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The Born approximation of a potential in the context of the Calderén inverse
problem is an object that can be formally defined in terms of spectral data of the
Dirichlet-to-Neumann map of the corresponding Schrédinger operator. In this article,
we prove, in the case of radial potentials in the Euclidean ball and any fixed energy,
that the Born approximation is well-defined as a compactly supported radial
distribution, and that the Calderén problem can be reformulated as recovering a
potential from its Born approximation. In addition, we show that the Born
approximation depends locally on the potential and captures exactly its singularities,
and that the functional that maps the Born approximation to the potential is Holder
continuous. We also prove that the Born approximation converges to the potential in
the high-energy limit. Moreover, we give an explicit formula for the Fourier transform
of the Born approximation at any fixed energy, and illustrate how it can be used as
the basis of an accurate procedure to approximate a potential from its
Dirichlet-to-Neumann map.

Keywords: Fixed energy Calderén problem; Dirichlet-to-Neumann map; Born
approximation; Gel’fand-Calderén problem; Schrédinger equation

1. Introduction

1.1. Outline of the article

The Calderén problem for a Schrodinger operator, also known as the Gel'fand-
Calderén problem, asks for the reconstruction of a potential from the knowledge of
certain boundary measurements of the solutions to the corresponding Schrodinger
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equation; see [16, 17] and [29]. In this article, we are interested in the fixed-energy
version of this problem: given an open, bounded domain Q C R%, d > 2, with
C! boundary, an energy x € C and a real-valued potential ¢, consider the elliptic
boundary-value problem for the Helmholtz equation

{ —Au(z) + q(z)u(x) — ku(z) =0, z €, (1)

ulago = f.

The Dirichlet-to-Neumann (DtN) map associates the boundary value f with the
normal derivative on 99 of the corresponding solution « to (1.1). Whenever & is
not a Dirichlet eigenvalue of —A + ¢, this produces a well-defined linear operator

Mg C®(Q) — C®(0Q)

(1.2)
f —  Oyulaq,

where v is the vector field of exterior unit vectors normal to 0f2.

The Gel’fand-Calderén problem, in its simplest form, consists in reconstructing ¢
from the knowledge of A, . for some fixed x € C. Since it is known that Ag . — Ao«
is always an operator that is bounded in L?(99) (see for instance Section 2), it is
convenient to encode the inverse problem using the nonlinear map

O X —  L2(L2(09))

(1.3)
q — Aq,n - AO,m

where X is a class of admissible potentials for which the DtN map is defined. In
this article X will be a subset of LP(2) for p >1 and p > d/2. The main issues one
is interested in are:

i) Uniqueness. Is every ¢ € X uniquely determined by A, .? This amounts
to showing that ®* is injective.

ii) Stability. Is the reconstruction process stable? That is, find a modulus
of continuity for ®”. This is not possible in general, since (®%)~! is not
continuous (see, for example, [1, 2, 26]). This is, therefore, an ill-posed inverse
problem. Nevertheless, one can ask for conditional stability when additional
requirements of regularity and boundedness are imposed on the class of
admissible potentials.!

iii) Reconstruction. Find an effective procedure to reconstruct ¢ from Ag .,
in other words, compute (®%)~1. This is related to the problem of charac-
terization of the range ®*(X).

The uniqueness for d > 3 was proved in [59], and later in [46, 48] with particular
emphasis on the case of fixed energy (see also [18, 31]). The two-dimensional case
was solved in [4, 47] for conductivities and [13, 15] for potentials. These results
are proved using the notion of Complex Geometric Optics solutions (CGO) from

1Put in a more abstract setting, for a given compact set K C X one tries to compute the modulus
of continuity of (®") ™! |gx (), which exists since ®*| is a uniformly continuous homeomorphism.
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[25] (d > 3) or different families of exponentially growing solutions of the equations
when d =2.

Conditional stability was proved in dimensions d > 3 by [1] with a logarithmic-
type modulus on continuity, which was shown to be optimal in [43] (see also [37]
for a more detailed account of this issue). In dimension 2 it was proved in [7, 19]
(see also [27]). Improved stability at fixed energy was established in [34, 35, 49] in
dimension three and [53, 54] in two dimensions. The instability estimates of [43]
have been improved in the k #0 case in [33, 39].

Reconstruction is a difficult issue in general, both from analytical and numerical
points of view. The classical approach to uniqueness, based on exponentially grow-
ing families of solutions, leads to reconstruction strategies that involve analyzing a
certain scattering transform (see, for instance, [3, 46, 47]), that can be transformed
into numerical algorithms (see, among many others, [24, 36, 56]). A different type
of strategy, sometimes combined with the previous one, is based on linearization.
This serves as the basis of one-step linearization methods (see [32]), the so-called
Calderén method (see, for example, [11, 55]), the algorithm described in [10], and
has also been applied in deep learning approaches to the Calderén problem; see
[45]. This kind of linearization methods are successful from the numerical point of
view, but seem hard to justify rigorously. The main difficulty lies in proving the
existence of a certain Born-type approximation for the inverse problem.

In this work, we address this question, showing the existence of a Born approx-
imation for the inverse problem for radially symmetric potentials, and we analyze
how this leads to interesting uniqueness, stability, and characterization results. This
approach does not use any CGO-type construction.

This approach was initiated in [8, 9] in the context of the Calderén problem, and
is based on the notion of approximation in inverse scattering that can be traced
back to the work of Born [14]. It was successfully applied in [23] to the Gel’'fand-
Calderén problem at zero energy; and a systematic exposition of this approach,
which in principle applies to any inverse problem, was given in [41]. In the present
context, it can be described as follows. The map ®" is Fréchet differentiable and
satisfies ®%(0) = 0; if for every q € X it is possible to find ¢ € B in some space B
of functions or distributions solving

d®g(gr) = ®*(q) = Ag.w — Ao, (1.4)
then one has in fact obtained a factorization of ®* into a linear and a nonlinear
map:

o~ P : e Agr— A
X —— PR(X) q f 7 gk 0,k
5 dog Xﬁs V (1.5)
B qr

The objective is to exploit this factorization to obtain uniqueness, stability, recon-
struction and characterization results for the inverse problem. The main difficulty in
implementing this strategy is to show that there exists a solution of equation (1.4).
In this work we show that (1.4) can be solved and that the factorization (1.5)
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exists for the Gel’fand-Calderén problem at fixed energy x € R, assuming radial
symmetry on the potentials.

In the radial case, the existence of ¢° for x =0 has already been proved in [23], a
result that also implies a partial characterization of the set of DtN maps. A key step
in the proof involves the tools introduced by Simon [57] in the context of inverse
spectral theory of Schrodinger operators on the half-line, especially the notion of
A-amplitude. In [41], the authors show that, in fact, the A-amplitude coincides with
the notion of Born approximation for this one-dimensional inverse spectral problem.

Here, the proof of the existence of ¢2 relies again on the analysis of a one-
dimensional inverse spectral problem, the difficulty being that the corresponding
Born approximation is no longer Simon’s A-amplitude. The existence of such a
Born approximation, which we call the A.-amplitude, is an important part of this
work. The main results of this article are:

i) Explicit description of d®§ and its inverse. We show that d®§ maps
potentials to operators that are rotationally invariant, and whose eigenvalues
are certain moments of the potential. Also, we give an explicit formula for
(d®g5)~t. This is presented in Theorem 3.1 and Proposition 2.4.

ii) Existence of the Born approximation. This is stated in Theorem 1.
Using the explicit formula for (d®§)~! and tools of spectral theory of
Schrédinger operators on the half-line, most particularly the existence of
an A-amplitude (Theorem 4.4), we prove that ¢2, the Born approximation
at energy k, exists as a radial distribution. We also present explicit formulas
for ¢B.

iii) Regularity of ¢5. In Theorem 2 we prove that ¢® coincides with an inte-
grable function outside the origin, that ¢® — ¢ is one derivative smoother
than ¢, and that ¢© = ¢ at the boundary.

iv) Injectivity of ®% and stability of (®£)~!. The map ®§ : q¢ — ¢ is
injective in a strong sense: two potentials coincide in a neighborhood of the
boundary if and only if their Born approximations at energy x coincide in
that same neighborhood. In addition, (®%)~! is Holder continuous, under
mild @ priori conditions on the potentials, with respect to the L' norm in
the complement of any arbitrarily small ball centered in the origin. This is
the scope of Theorem 3, which is derived from its one-dimensional analogue
Theorem 4.5.

v) High-energy/semiclassical limit. In Theorem 4 we show that the Born
approximation at energy k converges to the potential ¢ in the high-energy
limit kK — —oo. The analogous result for the direct problem, namely that
®"(q)—ddf(q) converges to zero in the same regime, is proved in Proposition
2.5.

In (1.5), the maps d®§ and ®* are continuous, but the ranges of each of them are
not closed. Hence (d®4)~! and ®" are both discontinuous and only conditionally
stable. Therefore, an important consequence of iv) is that the bad behavior of the
inverse of ®" is captured by the linear approximation d®{, since the non-linear
map (%)~ is Holder stable.
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1.2. Statement of the main results

From now on, we denote by L? ,([B%R) the closed subspace of radial functions
that belong to LP(B?,R). We will assume that d > 2 and that

p € R is admissible <— 1<p<oo, and p>d/2. (1.6)

Also, we define

d—2
va = o, Ny := NU{0}.

