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Abstract. Dimer models are a combinatorial tool to describe certain algebras
that appear as noncommutative crepant resolutions of toric Gorenstein singularities.
Unfortunately, not every dimer model gives rise to a noncommutative crepant resolution.
Several notions of consistency have been introduced to deal with this problem. In this
paper, we study the major different notions in detail and show that for dimer models on a
torus, they are all equivalent.
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1. Introduction. If X is a three-dimensional normal Gorenstein singularity
admitting a crepant resolution X̃ → X , then one is interested to describe the bounded
derived category DCohX̃ of coherent sheaves on X̃ . A well-known result by Bridgeland
[4] shows that this category only depends on the singularity and not on the particular choice
of crepant resolution.

In many cases, there exists a tilting bundle in U ∈ DCohX̃ such that DCohX̃
is equivalent as a triangulated category to the derived category of finitely generated
A-modules DModA, where A = EndX . To model these algebras without referring
to a commutative crepant resolution, Van den Bergh [23] introduced the notion of a
noncommutative crepant resolution (NCCR) of X . This is a homologically homogeneous
algebra of the form A = EndR(T), where T is a reflexive R-module, with R = �[X ] the
coordinate ring of the singularity. An NCCR is, however, far from unique and in general
there are an infinite number of different noncommutative crepant resolutions.

If we make two restrictions, the problem becomes more manageable. First, we assume
that X is a toric three-dimensional Gorenstein singularity. This automaticly implies the
existence of a commutative crepant resolution. Secondly, we assume that the tilting bundle
is a direct sum of nonisomorphic line bundles. It was noticed in string theory [8, 10, 11]
that, under these conditions, the algebra A can be described using a dimer model on a torus.

This means that A is the path algebra of a quiver Q with relations where Q is embedded
in a two-dimensional real torus T such that every connected piece of T \ Q is bounded by
a cyclic path of length at least 3. The relations are given by demanding for every arrow a
that p = q where ap and aq are the bounding cycles that contain a.

This nice description follows from the fact that the algebra A is a toric order, a special
type of order compatible with the toric structure, and Calabi-Yau-3 (CY-3), i.e. it admits a
self-dual bimodule resolution of length 3. In [2], it was shown that every toric CY-3 order
comes from a dimer model.

Not every dimer model gives a noncommutative crepant resolution of its centre. To do
so, it needs to satisfy some extra conditions called consistency conditions. In recent years,
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several quite different consistency conditions were proposed such as cancellation [7],
nonintersecting zig and zag rays [16], consistent R-charges [15] and algebraic consistency
[5].

The aim of this paper is to show that for dimer models on a torus, all these consistency
conditions are equivalent. Moreover, the condition of being an order and the condition
of being an NCCR are also equivalent to these consistency conditions. The situation for
the Calabi-Yau condition is less clear: it was shown by Davison [7] and Broomhead [5]
that cancellation and algebraic consistency imply the CY-3 condition, but there is no proof
for the other direction. We will give an example of an infinite dimer model that is not
cancellation but satisfies a suitable generalization of the CY-3 property to the infinite case.
However, no finite counterexamples are known.

If one broadens the definition of a dimer model to allow other compact surfaces, the
consistency conditions are no longer equivalent. We will also discuss the differences for
those cases.

The paper is organized as follows. We start with a preliminary section on quivers and
dimer models. Then we introduce the cancellation property and discuss its relation with
the CY-3 property. In the other sections, we introduce each time a notion of consistency
and show that it is equivalent to the cancellation property for dimer models on a torus. We
end with a summary section which gives an overview of which equivalences hold for each
type of surface.

2. Preliminaries.

2.1. Quivers. A quiver Q is an oriented graph. We denote the set of vertices by Q0,
the set of arrows by Q1 and the maps h, t assign to each arrow its head and tail. A nontrivial
path p is a sequence of arrows a1 · · · ak such that t(ai) = h(ai+1), whereas a trivial path is
just a vertex. We will denote the length of a path by |p| := k and the head and tail by
h(p) = h(a1), t(p) = t(ak). A path is called cyclic if h(p) = t(p). Later on we will denote
by p[i] the n − ith arrow of p and by p[i . . . j] the subpath p[i] . . . p[j].

