ,κ(− log |x|)

|x|2
, x ∈ Bd \ {0}. (4.18)

The following statements hold.
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i) qsκ ∈ L1
`q
(Bd), where `q := max {0,max(zQ, zκ)− νd} ( zκ and zQ were

defined in (4.13) and (4.12), respectively, and the space L1
`q
(Bd) in (1.18)).

ii) For all ` ∈ N0 with ` ≥ `q,

σ`[q
s
κ, κ] =

1

|Sd−1|

∫
Bd

qsκ(x)ϕ`(
√
κ |x|)2 dx = (λ`[q, κ]− λ`[0, κ])ϕ`(

√
κ)2.

(4.19)

iii) qsκ − q ∈ C(Bd \ {0}) and qsκ − q = 0 in ∂Bd. If q ∈ Cm(Bd \ {0}) for some

m ∈ N0 then qsκ − q belongs to Cm+1(Bd \ {0}).
iv) Let p > d/2. There exist constants Cq,κ > 0 and βq,κ > 0 such that

|qsκ(x)− q(x)| ≤ Cq,κ
1

|x|βq,κ

∫
|x|<|y|<1

|q(y)| dy. (4.20)

v) If p > d/2, κ ≤ (j0,1)
2, and q − κ ≥ 0 a.e. in Bd, then qsκ ∈ L1

rad(Bd).

Proof. To check (i) simply note that AQ,κ ∈ L1
s(R+) with s = max(zQ, zκ), then

qsκ ∈ L1
`q
(Bd), by Theorem 4.4. Changing variables t = − log r gives:∫

R+

|AQ,κ(t)|e−2st dt =
1

|Sd−1|

∫
Bd

|qsκ(x)||x|2(s−νd) dx. (4.21)

Let us prove (ii). Assume first that, in addition, κ ∈ R \ SpecH1
0
(−∆). Lemma 4.2

ensures that

e−νdtϕ`(
√
κe−t) = u`+νd

(t, κ)ϕ`(
√
κ).

If Q is given by (4.6) and ` ≥ `q then, by Lemma 4.1 and Theorem 4.4,

λ`[q, κ]− λ`[0, κ] = −mQ

(
−(`+ νd)

2
)
+mQκ

(
−(`+ νd)

2
)

= −
∫ ∞

0

AQ,κ(t)u`+νd
(t, κ)2 dt = −

∫ ∞

0

AQ,κ(t)e
−2νdt

ϕ`(
√
κe−t)2

ϕ`(
√
κ)2

dt.

Changing variables via (4.5) and t = − log r we obtain

λ`[q, κ]− λ`[0, κ] =

∫ 1

0

AQ,κ(− log r)

r2
ϕ`(

√
κr)2

ϕ`(
√
κ)2

rd−1 dr,

which yields

(λ`[q, κ]− λ`[0, κ])ϕ`(
√
κ)2 =

1

|Sd−1|

∫
Bd

AQ,κ(− log |x|)
|x|2

ϕ`(
√
κ|x|)2 dx,

∀` ≥ `q,

which proves (4.19) when κ /∈ SpecH1
0
(−∆). To see that the result holds only under

the assumption that κ is not a Dirichlet eigenvalue of −∆+q notice that both sides
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of the above equations can be extended continuously to SpecH1
0
(−∆) by (1.9) and

Lemma 4.2.
Property (iii) follows from Theorem 4.4 (i) and (iii): AQ,κ −Q is continuous on

R+ and can be extended continuously by zero to [0,∞). Then qsκ − q is continuous

on Bd \ {0}, and can be continuously extended by zero to Bd \ {0}.
Part (iv) follows from estimate (4.15) by (4.17) and a change of variables.

To see this, recall that Q ∈ L1(R+) when p > d/2 (see Lemma 4.1), then
αQ(t) ≤ ‖Q‖L1(R+) for all t ∈ R. Hence, there exists βq,κ > 0 such that

|x|−(2αQ(− log |x|)+|κ|) ≤ |x|−βq,κ .
We now prove (v). Using a similar estimate to (4.7), one can verify that, if

q ∈ Lp
rad(Bd;R) with p > d/2, then Q(1 + | · |)α ∈ L1(R+) for all α ≥ 0.

Also if q − κ ≥ 0 and κ < (j0,1)
2, then Q ≥ 0 a.e. in R+. Thus, by Theorem

4.4 (iv) we obtain that AQ,κ ∈ L1(R+). Using (4.21) with s =0, it follows that
qsκ ∈ L1

rad(Bd). �

5. Proof of the main theorems

5.1. Proof of Theorem 1 and Theorem 2

Consider the function qsκ defined in Proposition 4.6. Since qsκ ∈ L1
`0
(Bd), this func-

tion might have an algebraic singularity at the origin. Here we identify qsκ with its
extension by zero to all Rd.