Recall that the Dirichlet spectrum of —A on the ball B¢ can be expressed in terms
of the zeros of certain Bessel functions. The operator A, , is well defined as soon as

g€ L? (B R), with p admissible, and x € C\ SpecHé (—=A + q). Since q is radial,
the DtN operator commutes with the action of SO(d) on S%~!; as a consequence,
its eigenfunctions are spherical harmonics (see Appendix B for the definition and
properties of spherical harmonics). More precisely, if $¢ denotes the subspace of
spherical harmonics of degree ¢ € Ny on S%~!, then

Agnlga = Aelg, k] Tdga . (1.7)

rad

When ¢ =0, the spectrum of A ,, can be explicitly computed. If £ = 0 then A¢[0, 0] =
¢ for every £ € Ny, and, if K € C\ SpecHé(—A) with x #0, then

Jer 110, (VE)
Jé-i-l/d (\/E) ’

where J, is the Bessel function of the first kind of index v € C (see Lemma 4.2).
Given ¢ € Ny, the holomorphic function

A[0, 8] = € — vk Ve € Ny, (1.8)

Jov,(2) A (=)™ z\2n
= = = 1.
@f(z) SV ARZ] 7;) nl]_"(g +ugt+n+ 1) (2) ’ z € C, ( 9)

will play an important role throughout this work. For x € C, the k-moments of ¢
are:

oelg, K] : = 1|/ VElz])?d Ve € No. (1.10)

Note that the functions x — oy[q, ] are holomorphic in C.

The xk-moments appear in the expression of the Fréchet differential of ®* at ¢ =0.
In Proposition 2.4 we prove that, as soon as x is not a Dirichlet eigenvalue of —A in
the ball, d®%(q) is a bounded operator on L?(S?~1) for every ¢ € L, (B4, R). These
operators turn out to be invariant by the action of SO(d) and are characterized by

their restriction on spherical harmonics, which is precisely given by
Pe(VR)?A®G(q)|ge = oelg, k] 1dga, VL € No. (1.11)

Therefore, by (1.7), that a function ¢ satisfies d®5(¢2) = A, . — Ao« is formally
equivalent to the fact that ¢2 solves the following moment problem:

oelgy, K] = (Aelg, 6] = Ael0, 8]) e (VR)?, Vet € No. (1.12)

https://doi.org/10.1017/prm.2025.10092 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2025.10092

6 F. Macia, C. Merovio, D. Sinchez-Mendoza

Note right away that, by (1.8) and (1.9), the left-hand side of the identity (1.12) is
well defined as soon as r € C \ Specy:(—A + q) even if k € Specy1 (—A).

The existence of a solution for (1.12) is not guaranteed. In order to prove that a
solution exists, we need to allow for the possibility of ¢° being a distribution. Let
U C R? be an open set. We denote by £'(U) the space of distributions with compact
support in U, and &/,4(U) C £'(U) the subset of radially symmetric distributions.

The definition (1.10) can be extended from L2, (B%,R) to the space £, ,(R?) as
follows: for f € & ,(R%), k € C and ¢ € Ny define

oolf, K] : (f, (‘p"")2>5/xcw ., where ¢, o(z) = po(\VE|z]), (1.13)

1
[S4=1

where (-,-)¢/ o denotes the duality pairing in & (R?). This makes sense since
(r,0)? € C%(RY).
To state our first result, we define
Bd = L%ad(Bd) + g;ad(Bd)‘

The elements of By are radial distributions in B¢ that coincide with L' functions
in a neighborhood of the boundary of B?. This implies that the extension by zero
of a distribution in By is an element of £/ ;(R?). In this way, when convenient,
By can be identified with a subset of £/, ;(R?). We adopt this perspective in a few
points in this work, for example, to define the moments and the Fourier transform
of elements of B, using (1.13) and (1.14). Note that (1.11) allows us to extend d®f
to Bd.

Let
Xp(BY) = {q € LE (B, R) : k & Specyy (A + ¢)}.

rad

We show, for potentials X, ., with p satisfying (1.6), the existence of ¢2 as an
element of By and establish a formula for its Fourier transform that shows, in
particular, that ¢2 is uniquely determined by (1.12) in By (see also Theorem 3.1).
The Fourier transform of f € &£/, ;(R?) is defined as

FUE) = (frecighernem s  eclx)i=e",  z,eRY ¢eCh  (114)

We denote by Z; 4, ¢ € Ny, the zonal functions, which are characterized in terms
of Ppq: L2(S4™1) — H¢, the orthogonal projection onto $H¢, by

Prau(z) = / Zyq(x - y)u(y) dy, ue L*(S*).
gd—1

The zonal functions are directly related to the Legendre polynomials; more details
are given in Appendix B.

THEOREM 1. Let k € R and p be admissible. For every q € Xp’,{(IB%d) there exists
a unique q° € By such that

oold®, k] = (Melg, K] — Ae[0, K] pe(VE)?, for all £ € Ng. (1.15)
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The Fourier transform of this distribution can be obtained from the expression:

0o 2
F(@)(€) = 2m™ > (Aela, 5] = Ae[0, 6]) e (V) Zoa (1 - |§L> : (1.16)

£=0

If we further assume r ¢ Specyi(—A) then it also holds that

F@P)E) = (@, (ng — Awo)ecs) pais) - (1.17)

with 1,2 € C? satisfying (1 + G = —i€ and (1 - ¢ = G2+ (o = —k.

We will refer to qE as the Born approximation of q at energy k. Its explicit recon-
struction formula (1.16) can be used to numerically approximate ¢; see Section 1.3
below. On the other hand, the identity (1.17) shows that ¢2 can also be obtained
by complex geometrical optics solutions as was done for k=0 in [8].

Our next result shows, among other properties, that ¢° always coincides with a
locally integrable function outside the origin. In fact, the Born approximation is as
singular as the potential is, except possibly at the origin.

We define the weighted L-space L1(BY) := {f € LL (B?\{0}) : [l ey < o0}
where s € R and

1Pl = [, IP@Ilfe do (118)

THEOREM 2. Let k € R and p be admissible. For every q € X, .(B?), there exists
an £y > 0 and a real and radial function g, € L%q (BY) such that qF |ga\ oy = q5- In
fact,

a8 —qeCB\{0}),  (aF —q)lgar =0, (1.19)

and qB — q belongs to C™ (B4 \ {0}) if ¢ € C"(B2\ {0}) for any m € N.
If in addition, p > d/2, k < (jo1)?, and q—k > 0 a.e. in BY, then ¢° € L1, ,(B?).

REMARK 1.1. The identity thBd\{O} = ¢; holds in the sense of distributions and
shows that ¢ can be identified with a locally integrable function on B? \ {0}.
In other words, ¢ is a regularization of the singular function ¢* in the sense of
[28, Chapter 1]. Note that (1.19) implies that g|sa—1 = ¢®|ge—1 when ¢ has a well-
defined trace on the boundary. See Proposition 4.6 for a more precise estimate of
the pointwise behavior of |¢2 — q| on B¢\ {0}.

We prove two important properties of the map (®%)~!: a strong local form of
injectivity and Holder continuity under uniform L?(B?) bounds for the potentials.

THEOREM 3. Let k € R, p be admissible and b € (0,1). Let Uy := {x € B¢ : b <
|z| < 1}.

i) For every q1,q2 € X, .(B?) let qEK and qEK the respective Born approzrima-
tions. Then

@, (z) = q]ﬁ,{(m) aein Uy <= q1(x) = g2(z) a.e.in Up.
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ii) For every K >0 there exist €(b,x) > 0 and C(b,x,K) > 0 such that, for
every qi,q2 € X, .(BY) satisfying

B B
max[lgll o,y <K llane = @l ) <e®.5),

one has

/(' +1)
) : (1.20)

H(h - q2||L1(Ub) < C<b7 K, K) (quls,m - qg,nHLl(Ub)
where p’ is the Holder conjugate exponent of p.

We finally show that in the high-energy limit K — —oo, the Born approximation
at energy k recovers the potential.

THEOREM 4. Let ¢ € L®(BY,R), k € R, ¢ € RY, and (1,(; € C? be such that
G+ G =—i, and (1 - ¢ = (2 - (2 = —k. Then, locally uniformly in &, we have

NEEHOO (€, (Agm — AO,H)QC2>L2(Sd—1) = Fq(§). (1.21)
In particular, whenever ¢ € L,(B%, R), in which case ¢° is always defined when
£ < = lgll oo gy, we have

lim Fq2(&) = Fq(&),  for all ¢ € R% (1.22)

K—r— 00

REMARK 1.2.

i) Notice that the statement (1.21) is valid even if ¢ is not radial. Moreover, it
will be clear from the proof of (1.21) that the analogous result holds for any
bounded domain  C R? with C! boundary.

ii) The convergence in (1.22), which involves entire functions, takes place in
Fourier space. At this moment, it is not clear that this convergence can be
expressed in a natural way in physical space; however, this should be possible
at least for some classes of potentials.

iii) The following is proved in Proposition 2.5:

lim Tr|®"(¢) —d®5(¢g)| = lm Tr|Ag . — Aox —dPG(q)| = 0.
K——00 K——00

This relation complements (1.22), to actually show that the non-linear map

®" is asymptotically linear in the high-energy limit and that ®f converges

to the identity as Kk — —oc.

The local uniqueness phenomenon proved in the first part of Theorem 3 is illus-
trated in Fig. 4, whereas the phenomenon of recovery of singularities in Theorem
2 is illustrated in Figs. 1, 3 and 4. Evidence for the convergence of the Born
approximations to the potential in physical space is presented in Fig. 3 below.