�������	 �������	p[n−1]�� �������	p[n−2]�� �������	p[1]�� �������	p[0]�� and p = p[n − 1]p[n − 2] . . . p[1]p[0].

A quiver is called connected if it is not the disjoint union of two subquivers and it is strongly
connected if there is a cyclic path through each pair of vertices.

The path algebra �Q is the complex vector space with as basis the paths in Q and the
multiplication of two paths p, q is their concatenation pq if t(p) = h(q) or else 0. The span
of all paths of nonzero length forms an ideal which we denote by J . A path algebra with
relations A = �Q/I is the quotient of a path algebra by a finitely generated ideal I ⊂ J 2.
A path algebra is connected or strongly connected if and only if its underlying quiver is.
We will call a path algebra with relations �Q/I positively graded if there exists a grading
R : Q1 → �>0 such that I is generated by homogeneous relations.

2.2. Dimer models. A dimer model Q is a strongly connected quiver Q enriched
with two disjoint sets of cycles of length at least 3: Q+

2 and Q−
2 , such that

DO Orientability condition. Every arrow is contained exactly once in one cycle in
Q+

2 and once in one in Q−
2 .
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DM Manifold condition. The incidence graph of the cycles and arrows meeting a given
vertex is connected.

The Euler characteristic of a dimer model is

χQ := #Q0 − #Q1 + #Q2 with Q2 = Q+
2 ∪ Q−

2 .

From a dimer model, we can build a topological space |Q| by associating with every cycle
of length k in Q2 a k-gon. We label the edges of this k-gon cyclicly by the arrows of the
quiver and identify edges of different polygons labelled with the same arrow. If Q satisfies
(DO) and (DM), then |Q| is a compact orientable surface with Euler characteristic χQ ([2]),
such that the cycles in Q+

2 will be oriented anticlockwise and those in Q−
2 clockwise. We

say that Q is a dimer model on |Q| and if χQ = 0, we speak of a dimer model on a torus.
To every dimer model, we can associate its Jacobi algebra. For every a ∈ Q1, we set

ra = p+ − p−, where p±a ∈ Q±
2 , and then set

AQ := �Q/〈ra|a ∈ Q1〉.

This algebra can be expressed in terms of a superpotential but we will not pursue this
direction.

A dimer model is positively graded if there is a degree map R : Q1 → �>0 such that
all cycles in Q2 have the same degree. This turns AQ in a positively graded algebra.

Given a dimer model Q on X = |Q|, we can look at the universal cover X̃ → X . We
can lift the embedding of Q in X to obtain a possible infinite dimer model Q̃, which we
will call the universal cover of Q.

REMARK 2.1. Usually, the definition of a dimer model starts from the dual of Q: a
bipartite graph on a surface, with nodes Q2 and edges Q1, only after that the quiver is
constructed by taking the dual. We do not do this because the switching can sometimes
cause confusion. We do keep the name dimer model, as it is most commonly used in the
literature.

EXAMPLE 2.2. Below, we give four examples of dimer models: the first is a dimer
model on a sphere, the second and the third on a torus, and the last on a double torus.
Arrows and vertices with the same label are identified.


��
����1

��

��
��
����2

����
��

��
��

�

��
��
����5

��������

���
��

��
��

��

��
����6

		




��
����4

��������

��


��
����3





��


��
����1
a

��



�
��

��
� 
��
����1

����
��
��


��
����3 ��

����
��
��


��
����2

		���������



�
��

��
�


��
����1
a ��

b






��
����1

		���������

b



 
��
����1
a

��
��
����2

��


��
����1
b

��


��
����3

c





d
��


��
����4�� ��
��
����3

c





d
��
��
����1

a ��
��
����2






��
����1
b��


��
����1
a

��

b
��


��
����1
b

��
��
����1

c
��
��
����1

a
��


��
����1

d
��
��
����1

d ��
��
����1
c ��
��
����1

������������������

In the first example, the cycles of Q−
2 (Q+

2 ) are the (anti-)clockwise triangles of the
octahedron, and in the last three examples, the cycles Q−