Let F ∈ E ′
rad(Rd) be a regularization of the function qsκ in the sense of [28,

Proposition 1 p. 11] (since qsκ is radial, F can also be chosen to be radial). By
definition, the distribution F satisfies

〈F, φ〉E′×C∞ = 〈qsκ, φ〉E′×C∞ , for all φ ∈ C∞
c (Rd \ {0}). (5.1)

It turns out that there exists N ∈ N, such that N ≥ `q and4

σ`[F, κ] = σ`[q
s
κ, κ], for all ` ≥ N. (5.2)

To see why (5.2) holds, write wα(x) := |x|α and note that w2`qq
s
κ ∈ L1(Bd), so in

particular w2`qq
s
κ ∈ E ′

rad(Rd). The identity (5.1) implies that

w2`qF − w2`qq
s
κ = µ ∈ E ′

rad(Rd),

and µ is a distribution supported in {0}. Since µ must be a finite linear combination
of Dirac deltas and its derivatives, there exists N ≥ `q such that w2`F = w2`q

s
κ for

all ` ≥ N . Since ϕκ,`(|x|)2 ∼ |
√
κx|2` as |x| → 0 by (1.9), we conclude that

ϕ2
κ,`F = ϕ2

κ,`q
s
κ, for all ` ≥ N,

in the sense of distributions. This proves (5.2).

4Note that, although the moments in the left-hand side must be understood in distributional
sense (see (1.13)), the ones in the right-hand side are given by (4.19)
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As a consequence of (5.2) and (4.19) we have

σ`[F, κ] = (λ`[q, κ]− λ`[0, κ])ϕ`(
√
κ)2, for all ` ≥ N.

Therefore, by Theorem 3.1 we must have that

F(F )(ξ) = (2π)d
∞∑
`=0

(λ`[q, κ]− λ`[0, κ])ϕ`(
√
κ)2Z`,d

(
1− |ξ|2

2κ

)
+ PN (|ξ|2),

where PN is a polynomial. This identity implies that the first term in the right-
hand side is the Fourier transform of a tempered distribution that we denote qBκ ,
so that we get the identity F(qBκ )(ξ) = F(F )(ξ) − PN (|ξ|2). Since PN (|ξ|2) is the
Fourier transform of a distribution supported in the origin, qBκ is also supported in

Bd. Also, qBκ coincides with qsκ outside the origin:

qBκ |Bd\{0} = qsκ, (5.3)

which implies that qBκ ∈ Bd (here we are using the identification of elements of Bd

extended by zero, with elements of E ′
rad(Rd)). Finally, again by Theorem 3.1, qBκ

satisfies (1.15). Note that once the existence of the Born approximation at energy
κ has been established, Theorem 2 follows from Proposition 4.6 and (5.3).

The proof of Theorem 1 will be concluded once we prove identity (1.17). The
conditions on κ and q in the statement guarantee that the operator Λκ,q − Λκ,0 is
well defined. Recall that P`,d denotes the orthogonal projection of L2(Sd−1) onto
Hd

` , and that P`,df = P`,df . Therefore we have that

〈eζ1 , (Λκ,q − Λκ,0)eζ2〉L2(Sd−1) =
∞∑
`=0

(λ`[q, κ]− λ`[0, κ])
〈
P`,deζ1 ,P`,deζ2

〉
L2(Sd−1)

.

(5.4)

The absolute convergence of this series is immediate from the boundedness in
L2(Sd−1) of Λκ,q − Λκ,0 and the estimate

∞∑
`=0

∣∣∣〈P`,deζ1 ,P`,deζ2〉L2(Sd−1)

∣∣∣ ≤ ‖eζ1‖L2(Sd−1) ‖eζ2‖L2(Sd−1) <∞.

Since 2(ζ1 · ζ2) = −(|ξ|2 − 2κ), Lemma B.3 shows that the series in the right-hand
side of (5.4) coincides exactly with the series given in (1.16) which concludes the
proof of (1.17).

5.2. Proof of Theorem 3

Recall Ub := {x ∈ Bd : b < |x| < 1}. By (4.18), (4.17) and (5.3) we have

qj(x)− κ = |x|−2Qj(− log |x|), qBj,κ(x) = |x|−2AQj ,κ(− log |x|), x ∈ Bd.

Then the uniqueness result follows immediately from Theorem 4.5(i) with a =
− log b.
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For the stability notice that if maxj=1,2 ‖qj‖Lp(Ub)
< K, then one can choose a

constant M > 0 (dependent on κ) such that (4.16). Applying Theorem 4.5(ii), and
letting a = − log b, we obtain

∫
b<|x|<1

|q1(x)− q2(x)||x|2−d dx =

∫ a

0

|Q1(t)−Q2(t)| dt,

as well as the analogous identity for the difference of the Born approximations and
the Aκ amplitudes. Bounding above and below the weight |x|2−d finishes the proof
of the theorem.

5.3. Proof of Theorem 4

We assume from the start that κ < −‖q‖L∞(Bd), so that

q(x)− κ = q(x) + |κ| > 0, x ∈ Bd.