Theorems 1 to 4 are proved in Section 5. The analogues of Theorems 1, 2 and 3
in the case k =0 have been proved in [23]. These results can be recovered from the
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ones in this work in the limit £ — 0. For instance, the classical Hausforff moments,
which played the same role as the k-moments here, can be obtained from oy[q, k]
by

vy 2q Olgk] 1 20
470+ d/2) il_)HlO pra ] qu(x)m dz, Ve € Np. (1.23)

The proofs of the main results in [23] rely on tools from the inverse spectral theory
of Schrédinger operators on the half-line, mainly results involving the notion of
A-amplitude of a Schrodinger operator introduced by Simon in [57], and further
developed in [6, 30, 51, 52], among many other works. In our case, these tools
are not directly applicable, which leads us to introduce and prove the existence
of an A,-amplitude that encodes spectral information in a similar way as Simon’s
A-amplitude does, but is better adapted to our setting. The main results on the
A-amplitude are stated in Section 4.2 and proved in Section 6.

We note that the approach based on one-dimensional inverse spectral theory has
been applied in the context of the Steklov problem for warped product manifolds in
[20-22]. In particular, the results in [22] imply stability and uniqueness results for
the radial Calderén problem, both for the conductivity and Schrédinger cases. We
also mention that spectral theory methods had already been used in the context of
the radial Calderén problem in [38, 58].

1.3. Numerical reconstruction

In this subsection, we show the capabilities of the Born approximation as an
effective tool to approximate the potential; numerical methods based on this strat-
egy are described in [9] in the case k=0. The key remark is that the Fréchet
differential d®§ coincides with the differential of ®° around the constant func-
tion —k € R\ SpecHé A, and that Ago = Agiu,.. Therefore, for such «, given

q € L2, (B, R) such that 0 is not a Dirichlet eigenvalue of —A + ¢, one should

rad
have:

q~—K-+ d@gn(/\%o —Aow) =—K+(q+ ’{)E

When & is chosen appropriately, so that ¢ + x is small in some norm, one can
expect this function to be well-approximated by (¢ + x)E. Recall that, by Theorem
1, the Born approximation (q+ k)E is constructed solely in terms of Spec(A, o) (the
dependence on k being explicit). A possible choice of « that can be implemented
numerically consists in ensuring that [;.(¢ + x)pdz = F(q 4 £)£(0), which is a

quantity that depends only on Spec(Ayo) and k, is the smallest possible. It is
therefore natural to choose k = k, defined by the equation

Flg+ k)., (0) = 0.

Numerical experiments suggest that if x, exists, it can be obtained by the iterative
fixed point scheme

_ F(q+ #n)y, (0)
Sar N T
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(B) £ =2, ||| 1 (gs) = 0.12155.

(0) &= =15, || ||y (gs) = 0.05551. (D) K= = —1.73614, || - || 1 (g5, = 0.05084.

Figure 1. Plots of ¢(z) = 2 — X(%%)(|m|) (blue) and (¢ + x)2 — & (orange). a) k=0,

| Nl L1 @8y = 0.66066. b) k= —2, || || 1 sy = 0.12155. ¢) & = —1.5, |- || 11 gy = 0.05551.
d) K = ke = —1.73614, || -|| 11 (s, = 0.05084.

We illustrate these ideas in Figs. 1 and 2 where we plot the radial profiles of
q : B® — R and the corresponding (¢ + x)2 — & for

1
k=0, Kk = —q|ga-1, K=—3 (sggq—l—i&fq), K= K.

In the caption of each plot, we include the L!(B?) norm of the difference of the
functions plotted. Notice that in all eight plots, except for Fig. 2 (A) where the
Gibbs phenomenon is too strong, (¢+#) — (¢+ ) is a continuous function outside
2 =0 that vanishes at S?, as stated in Theorem 2.

The Julia code used to produce these figures can be found in [42].

2. Radial Dirichlet-to-Neumann maps

We start by deriving some simple properties of the DtN map associated to a radial
potential ¢q. Let k € C and consider the Dirichlet problem:

(2.1)

—Av+qu—kv =0 inB?,
Vlga-r = f € C®(S4).

This problem has a unique solution provided that ¢ € L? ,(B% R), with p admis-

rad

sible, and « is not a Dirichlet eigenvalue of —A + ¢. In addition, the radiality of ¢
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A

10 ) 0z

(A) £ =0, ||| 1 gs) = 16.4772. (B) k=4, |- 11 (ge) = 0.51683.

é

:

() k=5, |||l 1 (gs) = 0.07038. (D) k= kw = 496727, || || 11 (gs) = 0.07200.

Figure 2. Plots of q(z) = cos(4x|z|) — 5 (blue) and (¢ + k)2 — & (orange). a) k=0,
- [lp1gsy = 164772, b) k=4, ||| 1 sy = 0.51683. ¢) k=5, ||-|| 1 s, = 0.07038. d)
k= ke = 496727, || - || 11 gs) = 0.07200.

— :

t

(A) £=0, "1 (ps) = 0.66066. (B) £ =—10, || |11 (ps) = 0.56134.
" 1[7/[ AJ
(¢) & =—=100, || -[| 1 gsy = 0.35731. (D) & = —1000, || - || 11 (psy = 0.17218.

Figure 3. Plots of ¢(z) = 2 — X(%,%)(L’CD (blue) and ¢2 (orange). a) k=0, ||- l1msy =
0.66066. b) & = —10, ||- || 1 gs) = 0.56134. ¢) & = =100, ||-|| 1 (gsy = 0.35731. d) x =
—1000, || [l 1 (gsy = 0.17218.
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Figure 4. Plots of ¢; (solid) of gs(z) := 3, g2(z) := g3(x) — X(O,%)(|m|), q1(x) == qa(x) —

X(0,1 y(|z]) and their respective Born approximations ¢ (dashed) at x = —1.

implies that
&= L7,a(BY) ® 97 C L*(BY),
is an invariant subspace of —A + ¢.? More precisely, the following result holds.

LEMMA 2.1. Let p be admissible and q € L (B?). Let £ € Ny
k€ C\ Specyi (A +q)le,),
and f € H%. Then (2.1) has a unique solution v € H*(B?), that is of the form
v(z) = be(|z|, k) f(T), vz € B (2.2)

In particular, when q=0, SpecHé(—Am) = {jtg-kv(z,k . k € N} where (Jrsv, k)ken
is the set of zeros of Joy,, and

be(r, k) = pelyir) reR,. (2.3)

oe(VE)

Moreover, when k < 0 one has

d—1 K 2
/]Bd e (Vir)|? da < W- (2.4)

Proof. After writing g(x) = go(|z|) and changing (2.1) to polar coordinates, one
finds that, if a function in H'(B?) of the form (2.2) is a solution of (2.1), then b,

20ne uses the standard identification (v ® f)(x) = vraa(|z|)f(Z), where 2 := z/|z| for every
x € R%\ {0}.
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must solve

1 d 4 d Ll+d—2
e <rd 1@()@(?", Kl)) + <(742) + qo(r) — I‘G) be(r,k) =0, re(0,1),
(2.5)
with b,(1, k) = 1. The Liouville change of variables wy(t) := by(e™t, k)e "4t (see, for

instance, [12, Chapter 10.9]) transforms (2.5) into a one-dimensional Schrodinger
equation on the half-line:

(=07 + Q)we(t) = —(L+va)lwe(t), Q) =e*(qole") — k), teRy,
with w,(0) = 1, which is uniquely solvable in L?(R.). See Lemma 4.1 for a proof

of this and Lemma 4.2 for a proof of (2.3). We now prove (2.4). First, note that
this is an identity when x=0. For k <0, (1.9) implies

/, — |5 1|/

The conclusion follows from the identity

2
IerVd |K“ T)

I£+Vd )

pe(v/rlz))

we(V/R) rdr

valid as soon as v > —1/2 and 0 < r < s (see [50]). O

REMARK 2.2.

i) By uniqueness of solutions of (2.1) with Dirichlet condition by(1,x) =1 one
necessarily must have:

be(+ F) = be(- k). (2.6)
ii) Identity (2.2) implies
Aguf = 0:be(L,R)f,  Vfe€ni. (2.7)
In other words, the spectrum of A, consists of the eigenvalues:
Aelg, k] = Orbe(1, ), Vvl € Np.

iii) When k € R, it is possible to give a meaningful definition of the eigenvalues
Melg, k] for every ¢ large enough, even when « is a Dirichlet eigenvalue of
—A+q, see [23, Definition 2.4]. In [23, Lemma 2.1] it is shown that (2.1) has a
unique solution of the form (2.2) that belongs to Hy,.(B"\{0})NLZ _, ,(B?).

Integration by parts shows the following important result, known as
Alessandrini’s identity.
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LEMMA 2.3. Let p be admissible and k € C\Specy1(—=A). Ifq € LP (B4, R) is such
that & is not a Dirichlet eigenvalue of —A + q then, for every f,g € L?(S1),

(9, (Agw — Do) f)p2gar) = /]Bd q(z) u(x) v(x) de, (2.8)
where
(~-A+q—r)v =0, inB? —Au—Fu =0, inB?, 2.9)
v =f, onS¥1, u =g, onS*L '

Proof. First take f,g € H'/?(S%1). Green’s formula, when applied to a solution v
of (2.9) and any function u € H'(B?) with u|g«—1 = g, gives:

(q(x) = r) u(z) v() dx+/ Vu(z) Vo(z) dz.

B

<97Aq,nf>L2(Sd—1) :/

Bd

This yields, as soon as q is real-valued,

<97 Aq,nf>L2(§d71) = <Aq,Ega f>L2(Sd*1) .