2 (Q+
2 ) are (anti-)clockwise

triangles, quadrangles and pentagons.
Using the results of this paper, one can check that the first example is an order but not

CY-3, the second neither an order nor CY-3, the third both an order and CY-3 and the last
CY-3 but not an order. The third is the only NCCR and its centre is the coordinate ring over
the cone over �1 × �1.
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3. Cancellation. A path algebra of a quiver with relations is called a cancellation
algebra if for every arrow a and any two paths p, q with h(a) = t(p) = t(q), we have pa =
qa =⇒ p = q and for any two paths p, q with t(a) = h(p) = h(q), we have ap = aq =⇒
p = q.

For Jacobi algebras from dimer models, we can restate the cancellation property. The
relations in the Jacobi algebra AQ imply that all cycles in Q2 are equivalent: c1p = pc2 for
every p with h(p) = t(c1) and t(p) = h(c2). This implies that the algebra AQ has a central
element:

∑
c where we sum over a subset representative of Q2 that contains just one cyclic

path c with h(c) = i for every i ∈ Q0. We will denote this central element by �. For every
arrow a, we can find a path p such that ap ∈ Q+

2 and hence ap = h(a)� and pa = t(a)�.
The cancellation property states that the map

AQ → AQ ⊗�[�] �[�, �−1]

is an embedding. This tensor product is the algebra obtained by making every arrow
invertible (i.e. for every a, we have an a−1 such that aa−1 = h(a) and a−1a = t(a)). This
algebra is the localization of AQ by the Ore set {�k|k ∈ n} and we denote it by ÂQ.

We will take this property as the starting point from which we are going to prove
the equivalences of the different consistency conditions. But first we need to discuss the
relation between cancellation and the Calabi-Yau property.

4. The Calabi-Yau-3 Condition. DEFINITION 4.1. A path algebra with relations A
is Calabi-Yau-3 (CY-3) if A has a projective bimodule resolution P• that is dual to its third
shift

RHomA−A(P•, A ⊗ A)[3] ∼= P•.

Note that A ⊗ A has two-bimodule structures: the outer and the inner. The outer one is used
to define what a homomorphism to A ⊗ A is and the inner one to turn RHomA−A(P•, A ⊗
A)[3] into a complex of A-bimodules.

From this definition, it is clear that a CY-3 algebra has global dimension 3 and there are
isomorphism between Exti(X, Y ) and Ext3−i(X, Y )∗ for every pair of finite-dimensional
left A-modules X, Y . For more information about the CY-3 property, we refer to and [9]
[1].

That cancellation implies CY-3 was proved by Ben Davison in [7].

THEOREM 4.2 (Davison). The Jacobi algebra of a dimer model Q with χQ ≤ 0 is
CY-3 if it is a cancellation algebra.

REMARK 4.3. Davison’s work was a generalization of work by Mozgovoy and
Reineke [19], which used an extra consistency condition. This extra condition turned out
to be a consequence of the cancellation property.

The method in the proof involved showing that a certain complex C•, which is by
construction dual to its third shift, is acyclic. This complex looks like

⊕
s∈S

Fs
δ3 ��

⊕
r∈R

Fr δ2 ��
⊕

b∈Q1

Fb δ1 ��
⊕

i∈Q0

Fi,
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where R = {ra|a ∈ Q1} is the set of relations and S = {v�|v ∈ Q0}. The bimodule Fp is
defined as Ah(p) ⊗ p ⊗ t(p)A. The differentials have the following form:

δ1(q1 ⊗ b ⊗ q2) = q1b ⊗ t(b) ⊗ q2 − q1 ⊗ h(b) ⊗ bq2,

δ2(q1 ⊗ r ⊗ q2) =
∑

k

q1a1 · · · ⊗ ak ⊗ . . . anq2 −
∑

k

q1b1 · · · ⊗ bk ⊗ . . . bmq2,

δ3(q1 ⊗ s ⊗ q2) =
∑

h(a)=h(s)

q1a ⊗ ra ⊗ 1 −
∑

t(a)=h(s)

1 ⊗ ra ⊗ aq2.