Let ζ1, ζ2 ∈ Cd satisfy (3.2). Then (−∆−κ)eζi = 0 for i = 1, 2 and by Alessandrini’s
identity (2.8) we have

〈eζ1 , (Λq,κ − Λ0,κ)eζ2〉L2(Sd−1) =

∫
Bd

q(x) eζ1(x) v(x) dx,

where v satisfies the equation on the right of (2.9) with f = eζ2 . Notice that v−eζ2
satisfies the equation

{
(−∆+ q − κ)(v − eζ2) = −qeζ2 in Bd,

v = 0, on Sd−1,

so can rewrite the previous equality as

〈eζ1 , (Λq,κ − Λ0,κ)eζ2〉L2(Sd−1) −Fq(ξ) = −〈qeζ1 ,Rq(κ)(qeζ2)〉L2(Bd) .

Since q − κ > 0, we have that Rq(κ)(qeζ2) =
∫∞
0
e−t(−∆+q−κ)(qeζ2)dt. Writing the

semigroup via the Feynman–Kac formula [60, Section 1.3] and exchanging integral
and expectation (which is justified by Fubini and ‖qeζ2‖L∞(Bd) <∞) we obtain

Rq(κ)(qeζ2)(x) =
1

2
Ex

[∫ τBd

0

(qeζ2)(Wt) exp

(
−
∫ t

0

q(Ws) + |κ|
2

ds

)
dt

]
,

where Wt is a standard d -dimensional Brownian motion and τBd is the exit time of
Bd. Therefore
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|Rq(κ)(qeζ2)(x)| ≤
‖q‖L∞(Bd)

2
Ex

[∫ τBd

0

|eζ2(Wt)| exp
(
− t

2

(
|κ| − ‖q‖L∞(Bd)

))
dt

]
≤

‖q‖L∞(Bd)

2
Ex

[∫ ∞

0

(χBdeRe ζ2)(Wt) exp

×
(
− t

2

(
|κ| − ‖q‖L∞(Bd)

))
dt

]
= ‖q‖L∞(Bd) R

Rd

0

(
− |κ|+ ‖q‖L∞(Bd)

)
(χBdeRe ζ2)(x),

where RRd

0 (−z2) is the inverse of −∆+ z2 defined in L2(Rd). This operator in the
whole space has the Green function

G−z2(r) := (2π)−
d
2

(z
r

)νd

Kνd
(zr) , z > 0,

where Kν is the modified Bessel function of order ν. Hence, with z =√
|κ| − ‖q‖L∞(Bd) > 0, we have

∣∣∣〈qeζ1 ,Rq(κ)(qeζ2)〉L2(Bd)

∣∣∣ ≤ 〈|qeζ1 | , |Rq(κ)(qeζ2)|〉L2(Bd)

= 〈|q| e−Re ζ2 , |Rq(κ)(qeζ2)|〉L2(Bd)

≤ ‖q‖2L∞(Bd)

∫
Bd

e−Re ζ2(x)

∫
Bd

G−z2(|y − x|)eRe ζ2(y)

× dydx

= ‖q‖2L∞(Bd)

∫
Bd

∫
−x+Bd

G−z2(|y|)eRe ζ2(y)dydx

≤ ‖q‖2L∞(Bd) |B
d|
∫
2Bd

G−z2(|y|)eRe ζ2(y)dy.

Once again, the conditions (3.2) on ζ1, ζ2 imply that they must be of the form

ζ 1
2
= − i

2
ξ ∓

√
−κ+

|ξ|2

4
ξ̂⊥ = − i

2
ξ ∓

√
|κ|+ |ξ|2

4
ξ̂⊥,

where ξ̂⊥ ∈ Rd is any unit vector perpendicular to ξ. Since our last integral is

invariant under rotations of Re ζ2 =

√
|κ|+ |ξ|2

4 ξ̂⊥, we can choose ξ̂⊥ to be x̂1, so
that when using polar coordinates we obtain
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2Bd

G−z2(|y|)eRe ζ2(y)dy

=
2π

d−1
2

Γ(d−1
2 )

∫ 2

0

∫ π

0

G−z2(r)e|Re ζ2|r cos θ(sin θ)d−2rd−1dθdr

= (2π)
d
2

∫ 2

0

G−z2(r)Iνd
(|Re ζ2| r)rd−1

(|Re ζ2| r)νd
dr

=

(
z

|Re ζ2|

)νd
∫ 2

0

Kνd
(zr)Iνd

(|Re ζ2| r)rdr

=
1

|Re ζ2|2 − z2

(
z

|Re ζ2|

)νd

×

(
−
(
|Re ζ2|
z

)νd

+ 2 |Re ζ2|Kνd
(2z)Iνd+1(2 |Re ζ2|)

+ 2zKνd+1(2z)Iνd
(2 |Re ζ2|)

)
.

The proof is finished by the asymptotics [61, Section 7.23]

Kν(x) =

√
π

2x
e−x(1 + o(1)), Iν(x) =

√
1

2πx
ex(1 + o(1)), x→ ∞.

6. Proof of Theorem 4.4 and Theorem 4.5

In this section we present the proofs of our two main auxiliary results.