Formula (2.8) then follows by particularizing those identities to ¢ =0 and subtract-
ing. In addition, (2.8) shows that A, , — Ao, is bounded on L?(S?"1): for some
C = Cq,d > 0,

(9, (Mg = Do) f) p2sa—1y < all oo gay [ull grr2gay 10 g1z zay
S Ol fllp2ga— 19l L2 ga-1y 5

and therefore (2.8) holds for f,g € L2(S?7!) as claimed. O

Using Lemma 2.1 and Lemma 2.3, it is not difficult to compute the Fréchet
differential of ®~ at ¢=0.

PROPOSITION 2.4. Let ¢ € L2,(B4R) and k € C\ Specyi(—=A). The Fréchet
differential d®§ applied to q is a bounded operator d®§(q) : L*>(S1) — L2(S?71)
invariant under rotations that satisfies:

@g(\/E)qu)S(qﬂﬁg = 0¢[q, k] 1dgg, V¢ € Np.
Proof. From Lemma 2.3 one can check that

<g,d¢)g(q)f>L2(Sd—l) :/ q(z) u(z) w(x) dz,

Bd

where u is the same as in (2.9), and w satisfies that (—A — x)w = 0 on B? and
wlga-1 = f. Note that the previous expression ensures that d®{(¢) is a bounded
linear operator on L2(S¢~!). Taking f = g = Y, with ¥; € $¢ normalized
in L2(S%71), by Lemma 2.1 and (2.6) we find that w(x) = be(|z|,x)Ys(2) and
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u(z) = be(|z|, k)Ye(£), where b, satisfies (2.3), since we are in the case ¢=0.
Therefore, we have

Yo, L (q)Ye) yaqeasy = be([z], 7)b Yo(#)? da = 22K
(Y, d®G(q)Ye) 2 (sa-1) /qu(x) o(|z], B)be(l], m)[Ye(2)]" da PRNGER
by (1.10), since ¢ is radial and the integral in the angular variable is 1. O

In the next result we show that asymptotically as k — —oco the spectrum of
Ag . — Ao, converges uniformly to the rescaled moments of g.

PROPOSITION 2.5. Let ¢ € L% (B4 R). For every k < — lqll o gay and £ € No,
we have

”quOO(]Bd)
(£+va) (€ +va)® = [lgll poe ey = K)

| Aelg, 5] = Ae[0, 5] — we(VR) "2oulg, k]| < 5

Proof. Let Y, € H¢ be normalized. We apply (2.8), (2.9) with f = g = Y;, so that
u(z) = be(|z|, k) Ye(Z) by Lemma 2.1 and (2.6), since now k = &. Thus we have

A, &] = Ae[0, K] = (Yo, (Agx — Do) Ye) po(gar) = /}Bd q(z)be(|z|, k) Ye (Z)v () de,

where v satisfies (2.9) with f = Y. Let h(x) := v(z) — be(|z|, k) Ye(Z). Inserting this
in the previous identity and using that Yy is normalized, yields

Aela, K] = Ae[0, K] = @e(V/R) "*o0lg, k] + /Bd q(x) be(|z, K)Ye(Z)h(x) da.

The function h satisfies

(A +q(z) — k)h(z) = —q(z)be(|2], 5)Ye(T), =€ B9,
hlga-1 = 0.
Denoting by R,(x) the Dirichlet resolvent (—A + ¢ — k)™1, we can write h =

—Rq(k)(ggx) with g.(z) := be(|z|, k)Ye(Z). Since —A + g and R, (k) leave invariant
the subspace & we have

1
K, Spec(—A +q)lg,)’

IRq(K)le | ccr2@ay < dist(

Using that qg, € & we can estimate

[Aela, 6] = Xe[0, 8] — e (VR) " 2o0la, ]| = [ (agns Rq(K)(a9x)) 12 (ga) |
||qgnHi2(IBd)
~ dist(x, Spec(—A + q)|g,)
lql7 e ey Sy e (VEl2]) 2
= JpeV/k)|? [S?1| dist(k, Spec(—A +q)le,)
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Clearly, SpecHé((—A +a)le,) € SPeCHg (=Ale,) + [ HQHLw(Bd) ) ”q“LOO(]Bd)} which
implies the bound:

dist(rs, Spec(—A +q)le,) = 71,1 — lall oo ey — 5 > (E+va)* = lall poe o)y — 5,

the last estimate following from the inequality v < j, 1 on the first zero of J, for
v >0, [40, Equation (2.4)]. The result then follows taking (2.4) into account. [

3. Fourier representation formulas

In this section we prove an explicit formula to reconstruct a distribution
from its moments. The result below can be viewed as an explicit formula for
(d®f)~ |5/ (re)- In particular, it implies that, as soon as qf € Bq exists, it is
uniquely détermined by (1.12) in By.

THEOREM 3.1. Let f € £/ 4(RY) and let k € C\ {0}. Then for £ € RY we have

Ff(&) = (2m) Zazﬁ Z€d<1—|€|>, (3.1)

£=0

where the series are absolutely convergent.

Note that taking the limit k — 0 in (3.1) recovers the representation for k=0
that was obtained in [8, 23], see (1.23).

Proof. We first assume that f € Lrad(]Rd) has compact support. Then we can choose
R >0 such that f is identically 0 outside RB?. Fix ¢ € R? and let (;,(; € C? be
such that

Q+G=-i G- -G=0 6=k (32)
Writing f(z) = fo(|z]), we have

/ fO 67(1767<2>L2(Sd 1) dr
= / fo(’l“)’l’d_l (Z <P€,d%7 Pé,der(2>L2(Sd—1)> dr

—Z/ fo(r)rd=1 Pedercl,Pzd€r<2>L2(Sd 1y dr,

where Py 4 denotes the orthogonal projection of L2(S?~!) onto 5’)‘;. The exchange
of series and integral is justified by Fubini’s Theorem and the bound:

sup Z‘ P derClaPl derC2>L2(Sd 1) < Sup ||€'r(1||L2 (s4-1) ||€7(2||L2(Sd 1y < 00.
rel0,R] {0 refo,
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Then, (3.1) follows for & 4 (RY) N LL ,(BY) from 2(¢1 - G2) = —(|¢*> = 2k), and the
identity

<W7P£d€r@>m(sd N = (2m) wmz(\fr) 1.4 <41;42>7

which is a consequence of Lemma B.3.

We now prove (3.1) for f € £/ ,(R?) by a density argument. Let N € Ny be the
order of f as a distribution, and let R > 0 be such that supp f € RB%. Also, choose
any 1 € Co5 rad (R4 R, ) with fRd n(xz)dz = 1 and construct the approximate identity

ne(z) = e~ (x/e) for ¢ € (0,1). Then f*n. € xS ° q(RY) with

supp(f * ) C supp f + esuppn C supp f + ¢ < max wl) B,
reEsSupp n

and lim f * 7. = f in & (R?). Therefore,
e—0

Ff§) = <faefi£>5/><coo = lim <f*776aefi£>5/><coo = 11_13(1)]:(1”*775)(5)

€|
_gg% (27) Zazf*ns, ]Z€d<1_

We wish to apply the dominated convergence theorem to conclude the proof. To
this end we bound the terms of the series separately. For the moments oy[f * 7., K]
we have

|Ul[f*775;l€]| |Sd 1| ‘<f7776 (Pnl SIXCOO‘ > |Sd 1| ||77€ SOHZHCN(RIBd)
< Cf:R,d H(pn,fHCN(RBT) .
From the definition of ¢, in (1.9) immediately follows that C* > 2z

wo(v/k(z - 2))? is an entire function bounded by |z|**el<ll= *. Hence, a Cauchy
estimate with poly-discs of unit radius gives

162 el iy < N (B4 d)* I EHD" = €y o a(R+ )

The definition of the Legendre polynomial P; 4 (see Appendix B) implies that the
complex phases of all its terms align when we evaluate it at ¢R; therefore

Nyg . _ .
| Ze,a(2)| = S0 1‘ |Pra(2)] < Cal®? |Pra(i|2])] < Cat® (2| + 1)" |Pra(i)],

z e C.
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To estimate |P; 4(%)| we use again its definition from Appendix B and the Cauchy
integral formula with v = {z € C: |z —i| = 1} to obtain

d—3 d—3
, 27T R | [ (1 - 22T
P =
Prati) = = | [ e
d—3 a-3 P(ﬂ)ﬂ 5 5 5 ¢
<o TR+ 2)F = 2 (2 < 2) .
< Snae s - ot (5) 7<)

Putting all these bounds together, we see that we can indeed apply the dominated
convergence theorem in order to exchange limit and series. The proof is then finished
by the convergence of f * 7. to f in &'(R?). O

4. Weyl-Titchmarsh functions and the Born approximation

4.1. Weyl-Titchmarsh functions and DtN maps

Let us start by providing a description of A, that is well-suited for our pur-
poses. We will relate A, to the Dirichlet-to-Neumann map of a one-dimensional
Schrodinger operator on the half-line:

(3 4 QW) = o). R (a.1)
v,(0) =1
When the potential @ € L{ (R.) is in the limit-point case, for instance, when
r+1
Qed®) = Jall=swp [ jQ@ld<x (12
reRL Jx

there exists g > 0 such that, when z € C4 \ [0, Bg], problem (4.1) has a unique
solution v, € L?(Ry). One then defines the Weyl-Titchmarsh function as:

mq(—22) = 9v,(0). (4.3)

The connection of mg with radial Dirichlet-to-Neumann maps is as follows. Given
a potential ¢ € L? (B? R), with p admissible, and f € 53? then, provided that

rad

keC\ SpecHé (—A + g), the unique solution v € H*(B?) of

(-A+qg—k)u =0, inB9 (4.4)
v =f, onS%1, '
can be written in the form
u(x) = |z|"" Ve, (— log |z]) f(Z), with & = z/|z], (4.5)

where v, € L?(R,) solves the boundary value problem (4.1) for the potential Q
given by
Q(t) = e (qo(e™) = x), @) =aq(lz]), =eR;. (4.6)

It turns out that mg completely characterizes Ay .
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LEMMA 4.1. Let p be admissible, ¢ € L (B4 R) and k € C \ Specyi (—A +q).
Then the potential Q given by (4.6) is in AY(Ry), and, if in addition p > d/2,
then Q € L'(Ry). Therefore, (4.1) has a unique solution that is in L?*(Ry), and
the spectrum of Aq . can be expressed in terms of the Weyl-Titchmarsh function of

Q as
)\g[q,ﬁ] = —mq (*(54’ l/d)2) — Vg, { € Ny.