In the second line, we assume that r = a1 . . . an − b1 . . . bm.
Let G be the groupoid of paths in ÂQ, this groupoid gives a G-grading on every Fp and

this grading makes the complex homogeneous (see [7]).
This complex can even be defined for infinite dimer models, but in that case, the

complex is not dual to its third shift because taking the dual is not well-behaved for infinite
direct sums. We will still continue to call AQ CY-3 in the infinite case if C is exact.

With this in mind, we have the following observation:

OBSERVATION 4.4. There are infinite dimer models that are CY-3 but not cancellation.

Proof. (Sketch). The example we give is
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with all squares alike except the central one. We can give all arrows degree 1 to make AQ
graded.

If C• were not a bimodule resolution, then there would be extra syzygies. Because of
the gradedness, there would be at least one simple Sv := AQv/(AQv)>0 for which C• ⊗AQ

Sv is not a projective resolution of v.
Now C• ⊗AQ Sv can be decomposed in its G-homogeneous components and for each

of the paths p in G, one can check easily (see [3]) that the p-homogeneous part C• ⊗AQ Sv

is finite dimensional and acyclic. �

It is still an open question whether in the finite case, there are CY-3 algebras that are
not cancellation.
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5. Zigzag paths. Checking whether AQ is a cancellation algebra is not an easy task.
Here, we will introduce a combinatorial criterion that will enable us to check this property
visually. In order to do this, we need the following theorem from [2] relating a dimer model
and its universal cover.

THEOREM 5.1. The Jacobi algebra AQ is a cancellation algebra if and only if the
Jacobi algebra of the universal cover AQ̃ is a cancellation algebra.

We will now restrict ourselves to the case when the Euler characteristic is nonpositive,
so from now on, we can assume that |Q̃| is a contractible manifold. This makes it possible
to define the interior of a closed curve. This assumption allows us to deduce the following
lemma:

LEMMA 5.2. If |Q̃| is contractible, then p �= p�k in AQ̃ for any path p and k > 0.

Proof. Identify |Q̃| with the complex plane and construct an index to the cycles in Q2

such that the positive cycles have even numbers and the negative odd. Let zi be the centre
of the ith cycle.

If p, q are the paths with the same head and tail, we can define the following invariant:

I(p, q) = lim
N→∞

∮
pq−1

N∑
i=1

(−1)i

zi
.

It is clear that this is well-defined as the integral stabilizes for N → ∞: adding poles
outside pq−1 does not change it. If one applies a relation to p or q, one positive pole and
one negative will change sides. The signs in the poles keep the integral invariant. The
lemma follows from the fact that I(p�k, p) = 2kπ i. �

We can split any given path p in the universal cover into positive (negative) arcs.
These are maximal subpaths that are contained in a positive (negative) cycle. We will call
a path positively (negatively) irreducible if none of its positive (negative) arcs contains
p+ (p−) for some defining relation ra = p+ − p−. A pair of paths (p, q) with h(p) = h(q)
and t(p) = h(q) such that pq−1 is an anticlockwise loop that does not self-intersect and p is
positively irreducible and q negatively irreducible is called an irreducible pair. The interior
of an irreducible pair (i.e. the interior of the loop pq−1) cannot be shrunk using the defining
relations.

LEMMA 5.3. If |Q̃| is contractible, then AQ̃ is a cancellation algebra if and only if it
has no irreducible pair.

Proof. The condition is necessary because an irreducible pair (p, q) implies that in
ÂQ̃, either p = q�k or q = p�k holds for some k ≥ 0 but does not hold in AQ̃, so the map
AQ̃ → ÂQ̃ is not an injection.