Proof of Theorem 4.4. Start by noticing that, by (4.11) and Lemma 4.3, for all
z ≥ s = max (zQ, zκ) one has

mQ(−z2)−mQκ
(−z2) = mQ(−z2)−m0(−z2)− (mQκ

(−z2)−m0(−z2))

=

∫ ∞

0

(AQ(t)−AQκ
(t)) e−2zt dt,

where AQ − AQκ belongs to L1
s(R+). Let ψz(·;κ) ∈ L2(R+) denote the Jost solu-

tion of (A.1). This solution is characterized by identities (A.2) and (A.3). Using
Lemma A.3 iv) we can write

mQ(−z2)−mQκ(−z2) =
1

ψz(0;κ)2

∫ ∞

0

Tκ (AQ −AQκ) (t)e
−2zt dt,

for all z ≥ s. Then, by Lemma A.2 iv), we have

mQ(−z2)−mQκ(−z2) =
∫ ∞

0

G−1
κ Tκ (AQ −AQκ) (t)

ψz(t;κ)
2

ψz(0;κ)2
dt,

https://doi.org/10.1017/prm.2025.10092 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2025.10092


The Born approximation for the fixed energy Calderón problem 29

for all z ≥ s. This identity can be analytically extended for all z ∈ C such that
Re(z) ≥ s, which proves the first statement of the theorem with

AQ,κ := G−1
κ Tκ (AQ −AQκ

) . (6.1)

On the one hand by [57] we have always that AQ−Q ∈ C(R+), and that AQ−Q ∈
Cm+2(R+) if Q ∈ Cm(R+) for all m ∈ N0.

On the other hand, by Lemma A.2 and Lemma A.3, G−1
κ − Id and Tκ − Id are

both Volterra operators with a smooth kernel on D, and thus satisfy the conditions
of Lemma A.1. Therefore AQ,κ − (AQ − AQκ

) belongs to C([0,∞)) always and to
Cm+1([0,∞)) if Q ∈ Cm([0,∞)) with m ∈ N0; the analogous result for AQ,κ − Q
follows immediately (recall that Qκ, and hence AQκ

, are smooth). The fact that
AQ,κ − Q can be extended continuously by zero to [0,∞) follows from estimate
(4.15) that we now prove.

Using (A.9) and (A.14) gives

|
(
G−1
κ Tκ − Id

)
F (t)| ≤ |κ|Cκ

∫ t

0

|F (s)|ds, (6.2)

for some Cκ > 0. Applying this with F = AQ −AQκ
yields the estimate

|AQ,κ(t)− (AQ(t)−AQκ
(t))| ≤ |κ|Cκ

∫ t

0

|AQ(s)−AQκ
(s)| ds. (6.3)

Estimate (4.15) follows adding and subtracting Qκ − Q in the LHS of (6.3) and
using the estimate

|AQ1
(t)−Q1(t)− (AQ2

(t)−Q2(t))| (6.4)

≤ (αQ1
(t) + αQ2

(t))et(αQ1
(t)+αQ2

(t))

∫ t

0

|Q1(s)−Q2(s)|ds,

twice, which can be found in [23, Section 4.1] (recall that αQ was defined in (4.14)).
It remains to prove property (iv). IfQ is positive, the operatorHQ = (−∂2t +Q(t))

has no negative eigenvalues nor a zero resonance, as remarked in [51]. Then it follows
from [51, Theorem 3] that AQ ∈ L1(R+). Also, we have AQκ

∈ L1(R+) if κ < (j0,1)
2

by Lemma 4.3, since zκ can be taken to be 0. It follows that AQ,κ ∈ L1(R+) by (6.1),
since G−1

κ Tκ is bounded on L1(R+) by Lemmas Appendix A.2 and Appendix A.3.
This finishes the proof of the Theorem. �

Proof of Theorem 4.5. The first statement was proved by Simon in [57, Theorem
1.5] for the case κ=0. The case κ≠ 0 follows from this and (6.1) by the local
injectivity of the operators G−1

κ Tκ, which satisfy that G−1
κ TκF |(0,a) vanishes iff

F |(0,a) vanishes due to Gκ, G−1
κ , Tκ, T −1

κ being Volterra operators (see Appendix A).
We now prove the stability estimate. Under the assumptions for Qj j = 1, 2 in

the statement, by [23, Theorem 5.1] we have that∫ a

0

|Q1(t)−Q2(t)| dt < C(a,M)

(∫ a

0

|AQ1(t)−AQ2(t)| dt
)1/(p′+1)

, (6.5)
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provided that ∫ a

0

|A1(t)−A2(t)| dt < min(1, a)(1+p′)/p′
.