Proof. That Q@ € AY(R,) can be checked by noticing that, since (1.6) implies
2p—d >0

o= sl ) - '
et = [Clawretrorars [Ciaeraz ([ awia)

When 2p — d > 0 one can improve this to:

o=l o ) 2 7!
g = [Tiawperoarz (220l 4

This ensures that @ satisfies the condition (4.2), that (4.1) has a unique square-
integrable solution, and that m is well defined. Let f € %, and let vy, € L*(R4)
solve (4.1), so that u given by (4.5) solves (4.4). Then A . f = \[g, k| f where

Aelg, K] = Or [rfydvg(— logr)] = =041, (0) —vg = —mo(—(L+ va)?) — vq,

r=1

as claimed. 0

Let us apply the preceding result to the potential
Qu(t) := —re 2, Kk € R, (4.8)

which corresponds via (4.6) to the constant potential —x. When x=0, it is not
difficult to check that its Weyl-Titchmarsh function equals mg(—z2) = —2. When
k#0, mq, can be explicitly computed as well.

LEMMA 4.2. Suppose € C\ {0}. For every z > 0 such that J,(\/k) # 0,° the
problem

(_atQ + QH)UZ = _ZQ'Uza vz(()) =1,

has a unique solution u,(-,x) € L?*(Ry). This solution and the Weyl-Titchmarsh
function of Q. are, respectively,

uy(t, k) == %, mq, (—2%) = —z + ﬁm (4.9)

3This condition is always fulfilled when x € C \ R4, since all the roots of J, are real as soon as
z > —1.
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In particular, for every £ € Ny such that k € C\ SpecHé(—ALge), the radial profile
in (4.5) of the corresponding solution of (4.4) with q=0 and f € H? is

eruZ(— logr, k) = ——==

oe(VE)

and, provided that k € C\ SpecHé(—A), the spectrum of Ao . is the sequence

Orpe(VE) _ e (V)
o) T vy (€N

Proof. The solution u,(t, k) can be explicitly computed as follows. Since x # 0, we
can set u,(t,k) = w.(y/rke ' k), and direct computation gives that w,(-, k) is a
solution of Bessel’s equation

s2w (s, k) + swl(s, k) + (32 - 22) w,(s, k) =0, s e C.

The condition u,(0,x) = 1 translates into w,(y/k, ) = 1; and this forces

J(s)
J(VE)’
which gives the claimed formula for u, (-, k). This is well defined due to the assump-

tion on . The expression for mg, (—2%) = d4u.(0, k) can be obtained using that,
for v > 0,

w,(s, k) =

sJ),(s) =vd,(s) — sJu41(s), Vs € C.

Identity (4.10) follows by taking into account that Specys(—Ale,), the spectrum

of the restriction of the Dirichlet Laplacian —A on B? to functions with angular
component in f_);l, is precisely the set of solutions of p(v/k) = 0. Finally, the
calculation of the spectrum of Ag . is obtained by (4.9) and the last identity of
Lemma 4.1. 0

4.2. Fixed energy A.-amplitude
For s € R, we introduce the space L!(R.) consisting of those functions F €
Li (Ry) such that

loc
. :/0 |F(x)|e=2°t dt.

In his seminal paper [57], Simon proved that for all @ € L'(R.) there is a zg > 0
and a function Ag € L, (R+) such that

mq(—22) —mo(—2%) = /000 Ag(t)e™#t dt, (4.11)

for all z such that Re(z) > zg. The function Ag is known as the A-amplitude
of the potential (). The class of potentials for which this holds was later widened
to @ € L (R ) by Gesztesy and Simon in [30]. Finally Avdonin, Mikhaylov and
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Rybkin extended this result in [6] for potentials in L{ (R, ) such that (4.2) holds.

loc

In particular, they proved the existence of Ag € L} o (R4) with

zq = 2e([|QII + VIIRQID, (4.12)

such that (4.11) holds.

We will generalize the notion of A-amplitude to obtain a similar representation
formula to (4.11) when my is replaced by mg, for the same class of potentials used
in [6]. This will lead to the notion of A,-amplitude, whose existence we prove and
analyze some of its properties (local uniqueness and stability, among others). This
will allow us to prove the existence of the Born approximation for the fixed-energy
Calderén problem and obtain many of its properties.

Let us start by analyzing the Weyl-Titchmarsh function of the potentials @
defined in (4.8).

LEMMA 4.3. For every k € R\ {0} there exists a function Ag, € L. (Ry) such
that

mao, (—22) — mo(—22) = / Ag, (e > dr,
0

for all z € C; satisfying Re(z) > z,., where z, is any real number such that

ze > 0, 2 >

o, (4.13)
VInl

Proof. This follows from the fact that J, (/) has no non-negative zeros for « fixed
if kK<0. If k>0, then the largest zero zj, satisfies j,, 1 = /K, and there are no
zeros when z is in the region determined by the condition j,; > \/k. Since from
[40, Equation (2.4)] we have the lower bound j. 1 > 2+ jo1 when z > 0, it follows
that J.(y/k) has no zeros if z + jo 1 > y/k and z > 0. In other words, non-negative
zeros are contained in the interval [0,+/k — jo,1] when /k > jo 1, and there are
no zeros in [0,00) if v/k < jo,1. By [51, Theorem 1.3] we conclude the existence of
Aq,. € L. (Ry) where z, is defined in the statement. O

Define
ao(t) = /O 10(s)|ds. (4.14)

The main properties of the A.-amplitude that are proved in this article are
contained in the following two theorems.

THEOREM 4.4. Let Q € A'(Ry) and k € R. There exists a unique function Ag . €
LL(Ry), where s := max(zq, zx), such that

ma(=#) = ma. (- = [ Agu(tyu. (.2 .

for all z € C with Re(z) > s, with u.(-,k) given by (4.9). The function Ag
coincides with Aq, the usual A-amplitude of Q. Moreover,
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i) Agr —Q € C(Ry) and lim;_,q+ (AQ)N - Q)(t)=0.

il) There exists C, > 0 such that, for every x € Ry, the following estimate
holds:

t
[AQur(t) + Qu() = Q(B)] < Cu(1 + ag(t))e! eI / Q(s) = Qu(s)]| ds.
0
(4.15)
iii) If Q € C™(]0,00)) for some m € Ny, then Ag. . —Q belongs to C™1([0, 0)).
iv) If Q > 0 ace. in Ry, Q(L+]-]) € LY(Ry), and k < (jo1)?, then Ag, €
LY (R4).

The function Ag . will be called the A,-amplitude of (). We also prove that the
correspondence that maps a potential to its A,-amplitude is injective, and that its
inverse is locally Holder continuous.

THEOREM 4.5. For every a> 0 the following statements hold.
i) Let Q1,Q2 € A'(Ry).

AQu

wl(0,a) = AQakl00) = Q1l0,a) = Q2(0,a)-

ii) For everyl < p < oo and M >0 there exist e(k,a,p), C1(k,a,p, M) > 0 such
that for every Q1,Q2 € A*(Ry) satisfying

1@l < M 5 =12 [ oun(t) = Agun(t) dt < el ap)

(4.16)
one has

1/(p'+1)
/ |Q1 )| dt < Cl H a p, </ |AQ1 K AQ2 ,;( )| dt) .

The proofs of these results will be presented in Section 6.