To prove sufficiency, we suppose that there are no irreducible pairs. If (p, q) is a pair of
paths such that pq−1 is a non-self-intersecting anticlockwise loop, then p = q�k or q = p�k

for some k ≥ 0. If not, such a pair (p, q) for which pq−1 has the least number of cycles
in its interior forms an irreducible pair (a reduction would give us a pair with a smaller
number of cycles in its interior). In particular, this shows that every loop can be reduced to
a power of � (take for q a path of length 0).

Now, take two nonequivalent paths p, q with the same head and tail such that p�k =
q�k for some k > 0. To prove cancellation, we must show that p = q.
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As already mentioned, we can turn every loop in p or q into a power of �. After puting
these powers in front, we can split p = �up1 . . . pk and q = �vq1 . . . ql such that pi and qi

coincide or do not intersect. For each pair (pi, qi), we have that pi = qi�
ki or qi = pi�

ki for
some ki ≥ 0.

The sum of u and the ki for which the first equality holds must equal the sum of v

and the ki for which the second equality holds. Otherwise p�l = q�l′ for l′ �= l, which is
forbidden by Lemma 5.2 as we supposed that p�k = q�k.

To turn p into q, we first do the transformations pi → qi�
ki , then we distribute

the powers � over the pieces of p we have not transformed yet and then we apply
transformations pi�

ki → pi. �

REMARK 5.4. We used the notation � although in the universal cover � is an infinite
sum and hence not an element of AQ̃. The products �p and p� are still defined because they
single out one term of �.

A zigzag path is an infinite length path Z = . . .Z[2]Z[1]Z[0]Z[−1]Z[−2] . . . for
which all positive and negative arcs have length 2. It is easy to see that there are exactly
two zigzag paths for which Z[0] equals a given arrow a (Z[1]Z[0] is either a positive or
a negative arc). We denote these two zigzag paths by Z+

a and Z−
a . The part of the zigzag

path Z+
a starting from a,

∏
i≥0 Z+

a [i] is called the zig ray from a and is denoted by �Z+
a .

Similarly, we denote the zag ray by �Z−
a . The notion of a zigzag path is based on work by

Kenyon in [16] and Kenyon and Schlenker in [17].
Every zigzag path Z is bounded by a positively and a negatively irreducible path

consisting of the positive (negative) arcs ui such that uiZ[2i + 1]Z[2i] is a positive
(negative) cycle.

THEOREM 5.5. If χQ ≤ 0, then Q is cancellation if and only if for every arrow a ∈ Q̃1,
the following condition hold:

Z �Z+
a and �Z−

a only intersect in a, i.e.

∀i, j > 0 : Z+
a [i] �= Z−

a [j]

(note that the zigzag paths can intersect but only in different directions (f.i. Z+
a [i] =

Z−
a [j] with i > 0 and j < 0).

REMARK 5.6. Condition (Z) also implies that a zigzag path cannot self-intersect.
Indeed if there are self-intersecting zigzag paths, we can take Z such that a = Z[0] = Z[i]
and the loop Z[i − 1] . . .Z[0] encompasses the smallest number of cycles. If Z = Z±

a ,
then the zigzag path Z∓

a has an arrow inside the loop and as it cannot make a smaller loop,
it must enter and leave the loop, and hence there the zig and the zag ray of some arrow in
Z intersect.

Proof of Theorem 5.5. Condition (Z) is necessary.
If Z+

a [i] = Z−
a [j] and i, j are both positive and minimal, we look at the paths p+, p− that

are the irreducible paths accompanying Z+
a [i] . . .Z+

a [0] and Z−
a [j] . . .Z−

a [0] which lie in
the exterior of Z+

a [i] . . .Z+
a [0](Z−

a [j] . . .Z−
a [0])−1. By construction, these paths form an

https://doi.org/10.1017/S0017089512000080 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089512000080


436 RAF BOCKLANDT

irreducible pair.
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Condition (Z) is sufficient.
If Q is not cancellation, we will assume that condition (Z) holds and search for a
contradiction. By Lemma 5.3, let (p, q) be an irreducible pair and let S be the interior
of pq−1.