By (6.1) we have that AQ1
−AQ2

= T −1
κ Gκ (AQ1,κ −AQ2,κ), and therefore it follows

that ∫ a

0

|AQ1
(t)−AQ2

(t)| dt ≤ C(a, κ)

∫ a

0

|AQ1,κ(t)−AQ2,κ(t)| dt,

by Lemma A.3 and the boundedness of Gκ in L1(R+) (see Lemma A.2). Inserting
this in (6.5) finishes the proof of the theorem. �
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Appendix A. Jost solutions and intertwining operators

In this Appendix, we gather some properties of Jost solutions and related operators
that are used in the proofs of Theorem 4.4 and Theorem 4.5. Given κ ∈ R set
Qκ(x) := −κe−2x. For every z ∈ C+, the problem

(−∂2x +Qκ)uz = −z2uz, on R+, (A.1)

possesses a unique solution ψz(·;κ) ∈ L2(R+) satisfying the asymptotics:

ψz(x;κ) = e−zx(1 + o(1)) as x→ ∞. (A.2)

These solutions are called the Jost solutions of equation (A.1), and are known to
satisfy the identity

ψz(x;κ) = e−zx +

∫ ∞

x

Kκ(x, t)e
−zt dt, (A.3)

where

Kκ ∈ C∞({(x, t) ∈ R2 : 0 ≤ x ≤ t})

is the Gelfand-Levitan kernel associated to the smooth potential Qκ, see for instance
[44, Chapter 3]. By [44, Lemma 3.3.1], this kernel satisfies the estimate

|Kκ(x, t)| ≤
|κ|e

|κ|
4

4
e−(x+t), for all 0 ≤ x ≤ t. (A.4)

Set D := {(x, t) ∈ R2 : 0 ≤ t ≤ x}, let Gκ ∈ C∞(D) be given by

Gκ(x, t) := 4Kκ(t, 2x− t) + 2

∫ 2x−t

t

Kκ(t, s)Kκ(t, 2x− s) ds, (A.5)

and define, for F ∈ L1
loc(R+):

GκF (x) := F (x) +

∫ x

0

Gκ(x, t)F (t) dt. (A.6)

This is a Volterra integral operator. In the next result, we gather some simple
properties of this class of operators. Recall that, for s ∈ R, L1

s(R+) stands for the
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F ∈ L1
loc(R+) such that

‖F‖L1
s(R+) :=

∫ ∞

0

|F (x)|e−2sx dx <∞.

Lemma A.1. Let H ∈ C∞(D); the Volterra operator of kernel H is defined as

THF (x) :=
∫ x

0

H(x, t)F (t) dt, F ∈ L1
loc(R+).

For every x ∈ R+, it satisfies

‖THF‖L1((0,x)) ≤

(∫ x

0

sup
t∈(0,y)

|H(y, t)|dy

)
‖F‖L1((0,x)).

Moreover, TH maps L1
loc(R+) into C([0,∞)), and Cm([0,∞)) into Cm+1([0,∞)) for

every m ∈ N0. If, in addition, there exist CH > 0 and g ∈ L1
1/2(R+) such that

|H(x, t)| ≤ CHe
−(x−t)|g(x− t)|, for all (x, t) ∈ D;

then TH maps L1
z0(R+) for all z0 ≥ 0 into itself, and

‖THF‖L1
z0

(R+) ≤ CH‖g‖L1
1/2

(R+)‖F‖L1
z0

(R+), for all F ∈ L1
z0(R+).

Note that Gκ : L1
loc(R+) −→ L1

loc(R+) is bounded by the preceding result, since
the kernel Gκ is smooth on D. In fact, Gκ enjoys more precise mapping properties.
First, let z0 ≥ 0 and define the linear functional

Jκ(F )(z) :=

∫ ∞

0

F (x)ψz(x;κ)
2 dx, F ∈ L1

z0(R+). (A.7)

This integral is well defined for all κ ∈ R and z ≥ z0 by (A.2).

Lemma A.2. Let κ ∈ R.

i) The kernel Gκ satisfies the estimate

sup
0<t<x

|Gκ(x, t)| ≤ |κ|Cκe
−x, for all x ∈ R+, (A.8)

where Cκ = e
|κ|
4 (1 + |κ| e

|κ|
4

4 ).
ii) For every z0 ≥ 0,

Gκ : L1
z0(R+) −→ L1

z0(R+)

is a bounded isomorphism.
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iii) G−1
κ − Id is a Volterra operator whose integral kernel G̃κ is smooth on D

and satisfies

sup
0<t<x

|G̃κ(x, t)| ≤ |κ|Cκe
|κ|Cκe−x, for all x ∈ R+.

In particular, for every F ∈ L1
loc(R+) and x ∈ R+,

|G−1
κ (F )(x)− F (x)| ≤ |κ|Cκe

|κ|Cκe−x

∫ x

0

|F (t)| dt. (A.9)

iv) For every z0 ≥ 0 and F ∈ L1
z0(R+),

Jκ(F )(z) =

∫ ∞

0

Gκ(F )(x)e
−2zx dx, for all z ≥ z0.