4.3. From the A,-amplitude to the Born approximation

Some rather straightforward consequences of Theorem 4.4 in the context of the
Calderén problem are gathered in the next result. Recall our convention:

g() =k = |2[7?Q(~log|z]), = €R4. (4.17)

PROPOSITION 4.6. Let k € R and p be admissible. Take q € X, (B%), and let Q
be given by (4.6). Denote by Ag . the A,-amplitude of Q and write

¢ (z) = M, z € B\ {0}. (4.18)

The following statements hold.
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i) ¢¢ € L%q(IEBd), where ¢y = max {0, max(z2q, zx) — va} (zx and zq were
defined in (4.13) and (4.12), respectively, and the space Léq (B?) in (1.18)).
ii) For all £ € Ny with £ > {,,

olain] = i | @)V laD)? do = (lg. k] = M0, ) or (VR
[S471 Jpa
(4.19)
i) ¢¢ —q e C(B9\ {0}) and ¢ —q =0 in OB, If ¢ € C" (B4 \ {0}) for some

m € Ny then ¢° — q belongs to C™ 1 (B4 \ {0}).
iv) Let p > d/2. There exist constants Cy . > 0 and B4, > 0 such that

62(0) ~ 4(0)] < Con i | @l (4.20)

ERE
v) If p>d/2, k < (jo1)?, and ¢ — Kk > 0 a.e. in BY, then g5 € L1, ,(B?).
Proof. To check (i) simply note that Ag, € LL(Ry) with s = max(zq, z,), then

q; € Lj (B?), by Theorem 4.4. Changing variables ¢ = —logr gives:

— 4S8 1 S S—V,
[ Mautole ™t = s [ lgz@llaPe ) da. (1.21)
. 571 Jo

Let us prove (ii). Assume first that, in addition, x € R\ Specy1(—A). Lemma 4.2
ensures that

e " o(Vke™") = gy, (t, 5) (V).
If @ is given by (4.6) and ¢ > £, then, by Lemma 4.1 and Theorem 4.4,

Aelg, k] — A0, k] = —mg (—(ﬁ + I/d)2) +mg, (—(6 + I/d)2)

—t\2
Ag k() gy, (t, m / Ag.i( _QV‘itiw(\/Ee ) dt.
/ Qunlt)uer @ PAVGE

Changing variables via (4.5) and ¢t = — logr we obtain

' —logr Kr)?
Aelg, K] — N[0, K] = /0 AQw(rleg ) QT;Z((\/\/;)L ra=1qp,

which yields

1 Ag.k(—log |z|)
S| Jpa |z[?

(Aelg, &) = Ae[0, K]) 0o (VE)? = oo (VE|x])? da,

which proves (4.19) when x ¢ Specy: (—A). To see that the result holds only under
the assumption that x is not a Dirichlet eigenvalue of —A + ¢ notice that both sides
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of the above equations can be extended continuously to Specy:(—A) by (1.9) and
Lemma 4.2.

Property (iii) follows from Theorem 4.4 (i) and (iii): Ag, . — @ is continuous on
R, and can be extended continuously by zero to [0, 00). Then ¢3 — ¢ is continuous
on B%\ {0}, and can be continuously extended by zero to B? \ {0}.

Part (iv) follows from estimate (4.15) by (4.17) and a change of variables.
To see this, recall that Q@ € L'(Ry) when p > d/2 (see Lemma 4.1), then
aq(t) < @l i(r,) for all ¢ € R. Hence, there exists 84, > 0 such that
|z|~(2ea(=loglzD+s]) < || =Bax,

We now prove (v). Using a similar estimate to (4.7), one can verify that, if
g € L? ;(BLR) with p > d/2, then Q(1 + |- |)* € LY(Ry) for all o > 0.
Also if ¢ — k > 0 and k < (jo,1)?, then @ > 0 a.e. in Ry. Thus, by Theorem
4.4 (iv) we obtain that Ag, € L'(R.). Using (4.21) with s=0, it follows that
¢ € LY ,(BY). O

rad

5. Proof of the main theorems

5.1. Proof of Theorem 1 and Theorem 2

Consider the function ¢ defined in Proposition 4.6. Since ¢ € L}O (B%), this func-
tion might have an algebraic singularity at the origin. Here we identify ¢} with its
extension by zero to all R%.

Let F € & 4(R?) be a regularization of the function ¢3 in the sense of [28,
Proposition 1 p. 11] (since ¢ is radial, F' can also be chosen to be radial). By
definition, the distribution F' satisfies

(F, ) eryome = (@5 D grvpme s  forall ¢ €C(R\ {0}). (5.1)
It turns out that there exists N € N, such that N > ¢, and*
oo[F, k] = oelq, K], for all £ > N. (5.2)

To see why (5.2) holds, write wa () := |2|* and note that wa,, g5 € L'(B?), so in
particular way, qi € E/,4(RY). The identity (5.1) implies that

and p is a distribution supported in {0}. Since p must be a finite linear combination

of Dirac deltas and its derivatives, there exists N > ¢, such that wq,F' = wa,q;, for
all £ > N. Since ¢, ¢(|2])? ~ |\/kz|* as |x| — 0 by (1.9), we conclude that

or o F = 02 a2, for all ¢ > N,

in the sense of distributions. This proves (5.2).

4Note that, although the moments in the left-hand side must be understood in distributional
sense (see (1.13)), the ones in the right-hand side are given by (4.19)
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As a consequence of (5.2) and (4.19) we have

oo[F, k) = (Mg, 6] — Me[0, K)o (VR)?, for all ¢ > N.

Therefore, by Theorem 3.1 we must have that

F(F) (2m) dz (Aelg, K] — Ae[0, K]) e (VE)* Zea ( - |§L> + Py ([€1%),
=0

where Py is a polynomial. This identity implies that the first term in the right-
hand side is the Fourier transform of a tempered distribution that we denote ¢,
so that we get the identity F(q2)(&) = F(F)(&) — Pn(|£]?). Since Py (|¢[?) is the
Fourier transform of a distribution supported in the origin, ¢2 is also supported in
B4. Also, ¢° coincides with ¢° outside the origin:

ae s {0y = @5 (5.3)

which implies that ¢° € By (here we are using the identification of elements of By
extended by zero, with elements of £, ;(R?)). Finally, again by Theorem 3.1, ¢2
satisfies (1.15). Note that once the existence of the Born approximation at energy
 has been established, Theorem 2 follows from Proposition 4.6 and (5.3).

The proof of Theorem 1 will be concluded once we prove identity (1.17). The
conditions on « and ¢ in the statement guarantee that the operator A, ; — Ao is
well defined. Recall that P, 4 denotes the orthogonal projection of L?(S¢~1) onto
H¢, and that Py qf = Praf. Therefore we have that

oo

<z7 (An,q — AH,O)€<2>L2(S(1—1) = Z()\Z[% KZ} — )\Z[07 fi]) <PZ,de§17P€,deC2>L2(gd71) .
£=0

(5.4)

The absolute convergence of this series is immediate from the boundedness in
L2(S471) of A,y — Awo and the estimate

o0
Z ’<P2,an P&decﬁLz(sdﬂ) < ||641||L2(gd71) ||6<2||L2(§d—1) < 0.
=0

Since 2(¢; - () = —(|€]* — 2), Lemma B.3 shows that the series in the right-hand
side of (5.4) coincides exactly with the series given in (1.16) which concludes the
proof of (1.17).

5.2. Proof of Theorem 3
Recall Uy := {z € BY: b < |z| < 1}. By (4.18), (4.17) and (5.3) we have

0(@) = r = [2[2Q;(~loglal),  qPu(2) = || ?Ag,n(~log|el), e B

Then the uniqueness result follows immediately from Theorem 4.5(1) with a =
—logb.
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For the stability notice that if max;—1 2 ||g; HLp(Ub) < K, then one can choose a
constant M >0 (dependent on k) such that (4.16). Applying Theorem 4.5(ii), and
letting a = — log b, we obtain

[ o) —e@lela = [0 - eala
b<|z|<1 0

as well as the analogous identity for the difference of the Born approximations and
the A,, amplitudes. Bounding above and below the weight |z|>~¢ finishes the proof
of the theorem.

5.3. Proof of Theorem 4

We assume from the start that £ < —||q|[ o« (ga), so that

q(z) — k = q(z) + |&| >0, r € B

Let (1, (2 € C% satisfy (3.2). Then (—A—r)e¢, = 0 for i = 1,2 and by Alessandrini’s
identity (2.8) we have

<@, (Aq,n - AO,H)642>L2(sd—1) = / q(z) €¢ (z)v(z)dz,

Bd

where v satisfies the equation on the right of (2.9) with f = e,. Notice that v —ec,
satisfies the equation

(_A"i_q_li)(/u _642) = —qeg, in Bd>
v =0, on S4-1,

so can rewrite the previous equality as
(€, (Mg — AO,K)642>L2(S'171) - Fq(§) = — (¢e¢;» Rq(“)(qe@»m(w) .

Since ¢ — k> 0, we have that R,(k)(gec,) = [~ e " =2197%)(ge¢, )dt. Writing the
semigroup via the Feynman—Kac formula [60, Section 1.3] and exchanging integral
and expectation (which is justified by Fubini and ||gec, ||L°°(Bd) < 00) we obtain

Ryw)aec) o) = 382 | [ taecomen (- [ g ol

where W; is a standard d-dimensional Brownian motion and 7ga is the exit time of
B?. Therefore
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Rawaec) @] < 0, ™ e w0l (4 (11 lalmao) ) ]

gl oo ga o
< %Er |:/ (XBdeRe Cz)(Wt) €xXp
0

(- (o)) ]

d
=l e oy RE” (= 1l + Nl ) ) (Xaeemeca) (@),

where RE*(—22) is the inverse of —A + 22 defined in L2(R¢). This operator in the
whole space has the Green function

d
2

G_,2(r) = (2m)~ <E)Vd K,, (zr), z >0,

r

where K, is the modified Bessel function of order v. Hence, with z =

|H| - ||q||L00(]Egd) > 0, we have

< (lge;1 5 IRq(k)(qec,)I) 12 (pa)
= <|Q| €_Re(as |Rq(l€)(qe<2)|>L2(Bd)

2
<l [ enec@) [ G-y = aheneca(v)
B B
X dydx

Nl [ [ GoalyDenecw)dds
B4 J —z+Bd

2
< el B | Goallyenec ().