Let a0 be the last arrow of p and consider the zigzag path Z1 = Z+
a0

. By construction,
Z1[1] sits inside S, and because S only contains a finite number of arrows, there must be a
minimal j > 0 such that Z1[j] does not sit in S. The arrow Z1[j] must sit on the boundary
of S, so it must either be an arrow of p or q.
� If Z1[j] is an arrow of p, then j must be odd because p bounds only positive cycles from

S. The zigzag path Z1 and a part p(1) of p cut out a piece of S, which we will denote by
S(1). Now put a1 = Z1[j − 1] and look at a zigzag path Z2 = Z−

a1
. Because j is odd, this

zigzag path comes from the inside of S(1). Condition (Z) implies that Z2 cannot intersect
Z1 twice, so it must have entered S(1) somewhere on p(1) but not at a0.

The zigzag path Z2 and a strictly smaller path p(2) ⊂ p(1) cut out a piece of S(1),
which we will denote by S(2). Now let a2 be the first arrow on Z2 inside S(1) and look at
a zigzag path Z3 = Z+

a2
. Z3 cannot intersect Z2 twice, so Z3 must leave S(2) somewhere

along the path p(2) but not in the first arrow.
The zigzag path Z3 and a strictly smaller path p(3) ⊂ p(2) cut out a piece of S(2).

Proceeding like this, we get a sequence of shrinking pieces until p(i) has length zero.
But this implies that the corresponding zigzag path Zi will self-intersect (contradicting
Remark 5.6).

a0 Z1

S(1)

p(1)

a1

Z2

S(2)

p(2)
a2

Z3

S(3)

p(3)

� If Z1[j] is an arrow of q, then j must be even and we can copy the argument above by
changing the p in q.

�
REMARK 5.7. Dimer models with positive Euler characteristic can never satisfy

condition (Z) because the universal cover is the quiver itself. As this quiver is finite, the zig
and zag rays intersect multiple times.

REMARK 5.8. A similar discussion on the relation between cancellation and zigzag
paths was done by Ishii and Ueda in [13, 14]

6. Consistent R-Charges. We borrow the following definition from Kennaway [15]:

DEFINITION 6.1. A grading R : Q1 → �>0 is a consistent R-charge if
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R1 ∀c ∈ Q2 :
∑

a∈c Ra = 2,
R2 ∀v ∈ Q0 :

∑
h(a)=v(1 − Ra) + ∑

t(a)=v(1 − Ra) = 2.

REMARK 6.2. In [5], a distinction is made between geometrically consistent and
marginally consistent R-charges. The former have the extra condition that Ra < 1 for every
a, while for the latter, one also allows Ra ≥ 1. We will not make this distinction: for us
marginally consistent R-charges are also consistent.

It has been pointed out in e.g. [15] that consistency implies that the Euler characteristic
is zero

2χQ = 2(#Q2 − #Q1 + #Q0)

=
∑
c∈Q2

∑
a∈c

Ra −
∑

a

2 +
∑

v

⎛
⎝ ∑

h(a)=v

(1 − Ra) +
∑

t(a)=v

(1 − Ra)

⎞
⎠

=
∑

a

⎛
⎜⎝ 2Ra︸︷︷︸

a sits in 2 cycles

−2 + 1 − Ra︸ ︷︷ ︸
v=h(a)

+ 1 − Ra︸ ︷︷ ︸
v=t(a)

⎞
⎟⎠ = 0.

Given a consistent R-charge, we can realize the universal cover of the dimer model,
which is the Euclidean plane, in the following way: turn every cycle in Q2 into a polygon
the vertices of which are all on the unit circle and every arrow a stands on an arc of πRa

radians. Condition (R1) implies that such a polygon exists as the arcs add up to 2π . If a
and b are consecutive arrows in a cycle, then one can check that the angle between the
two arrows is π

2 (2 − Ra − Rb) because it is the inscribed angle standing on the arc spanned
by the rest of the cycle. Pasting all these polygons together, one gets a tiling of the plane
because condition (R2) implies that the angles of the polygons at one vertex add up to 2π

(see also [12, 17]). Such an embedding is called an embedding with isoradial cycles1.
A second ingredient we need are perfect matchings.