Proof. To prove (i) use (A.4) to find

4 sup
0<t<x

|Kκ(t, 2x− t)| ≤ |κ|e
|κ|
4 e−2x,

and

2 sup
0<t<x

∫ 2x−t

t

|Kκ(t, s)Kκ(t, 2x− s)| ds ≤ (|κ|e
|κ|
4 )2

4
sup

0<t<x
(x− t)e−2(t+x)

≤ cκ|κ|e
|κ|
4 e−x,

where the last estimate follows from the inequality x ≤ ex for x ≥ 0, with cκ :=
|κ|
4 e

|κ|
4 . This proves (A.8) with Cκ = e|κ|/4(1 + cκ).

The fact that Gκ is bounded in L1
z0(R+) follows from (i) and Lemma A.1, and the

existence of its inverse follows from the convergence of the Neumann series, which
implies that:

G−1
κ =

∞∑
n=0

(−1)n(Gκ − Id)n. (A.10)

In order to check that the Neumann series converges, note that (Gκ − Id)n is a
Volterra operator whose integral kernel,

Gn
κ(x, t) =

∫ x

0

∫ x1

0

· · ·
∫ xn−1

0

Gκ(x, x1)Gκ(x1, x2) . . . Gκ(xn−1, t) dxn−1 . . . dx2dx1,

satisfies

|Gn
κ(x, t)| ≤

Cn−1
κ |κ|n−1

(n− 1)!
|κ|Cκe

−x. (A.11)

To see this, use (A.8) to estimate

|Gn
κ(x, t)| ≤ Cn

κ |κ|ne−x

∫ x

0

e−x1 · · ·
∫ xn−2

0

e−xn−1 dxn−1 . . . dx1 = Cn
κ |κ|ne−xTn(1),
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where T (f)(x) :=
∫ x

0
e−tf(t) dt. One can show by induction that

Tn(1)(x) =
1

n!
(1− e−x)n ≤ 1

n!
. (A.12)

Therefore, G−1
κ − Id exists and it is a Volterra operator whose kernel G̃κ is smooth

on D and satisfies:

|G̃κ(x, t)| ≤
∞∑

n=1

|Gn
κ(x, t)| ≤ |κ|Cκe

|κ|Cκe−x.

This completes the proofs of (ii) and (iii). Finally, (iv) follows from (A.3) and (A.7)
by straightforward computation. �

Recall the definition of the Laplace transform:

L(f)(z) :=
∫ ∞

0

f(x)e−zx dx.

For κ ∈ R, define rκ(t) := 2Kκ(0, 2t); by (A.3) we have that

ψz(0;κ) = 1 + L(rκ)(2z).

Given f, g ∈ L1(R+) we denote

f ? g(x) =

∫ x

0

f(x− t)g(t) dt.

Recall that Lg(z)Lf(z) = L(f ? g)(z).
Let τκ := 2rκ + rκ ? rκ and define the Volterra operators

Tκg(x) = g(x) +

∫ x

0

τκ(x− t)g(t) dt. (A.13)

Lemma A.3. Let κ ∈ R.

i) For every g ∈ L1
loc(R+) it holds that

|Tκg(x)− g(x)| ≤ Cκ|κ|
∫ x

0

|g(t)|dt. (A.14)

ii) For every z0 ≥ 0, (Tκ − Id) : L1
z0(R+) −→ L1

z0(R+) is bounded with norm
bounded by |κ|Cκ.

iii) The inverse operator T −1
κ exists and satisfies, for every x ∈ R+ and F ∈

L1
loc(R+): ∥∥T −1

κ F
∥∥
L1((0,x))

≤ exCκ ‖F‖L1((0,x)) . (A.15)

iv) Let z0 ≥ 0. For every g ∈ L1
z0(R+) it holds that

L(Tκg)(2z) = ψz(0, κ)
2Lg(2z), for all z ≥ z0. (A.16)
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Proof. The function rκ(x) is smooth on R+ and by (A.7),

|rκ(x)| ≤ |κ|e
|κ|
4

2
e−2x, (A.17)

and

|rκ ? rκ(x)| ≤
∫ x

0

|rκ(x− s)||rκ(s)| ds ≤ κ2
e

|κ|
2

4

∫ x

0

e−2x ds = κ2
e

|κ|
2

4
xe−2x.

These estimates imply that

τκ(x) ≤ |κ|Cκ(x+ 1)e−2x. (A.18)

Estimate (A.14) is a direct consequence of this. Property (ii) follows from (A.18)
and Lemma A.1. To prove (iii) denote Mκg = τk ? g, we show that the Neumann
series

∞∑
n=0

(−1)nMn
κ (A.19)

converges in operator norm. For n ≥ 1, the integral kernel of Mn
κ is given by

mn
κ(x, t) :=

∫ x1

0

τκ(x− x1)· · ·
∫ xn−1

0

τκ(xn−1 − t) dxn−1 . . . dx1.

Since by (A.14) |τκ(x)| ≤ Cκ|κ| for all x ∈ R+, one has the estimate:

|mn
κ(x, t)| ≤ (|κ|Cκ)

nx
n

n!
, for all (t, x) ∈ D.