’ <qa’ Rq(lﬁ) (q€C2 )>L2 (Bd)

Once again, the conditions (3.2) on (3, (2 imply that they must be of the form

lex —n+@ —ler K| + |€|

52 1 2 e

I
=

where E 1 € R? is any unit vector perpendicular to &. Since our last integral is

2 A~ ~
invariant under rotations of Re (s = 1/ |x| + %SL, we can choose £, to be 1, so
that when using polar coordinates we obtain
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/ G_.2(ly])ere s (v)dy
2Bd

_ |Re 2|7 cos @ in d—2 d 1 r
—(d2)// 22(r)e (sin 6) ded

Vd |Re<2| ) -1
/ |Re<2\ e

<|Re§2 ) / Ky, (zr) L, ([Re Go| r)rdr

“ o (mal)
|Rng|2—z2 [Re (2]

x <_ (|Rez@|> + 2 |Re Gof Ko, (22) 11,41 (2 [Re Gal)

M\n.

+22K,,41(22)1,,(2|Re C2|)> .

The proof is finished by the asymptotics [61, Section 7.23]
Ko@) = | Ze (1t o1)), L) =1/——e"(1+0(1), o
N 2z ’ AN Vs '

6. Proof of Theorem 4.4 and Theorem 4.5

In this section we present the proofs of our two main auxiliary results.

Proof of Theorem /.4. Start by noticing that, by (4.11) and Lemma 4.3, for all
z > s = max (zq, 2x) one has

ma(~22) — ma, (~2%) = mo(~2%) — mo(~22) — (mg, (~2%) — mo(~22))
= | (4al) = Aq. () > ar.

where Ag — Ag, belongs to LL(Ry). Let 1, (+;x) € L*(R) denote the Jost solu-
tion of (A.1). This solution is characterized by identities (A.2) and (A.3). Using
Lemma A.3 iv) we can write

1 oo
ma(=2) = ma. (<) = T / To(Aq — Ag,) (e dt,

for all z > s. Then, by Lemma A.2 iv), we have

ma(=#) ~ma.(~) = [ 01T (g~ A0.) (015
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for all z > s. This identity can be analytically extended for all z € C such that
Re(z) > s, which proves the first statement of the theorem with

Agr = G,'T (Aqg — Aq,) - (6.1)

On the one hand by [57] we have always that Ag—@Q € C(R4), and that Ag—Q €
C™T2(Ry) if @ € C™(Ry) for all m € No.

On the other hand, by Lemma A.2 and Lemma A.3, G — Id and 7, — Id are
both Volterra operators with a smooth kernel on D, and thus satisfy the conditions
of Lemma A.1. Therefore Ag . — (Ag — Ag,.) belongs to C([0,00)) always and to
C™1(]0,00)) if @ € C™([0,00)) with m € Np; the analogous result for Ag , — Q
follows immediately (recall that @, and hence Ag,, are smooth). The fact that
Ag.x — Q can be extended continuously by zero to [0,00) follows from estimate
(4.15) that we now prove.

Using (A.9) and (A.14) gives

(G2, — 1d) F(8)] < [x]C, / |F(s)|ds, (6.2)

for some C,, > 0. Applying this with F' = Ag — A, yields the estimate

[Ag.s(t) = (Ag(t) — Aq,. (1)] < IfiIC’n/0 [Aq(s) — Ag.(s)lds.  (6.3)

Estimate (4.15) follows adding and subtracting @, — @ in the LHS of (6.3) and
using the estimate

[4Q. (1) = Q1(1) — (Aq, (1) — Q2(2))] (6.4)

< (ag, (t) + ag, (t))e' @@ M Faa: 1) / Q1 (s) — Qa(s)| ds,

twice, which can be found in [23, Section 4.1] (recall that ag was defined in (4.14)).

It remains to prove property (iv). If Q) is positive, the operator Hg = (—074-Q(t))
has no negative eigenvalues nor a zero resonance, as remarked in [51]. Then it follows
from [51, Theorem 3] that Ag € L'(R). Also, we have Ag, € L'(Ry) if k < (jo,1)?
by Lemma 4.3, since z, can be taken to be 0. It follows that Ag , € L'(R4) by (6.1),
since G 17, is bounded on L'(Ry) by Lemmas Appendix A.2 and Appendix A.3.
This finishes the proof of the Theorem. O

Proof of Theorem 4.5. The first statement was proved by Simon in [57, Theorem
1.5] for the case k=0. The case k#0 follows from this and (6.1) by the local
injectivity of the operators G '7., which satisfy that g;17;F|(0,a) vanishes iff
F|(0,q) vanishes due to G., G, Ty, 7,7 being Volterra operators (see Appendix A).

We now prove the stability estimate. Under the assumptions for @; j = 1,2 in
the statement, by [23, Theorem 5.1] we have that

/ |Q1(t) — Q2(t)] dt < C(a, M) </ |Ag, (t) — Ag, ()] dt)l/(p H), (6.5)
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provided that

/ | A1 (t) — As(t)] dt < min(1, a) P/,
0

By (6.1) we have that Ag, —Ag, = T, G (AQ, x — A, .x), and therefore it follows
that

[ 10,0~ Au(0)] dt < Clam) [ 40, n(t) — Aguun(0)] at.
0 0

by Lemma A.3 and the boundedness of G, in L*(R;) (see Lemma A.2). Inserting
this in (6.5) finishes the proof of the theorem. O
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Appendix A. Jost solutions and intertwining operators

In this Appendix, we gather some properties of Jost solutions and related operators
that are used in the proofs of Theorem 4.4 and Theorem 4.5. Given k € R set
Qx(z) := —Kke™2%. For every z € C,, the problem

(=02 + Qu)u, = —2%u,, on Ry, (A1)
possesses a unique solution v, (-; k) € L?(R) satisfying the asymptotics:
Yo (x; k) = e ** (14 0(1)) as x — oo. (A.2)

These solutions are called the Jost solutions of equation (A.1), and are known to
satisfy the identity

¥, (x5 k) = e *F —l—/ K (x,t)e *dt, (A.3)
where
K, cC®({(x,t) eR*: 0 <z < t})
is the Gelfand-Levitan kernel associated to the smooth potential @, see for instance

[44, Chapter 3]. By [44, Lemma 3.3.1], this kernel satisfies the estimate

<= e~ @) forall 0 <z <t (A.4)

Set D := {(z,t) e R?: 0 <t < x}, let G,, € C®°(D) be given by
2x—t
Gi(z,t) = 4K, (t,2x — t) + 2/ K, (t,s)K(t, 2z — s)ds, (A.5)
¢

and define, for F € L _(R;):

loc
G.F(z) := F(z) + / ' G (z, t)F(t) dt. (A.6)
0

This is a Volterra integral operator. In the next result, we gather some simple
properties of this class of operators. Recall that, for s € R, L}(R,) stands for the
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F e L (Ry) such that

1 2y ey ;:/O |F(z)[e™** dz < oo.

LEMMA A.1. Let H € C*°(D); the Volterra operator of kernel H is defined as
x
TuF(x) ::/ H(xz,t)F(t)dt, Fe Ll (Ry).
0

For every x € Ry, it satisfies
| TaE L (0,2)) < </ sup |H(y7t)|dy> 1M L1 (0,2))-
0 te(0,y)

Moreover, Ty maps L (R into C([0,00)), and C™([0,00)) into C™+1(]0, 00)) for

loc

every m € Ng. If, in addition, there exist Cy >0 and g € L%/Q(RQ such that

|H(x,t)] < C’He_(”_t)|g(x — 1), for all (z,t) € D;

then Ty maps L. (Ry) for all zg > 0 into itself, and
[T Flley @) < Crllgller @ lFllL @), for all F e L, (Ry).

Note that G, : Li (Ry) — L _(R;) is bounded by the preceding result, since

the kernel G,; is smooth on D. In fact, G, enjoys more precise mapping properties.
First, let zp > 0 and define the linear functional

T (F)(z) := /000 F(2)¢.(z; k)% da, FelLl (Ry). (A.7)

This integral is well defined for all k € R and z > z by (A.2).

LEMMA A.2. Let k € R.
i) The kernel G,; satisfies the estimate

sup |Gr(z,t)| < |k|Cre™®, forallx € Ry, (A.8)

o<t<zx

[

where Cy, = e (1 + |K|<5-).
ii) For every zy > 0,

Gr: Ly (Ry) — L1 (Ry)

s a bounded isomorphism.
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iii) G- — Id is a Volterra operator whose integral kernel G, is smooth on D
and satisfies

sup |G(z,t)] < |k|Crel®Ce™®  for all z € Ry,
0<t<z

In particular, for every F € Ll (R}) and x € Ry,
x
1G5 (F)(z) = Fla)] < |/‘0|Cn6‘”|0”6_1/ [F(#)] dt. (A.9)
0
iv) For every zo >0 and F € L} (Ry),
o0
T (F)(z) = / G (F)(z)e ?** du, for all z > zp.
0

Proof. To prove (i) use (A.4) to find

4 sup |K(t, 22 — )| < |wle T e,
o<t<z

and

2x—t 1ElN9

2 sup / | Ky (t,8) K, (t,22 — s)|ds < (rle 7 sup (z — t)e”2(+2)
o<t<z Jt 4 o<t<a

I

< culkle T e,
where the last estimate follows from the inequality z < e® for x > 0, with ¢, :=
Lﬂe%. This proves (A.8) with C,, = el®I/4(1 + ¢,).

The fact that G, is bounded in L] (Ry) follows from (i) and Lemma A.1, and the
existence of its inverse follows from the convergence of the Neumann series, which
implies that:

o

Gt = (-1)"(Gx — 1), (A.10)

n=0

In order to check that the Neumann series converges, note that (G, — Id)™ is a
Volterra operator whose integral kernel,

Gﬁ(m,t):/ / / . Gu(z,21)G(z1,22) ... Ge(Xp_1,t)dzp_1 ... daoday,
o Jo 0

satisfies
Co !

(n—1)!