DEFINITION 6.3. A perfect matching is a subset of arrows P ⊂ Q1 such that every
cycle in Q2 has exactly one arrow from P . A perfect matching gives a nonnegative grading
on AQ by assigning degree 1 to each arrow in P and zero to the others:

degP a =
{

1, a ∈ P,

0, a �∈ P.

For an embedding with isoradial cycles, we can construct special perfect matchings:

LEMMA 6.4 Definition of P±
θ . Given a Q embedded with isoradial cycles and a

direction θ , then the set P+
θ (P−

θ ) of all arrows a such that the ray from the centre of
its positive cycle in direction θ in the isoradial embedding hits a but not in its head (tail)
is a perfect matching.

1Such an embedding is a bit different from an isoradial embedding of the dimer model, which embeds the dual
graph isoradially, i.e. the centres of the faces sharing a common vertex lie on a unit circle. Our definition
also includes cases where the cycle does not contain the centre of the circle (when one of the arrows has
R-charge ≥ 1).
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Proof. It is clear from the construction that every positive cycle has exactly one arrow
in P±

θ . The same holds for the negative cycles because a ∈ P±
θ if and only if the ray from

the centre of its negative cycle in direction −θ in the isoradial embedding hits a but not in
its tail (head).

θ

−θ

�
Now, let Z = Z+

a be a zigzag path in a dimer model embedded with isoradial cycles.
We define εZ ∈ �/2π� to be the angle of h(a) as viewed from the centre of the positive
cycle containing Z+

a [1]Z+
a [0]. It is easy to check that this definition does not depend on

the a.

Z−
a

Z+
a

a

εZ

−εZ −εZ

εZ

LEMMA 6.5. Let θ = εZ±
a

.
(1) P±

θ intersects Z±
a in all the arrows Z±

a [i] with i odd.
(2) Both a and Z∓

a [1] are not in P±
θ .

Proof. We prove the statement for θ = εZ+
a

. As illustrated above, viewed from the
centres of the positive cycles, t(Z+

a [i]) points in direction θ for all odd i. Viewed from the
centre of the negative cycle, t(a) points in the direction −θ , so the arrow b = Z+

a [−1] with
head t(a) must sit in P+

θ , this cannot be Z−
a [1] because the cycle containing ab has length

at least 3. �
We are now ready to prove the equivalence between cancellation and the existence of

a consistent R-charge.

THEOREM 6.6. Let Q be a dimer model on a torus, then Q is cancellation if and only
if it admits a consistent R-charge.

Proof. We will prove the equivalence of the existence of a consistent R-charge with
property Z. After that we can apply Theorem 5.5.

The condition is sufficient. Suppose Q has an R-charge and construct the
corresponding tiling of the plane with isoradial cycles. Suppose Z+

a [i] = Z−
a [j] = b and
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let p+ and p− be the positively and negatively irreducible paths in the opposite direction
such that h(p+) = h(p−) = t(a) and t(p+) = t(p−) = h(b).

If we take θ = εZ+
a

, then it follows from Lemma 6.5 that degP+
θ

p+ = 0. This implies
that neither a nor Z−

a [1] sit in P+
θ . But P+

θ must contain an arrow of the cycle through
Z−

a [1]a, so degP+
θ

p− > 0. This means that p− = �kp+ in ÂQ for some k > 0, so Rp− > Rp+ .
On the other hand, if we take θ = εZ−

a
, then for similar reasons, degP−

θ
p− = 0 but

degP−
θ

p+ > 0 and we get in ÂQ, p+ = �lp− for some l > 0 and Rp− < Rp+ . This contradicts
the previous paragraph.