This shows that the series (A.19) converges in operator norm in L1((0, x)) for
every x ∈ R+, as claimed, and that (A.15) holds. Finally, property (iv) is a
straightforward computation:

ψz(0, κ)
2Lg(2z) = Lg(2z) + 2L(g ? rκ)(2z) + L(g ? rκ ? rκ)(2z) = L(Tκg)(2z).

�

Appendix B. Spherical harmonics and projectors

In this appendix, we present some explicit computations involving spherical har-
monics. Recall that a d -dimensional spherical harmonic of degree ` ∈ N0 is the
restriction to the sphere Sd−1 ⊂ Rd of a complex homogeneous polynomial P in d
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variables of degree ` that is harmonic, i.e.

∆P (x) = 0, x ∈ Rd.

These functions form a vector space that we denote by Hd
` , of dimension

N`,d := dimHd
` =

(
`+ d− 1

`

)
−
(
`+ d− 3

`− 2

)
=

(`+ d− 2)! + `(`+ d− 3)!

`!(d− 2)!
.

Spherical harmonics of different degrees are orthogonal in L2(Sd−1). In fact,

L2(Sd−1) =
⊕
`∈N0

Hd
` ,

and, moreover, spherical harmonics diagonalize the Laplacian on the sphere:

−∆Sd−1 |Hd
`
= `(`+ d− 2) IdHd

`
, ∀` ∈ N0.

Important examples of spherical harmonics are the restrictions to x ∈ Sd−1 of the
functions:

(x · ζ)`, provided ζ ∈ Cd, ζ · ζ = 0.

This follows from:

∆(x · ζ)` = `(`− 1)(x · ζ)`−2(ζ · ζ) = 0, x ∈ Rd.

The orthogonal projector P`,d : L2(Sd−1) −→ Hd
` is given by

P`,df(x) =
N`,d

|Sd−1|

∫
Sd−1

P`,d(x · y)f(y)dy, f ∈ L2(Sd−1),

where P`,d are the generalized Legendre polynomials

P`,d(t) = (−1)`R`(1− t2)−(νd− 1
2 )

(
d

dt

)`

(1− t2)`+νd− 1
2 ,

and

νd :=
d− 2

2
, R` :=

Γ
(
d−1
2

)
2`Γ

(
`+ d−1

2

) , |Sd−1| = 2πd/2

Γ(d/2)
.

In particular, the function

Z`(x · y) := N`,d

|Sd−1|
P`,d(x · y) (B.1)

is a reproducing kernel for Hd
` . The normalization in the definition of P`,d ensures

that P`,d(1) = 1, and ([5, Equation 2.67])

|Sd−2|
|Sd−1|

∫ 1

−1

Pm,d(t)Pn,d(t)(1− t2)νd− 1
2 dt =

1

Nm,d
δm,n. (B.2)
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It also follows from the definition that

P`,d(−t) = (−1)`P`,d(t). (B.3)

A spherical harmonic Y` ∈ Hd
` is invariant by all rotations that fix ξ ∈ Sd−1 if and

only if it is a multiple of P`,d(x · ξ).
Recall that, given any ζ ∈ Cd such that ζ · ζ 6= 0, we write:

ζ̂ :=
1√
ζ · ζ

ζ.

Lemma B.1. The following statements hold.

i) Let f : C → C be holomorphic and let x, z ∈ Cd satisfy x ·x 6= 0 6= z · z, then∫
Sd−1

P`,d (x̂ · y) f (y · ẑ) dy =
∣∣Sd−2

∣∣P`,d (x̂ · ẑ)
∫ 1

−1

P`,d(t)f(t)(1− t2)νd− 1
2 dt

=
∣∣Sd−2

∣∣R`P`,d (x̂ · ẑ)
∫ 1

−1

∂`tf(t)(1− t2)`+νd− 1
2 dt.

(B.4)

ii) Let f` ∈ Hd
` and z ∈ Cd, then∫

Sd−1

f`(y) (y · z)` dy =
21−`πd/2`!

Γ(`+ d
2 )

fC` (z), (B.5)

where fC` stands for the analytic extension of f` to Cd.

Proof.

i) We start by noting that the second equality follows directly from the defi-
nition of P`,d and integration by parts l times. For x, z ∈ Rd \ {0} the first
equality is known as the Funk–Hecke Formula [5, Theorem 2.22], since both
sides are complex analytic on x, z whenever x·x /∈ (−∞, 0] and z·z /∈ (−∞, 0],
then they are equal on the same set. Continuity extends the equality to
x · x 6= 0 6= z · z.

ii) For z ∈ Sd−1 this is a special case of the Funk–Hecke Formula [5, Equation
2.65]. Homogeneity of degree ` of both sides extends the equality to z ∈ Rd,
and analyticity to z ∈ Cd.