IG™(x,1)] < Citead (A.11)

To see this, use (A.8) to estimate

x Tp—2
|Gy (z,t)| < C’:|/€\”671/ e / e "t day_q...dxy = CL|R|"e™"T™(1),
0 0
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where T(f)(z) := [; e~ f(t) dt. One can show by induction that

T (1)) = (1 - e < (A12)

n! n!

Therefore, G- ! — Id exists and it is a Volterra operator whose kernel G,. is smooth
on D and satisfies:

oo
Z |G7 (2,1)] < |k|CpelICre

This completes the proofs of (ii) and (iii). Finally, (iv) follows from (A.3) and (A.7)
by straightforward computation. O

Recall the definition of the Laplace transform:

2) = /OOO Flz)e™ da.

For k € R, define r,(t) := 2K,(0,2t); by (A.3) we have that

P, (0;8) =1+ L(r:)(22).

Given f,g € L*(R;) we denote

f gl / fz—t)g

Recall that Lg(2)Lf(z) = L(f *xg)(2).
Let 7. := 2r, + r, x 7, and define the Volterra operators

Tog(z) = g(z) + / Tl — D)g(t) dt. (A.13)
0
LEMMA A.3. Let k € R.

i) For every g € L} (R4) it holds that

Trg(@) — 9(x)] < Culsd / " lg(o)]dt. (A.14)

ii) For every zg > 0, (T —1d) : L (Ry) — L. (R4) is bounded with norm
bounded by |k|C,.
iii) The inverse operator T, 1 exists and satisfies, for every x € Ry and F €

Llloc(R-‘r)"
—1 zCy
||7; F||L1((O,w)) se ”FHLl((O,x))' (A.15)

iv) Let zg > 0. For every g € L, (Ry.) it holds that

L(Tr9)(22) = ¥.(0,x)?Lg(22), for all z > z. (A.16)
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Proof. The function r,(x) is smooth on Ry and by (A.7),

)] < Il e, (A17)

and

|x] [x]

2

ri % ()] < / Ire(x — 8)||re(s)|ds < HQi/ e 2 ds = K25 ge 2T,
0 1/ 4

These estimates imply that
@) < [RIClo + 1), (A18)

Estimate (A.14) is a direct consequence of this. Property (ii) follows from (A.18)
and Lemma A.1. To prove (iii) denote M, g = 7 * g, we show that the Neumann
series

(o)

> (=1 mp (A.19)

n=0

converges in operator norm. For n > 1, the integral kernel of M} is given by

T Tn—1
my(x,t) == / Te(x — 21)- / T (@Tp—1 —t)dap_1...dx;.
0 0

Since by (A.14) |7.(z)| < Cklk| for all x € Ry, one has the estimate:

n

(e 8)] < (|8Cx)" 2, for all (t,2) € D.
n:

This shows that the series (A.19) converges in operator norm in L'((0,x)) for
every ¢ € Ry, as claimed, and that (A.15) holds. Finally, property (iv) is a
straightforward computation:

¥.(0,K)2Lg(22) = Lg(22) + 2L(g % 1) (22) + L(g * 7 * 72 )(22) = L(Tr9)(22).

O

Appendix B. Spherical harmonics and projectors

In this appendix, we present some explicit computations involving spherical har-
monics. Recall that a d-dimensional spherical harmonic of degree ¢ € Ny is the
restriction to the sphere S~ € R? of a complex homogeneous polynomial P in d
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variables of degree ¢ that is harmonic, i.e.
AP(z) =0, xe€R%

These functions form a vector space that we denote by H¢, of dimension

_ — — 2! —3)!
N&d:_dimf);l_(£+d 1)_(£+d 3)_(£+d D!+ L+ d—3)!

14 £—2 2(d —2)!
Spherical harmonics of different degrees are orthogonal in L2(S?~!). In fact,
Sd 1 @ 5;)[7

LeNy

and, moreover, spherical harmonics diagonalize the Laplacian on the sphere:
—A3471|ﬁz¢ =£(€+d—2) Idﬁ?’ Vel € Np.

Important examples of spherical harmonics are the restrictions to 2 € S~ of the
functions:

(z- Q)" provided ¢ € C?, ¢-¢=0.
This follows from:
Ale-Qf =t =1)(z- Q¢ =0, zeR™
The orthogonal projector Py 4 : L?(ST1) — §¢ is given by

N,
Peal @) = g1 [, | Peale-)f @)y, f LS,

where P 4 are the generalized Legendre polynomials

¢
Pra(t) = (~1)'Ry(1 — ¢?)~va=3 <ci> (1—¢2)ftvaz,

and
d—2 . (dT) ‘ d—1| _ 27Td/2
T2 0+ 1) T T@/2)

In particular, the function
Nya
Zi(z-y) = = I‘Pe a(z - y) (B.1)

is a reproducing kernel for ﬁ?. The normalization in the definition of P 4 ensures
that P, 4(1) = 1, and ([5, Equation 2.67])

S P a1 — = s (B.2)
|Sd_1| . m,d n,d _Nm7d m,n- .
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It also follows from the definition that

Pra(—t) = (=1)"Pra(t). (B.3)

A spherical harmonic Y, € ¢ is invariant by all rotations that fix £ € S?~1 if and
only if it is a multiple of Py q(x - £).
Recall that, given any ¢ € C? such that ¢ - ¢ # 0, we write:

E:: C.

1
VG- ¢
LEMMA B.1. The following statements hold.

i) Let f: C — C be holomorphic and let x,z € C? satisfy x-x # 0 # z- z, then

1

[ P =152 Pa@3) [ Praison - e

1
|82 RyPrg (7 2) / O F(B)(1 — 2)fHva by,
-1
(B.4)

ii) Let fr € 5% and z € C%, then

21—Zﬂ_d/2£! c

fey) (y-2)"dy = fE(2), (B.5)

Sd—1 F(f + %)
where fi,c stands for the analytic extension of fo to C?.

Proof.

i) We start by noting that the second equality follows directly from the defi-
nition of P4 and integration by parts [ times. For z,z € R?\ {0} the first
equality is known as the Funk—Hecke Formula [5, Theorem 2.22], since both
sides are complex analytic on x, z whenever z-a ¢ (—o0,0] and z-z ¢ (—o0, 0],
then they are equal on the same set. Continuity extends the equality to

ii) For z € S?! this is a special case of the Funk-Hecke Formula [5, Equation
2.65]. Homogeneity of degree £ of both sides extends the equality to z € RY,
and analyticity to z € C.

O

The next result gives an explicit expression of the orthogonal projection onto
spherical harmonics of the function

ec(r) :i=e", ¢ec
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LEMMA B.2. Let ¢ € C% and ¢ € Ny, then

0@/ (2= ) o (VEQ) Pra(2-0) ¢ c#0,
Praec(x) =

(z-¢Q)f
T ¢¢=0.

Proof. Assume ¢ - ¢ # 0 and set g(t) = V<!, then by (B.4) we have

N, N, .
Pe,aec(z) = ﬁ . Pra(z - y)ec(y)dy = \ST% s Pra(z-y)g (y - C) dy

_ 872 NeaRe

1
|Sd-1] Py g (m . g) / g9 (1 — t2)z+”d7%dt

-1
s P (r-0) (VEO)' [ 0yt

Using now the integral representation for the modified Bessel functions:
1 Z\V ! 1
S N
(2) Vil (v+3) \2/ ( )

and
42 _ I'(d/2)
[S4=1  Var((d - 1)/2)

we find that the above computation simplifies to

>Vd Ioyo, (m) Py (CC : Z) .

Pr.aec () = T(d/2)Ne.a <<2<

Now assume ¢ - ¢ = 0. In this case, for every n € Ny, the function S?! 5 2 —
(z-¢)" € C is an element of . The result now follows from the fact that

ccla) = Y-

n!
n=0

These tools allow us to prove the following result.

LEMMA B.3. Let (1,(s € C? such that ¢1-¢1 = (2-Co = —k € C and 7 € Ry.. Then:

Joiv, (VET)? .
el 7, (S22) ko
Prdercys Pedere, ) p2gga—1y = ¢ ¢
< i 2/ T2d (Cl.Q) : k=0
T+ 9o\ 2
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Proof. Assume first that x #0. By Lemma B.2 it follows that

<Ma Pl,dergz >L2(§d—1)

=@ (=) e V)

x Py q (:L' . (Ag) dx

Py q (96 -G

N———

d—1

2\ ) -
— T(d/2)?N2, [ —= 1), / P, ( )
@282 (2) 0 (V) [ Pa (a6
X Pg’d (37 . @) da:,
where we have used the identity I,(i-) = “J,, and the fact that /—k =

—sign(Im k)i/k. Taking into account (B.4), (B.2), and (B.3) we find that

/Sdi1 Py q (y . CAl) Pya (y . 52) dy = }Sd—2| P (61 ) 62) /11 Po(t)2(1 — 2)7— 3 dt

_ s, (cl.cz) _

Nﬁ,d K

Hence, we obtain

- B 2 2Vd 9
<Pe,deT<17’Pe,de’l”<2>L2(Sd71) :lgd I‘F(d/2)2N£,d (NE) JZJrVd (T\/E)
EES
K

_jqd—12 2 vy Jerva(VET)? G1- G2
=[P 2) 4 TN ZM( . )

b (52)

—(2n)

For k=0,

T‘%

(Prtere Praencs) sy = /S ) )y,

Since (y - ¢1)" € H¢, we can use (B.5) to obtain

N e - 2T (@-@)f
[ o6 eay = s (52

and the result follows. O
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