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The recent increase in access to compute resources and algorithmic improvements are motivating 

significant research into artificial intelligence (AI) applied to automating and improving material 

analysis.  Deep learning, a subset of AI, allows computer systems to autonomously learn patterns in data and 

construct efficient decision rules for tasks including classification, regression, or segmentation.  In material 

analysis, these tools have largely been applied to techniques requiring analysis of data collected in the form of 

images [1,2].  Electron backscatter diffraction (EBSD) is one such technique benefitting from these recent 

efforts to improve material analysis by leveraging deep neural networks [3–7].  EBSD is an SEM-based 

technique involving the capture of 2D diffraction patterns from the surface of a well-polished sample 

[8].  Within the last decade, advancements in EBSD equipment have enabled the capture of high definition 

diffraction patterns at rates exceeding 3,000 Hz [9].  This creates significant opportunities for increasing the 

amount of information that can be ascertained from a sample, as well as opens the door for training data 

intensive deep neural networks. 

Deep neural network-based classification of the diffraction patterns is motivated by Hough-based 

EBSD’s susceptibility to structural misclassification; a failure mode that modern EBSD can encounter even 

when the researcher has complete knowledge of the sample prior to beginning analysis.  While several methods 

to improve phase-differentiation have been proposed, each still requires pre-selection of phases and additional 

data (e.g. chemistry or simulated diffraction patterns) to be available.  In contrast, deep neural network-based 

methods have demonstrated effective phase differentiation [5] and identification of phases to the space group 

level [4] without the need for further information.  The deep learning approach to EBSD diffraction pattern 

analysis is capable of these more advanced analyses because it uses all information in the image when assessing 

a diffraction pattern, whereas traditional Hough-based EBSD pattern analysis discards a significant amount of 

information. 

To promote adoption of these tools, it must be demonstrated that the deep neural network-based 

approach is not prone to error with changes in the acquisition parameters.  Moreover, knowledge of the 

conditions for which a model fails can guide the future collection of labeled training data to improve 

subsequent versions.  In this work, the deep neural network model (i.e., a convolutional neural network) is 

trained using diffraction patterns captured with a fixed geometry and SEM settings, and a parametric study is 

performed to develop an understanding of model performance as several of the most common EBSD operating 
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conditions are varied.  The specific parameters are frame averaging, detector tilt, detector distance, accelerating 

voltage, and pattern resolution.  With regard to parameters that directly affect the time to collect each pattern 

and therefore complete a map, such as frame averaging and pattern resolution, the ability to collect the data 

more rapidly without a significant reduction in performance is of interest.  With respect to parameters such as 

detector tilt, it is important to determine if the model is susceptible to minor or major changes from the training 

conditions.  Parameters such as detector distance and accelerating voltage can cause much more dramatic 

changes to the EBSPs, and it is therefore necessary to assess their influence, and establish suitable limitations 

to enable this approach.  The effect of changing these parameters is tested using new EBSD patterns collected 

from one material from each of the six space groups in the model and a dual-phase 2205 duplex stainless steel 

for visual demonstration.  Each time one parameter is varied, the EBSPs are re-collected, and the CNN used 

to reassess the space group identification.  Ultimately, the model is found to retain a high classification 

accuracy even with significant changes to the diffraction conditions and therefore the EBSPs. 
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Figure 1. Comparison of feature detection with Hough-based EBSD and the trained CNN. (Top row from left 

to right) Experimental EBSP from NbC (space group 225; FCC structure), Hough-based feature detection, and 

gradient-weighted class activated map. (Bottom row from left to right) Experimental EBSP from Ni3Al (space 

https://doi.org/10.1017/S1431927621008886 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927621008886


2492  Microsc. Microanal. 27 (Suppl 1), 2021 

 

 

group 221; L12 structure), Hough-based feature detection, and gradient-weighted class activated map. The 

importance scale for the heatmaps goes from dark blue (low) to dark red (high). 

 
Figure 2. Visual overview of the effect frame averaging during pattern collection has on CNN classifications 

for duplex steel. (a) electron image of the region of dual-phase 2205 duplex steel.  (b) Hough-based EBSD 

phase map of the fcc (225) austenite (blue) and bcc (229) ferrite (yellow).  (c) phase map generated from EBSD 

patterns collected with no frame averaging applied (i.e. one frame). (d) phase map generated from EBSD 

patterns collected with five frame averaging applied.  (e)  phase map generated from EBSD patterns collected 

with ten frame averaging applied.  (f)  phase map generated from EBSD patterns collected with twenty frame 

averaging applied.  (g) phase map generated from EBSD patterns collected with thirty frame averaging 

applied.  (h) Plot showing the fraction of patterns indexed to each space group as a function of frame 

averaging.  Thirty frame averaging is the default parameter and is designated as such by the blue star for space 

group 225 and a yellow star for space group 229.  Trend lines are fit with a 3rd order polynomial. Scale bar 

25µm. There are 3,848 diffraction patterns (pixels) in each phase map. 
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