�

The next result gives an explicit expression of the orthogonal projection onto
spherical harmonics of the function

eζ(x) := eζ·x, ζ ∈ Cd.
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Lemma B.2. Let ζ ∈ Cd and ` ∈ N0, then

P`,deζ(x) =


Γ(d/2)N`,d

(
2√
ζ · ζ

)νd

I`+νd

(√
ζ · ζ

)
P`,d

(
x · ζ̂

)
, ζ · ζ 6= 0,

(x · ζ)`

`!
, ζ · ζ = 0.

Proof. Assume ζ · ζ 6= 0 and set g(t) = e
√
ζ·ζ t, then by (B.4) we have

P`,deζ(x) =
N`,d

|Sd−1|

∫
Sd−1

P`,d(x · y)eζ(y)dy =
N`,d

|Sd−1|

∫
Sd−1

P`,d(x · y)g
(
y · ζ̂

)
dy

=

∣∣Sd−2
∣∣N`,dR`

|Sd−1|
P`,d

(
x · ζ̂

)∫ 1

−1

g(`)(t)(1− t2)`+νd− 1
2 dt

=

∣∣Sd−2
∣∣N`,dR`

|Sd−1|
P`,d

(
x · ζ̂

)(√
ζ · ζ

)` ∫ 1

−1

e
√
ζ·ζ t(1− t2)`+νd− 1

2 dt.

Using now the integral representation for the modified Bessel functions:

Iν(z) =
1

√
πΓ
(
ν + 1

2

) (z
2

)ν ∫ 1

−1

ezt(1− t2)ν−
1
2 dt,

and

|Sd−2|
|Sd−1|

=
Γ(d/2)√

πΓ((d− 1)/2)
,

we find that the above computation simplifies to

P`,deζ(x) = Γ(d/2)N`,d

(
2√
ζ · ζ

)νd

I`+νd

(√
ζ · ζ

)
P`,d

(
x · ζ̂

)
.

Now assume ζ · ζ = 0. In this case, for every n ∈ N0, the function Sd−1 3 x 7→
(x · ζ)n ∈ C is an element of Hd

n. The result now follows from the fact that

eζ(x) =
∞∑

n=0

(x · ζ)n

n!
.

�

These tools allow us to prove the following result.

Lemma B.3. Let ζ1, ζ2 ∈ Cd such that ζ1 ·ζ1 = ζ2 ·ζ2 = −κ ∈ C and r ∈ R+. Then:

〈
P`,derζ1 ,P`,derζ2

〉
L2(Sd−1)

=


(2π)d

J`+νd
(
√
κr)2

(
√
κr)2νd

Z`,d

(
ζ1 · ζ2
κ

)
, κ 6= 0

2πd/2 r2`

Γ(`+ d
2 )`!

(
ζ1 · ζ2
2

)`

, κ = 0.
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Proof. Assume first that κ≠ 0. By Lemma B.2 it follows that〈
P`,derζ1 ,P`,derζ2

〉
L2(Sd−1)

= Γ(d/2)2N2
`,d

(
2

r
√
−κ

)2νd

I`+νd

(
r
√
−κ
)2 ∫

Sd−1

P`,d

(
x · ζ̂1

)
× P`,d

(
x · ζ̂2

)
dx

= Γ(d/2)2N2
`,d

(
2

r
√
κ

)2νd

(−1)`J`+νd

(
r
√
κ
)2 ∫

Sd−1

P`,d

(
x · ζ̂1

)
× P`,d

(
x · ζ̂2

)
dx,

where we have used the identity Iν(i·) = iνJν , and the fact that
√
−κ =

−sign(Imκ)i
√
κ. Taking into account (B.4), (B.2), and (B.3) we find that∫

Sd−1

P`,d

(
y · ζ̂1

)
P`,d

(
y · ζ̂2

)
dy =

∣∣Sd−2
∣∣P`,d

(
ζ̂1 · ζ̂2

)∫ 1

−1

P`(t)
2(1− t2)νd− 1

2 dt

=
(−1)`

∣∣Sd−1
∣∣

N`,d
P`,d

(
ζ1 · ζ2
κ

)
.

Hence, we obtain

〈
P`,derζ1 ,P`,derζ2

〉
L2(Sd−1)

=|Sd−1|Γ(d/2)2N`,d

(
2

r
√
κ

)2νd

J`+νd

(
r
√
κ
)2

× P`,d

(
ζ1 · ζ2
κ

)
=|Sd−1|2Γ(d/2)24νd

J`+νd
(
√
κr)2

(
√
κr)2νd

Z`,d

(
ζ1 · ζ2
κ

)
=(2π)d

J`+νd
(
√
κr)2

(
√
κr)2νd

Z`,d

(
ζ1 · ζ2
κ

)
.

For κ=0,

〈
P`,derζ1 ,P`,derζ2

〉
L2(Sd−1)

=
r2`

(`!)2

∫
Sd−1

(y · ζ1)`(y · ζ2)`dy.

Since (y · ζ1)` ∈ Hd
` , we can use (B.5) to obtain∫
Sd−1

(y · ζ1)`(y · ζ2)`dy =
2πd/2`!

Γ(`+ d
2 )

(
ζ1 · ζ2
2

)`

,

and the result follows. �
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