The condition is necessary. Every zigzag path Z on the torus |Q| is periodic, and
hence its lift |Q̃| can be assigned a direction vector in the Euclidean plane. The unit vector
in this direction will be denoted by eZ .

From condition (Z), we can deduce that eZ+
a

�= eZ−
a

for every arrow a. If this were
not the case, Z+

a and Z−
a would intersect an infinite number of times (in shifts of a in the

direction eZ−
a

).
We now define an R-charge as 1

π
times the positive angle from eZ−

a
to eZ+

a

Ra := 1
π

�(eZ−
a
, eZ+

a
).

The value of Ra is always nonzero and smaller than 2.
We now prove that the following two conditions hold:

∑
a∈c

Ra = 2 and
∑

h(a)=v

(1 − Ra) +
∑

t(a)=v

(1 − Ra) = 2.

First look at the incidence structure of the zag rays starting from arrows around a positive
cycle c (i.e., the �Z−

a ). These rays do not intersect. If a, b are consecutive arrows, the
intersection of �Z−

a and �Z−
b would imply that �Z+

a = a �Z−
b and �Z−

a intersect twice. If a
and b are not consecutive in the cycle, there must be an arrow u between a and b. But then,
�Z−

u must either intersect �Z−
a or �Z−

b . Proceeding in the same way, we can always find two
consecutive arrows for which the zag rays intersect.

The non-intersection implies that the directions eZ−
a

are ordered on the unit circle in
the same way as the arrows a. For consecutive arrows a, b eZ+

a
= eZ−

b
so that the sum of

the angles add up to 2π and hence the sum of the R-charges is 2.
We can now repeat this for the vertices. Look at all arrows leaving a vertex v. The zig

rays of two consecutive leaving arrows do not intersect because otherwise we could follow
the second zig path backwards inside the piece cut out by the two zig rays. This backwards
path must leave this piece by an arrow b of the first zig ray (because the second zag path
cannot self-intersect). But now the zigzag rays from b intersect twice, which contradicts Z.
If two zag rays of nonconsecutive leaving arrows intersect, then the zig ray of an arrow in
between must intersect one of these zig rays so that we can always reduce to the consecutive
case.

The angle between the directions of the zig rays of two consecutive leaving arrows a1

and a2 is π (2 − Ra1 − Rb) where b is the incoming arrow between a1 and a2. The fact that
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these angles add up to 2π gives us the second consistency condition.
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REMARK 6.7. The first part of this theorem is an extension of Lemma 5.3.1 in [10] to

the marginally consistent case.

REMARK 6.8. The second part of the theorem gives us an R-charge from the directions
of the zigzag paths in the plane. We can use this R-charge to construct an embedding
with isoradial cycles. Note, however, that the angles between the zigzag paths in this new
embedding are in general not the same as the ones we used to construct the R-charge. We
can recover these original directions from the embedding with isoradial cycles, because the
eZ+

a
is the original embedding point precisely in the directions εZ+

a
of the new embedding.

7. Algebraic consistency. In [5], Broomhead introduced the notion of algebraic
consistency. For this, he constructed a second algebra from the dimer model: BQ. From
Q, one can construct the following diagram of maps:

�
e← �Q2

d→ �Q1
d→ �Q0 ,

with e(c) = 1 and d(c) = ∑
a∈c a for any cycle c ∈ Q2 and d(a) = h(a) − t(a). We define

M = �Q1/de−1(0) and for any vertices i, j, we set

M+
ij = d−1(i − j) ∩ nQ1

de−1(0)
.

Then the B-algebra is defined as

BQ =
⊕

i,j∈Q0

Span(M+
ij ) ⊂ Mat|Q0|(�[M]).

There is a natural map τ : AQ → BQ : a �→ a ∈ Span(Mh(a)t(a)).

DEFINITION 7.1. A dimer model is called algebraicly consistent if and only if τ :
AQ → BQ is an isomorphism.

In [5], Broomhead proved:

THEOREM 7.2 Broomhead. If a dimer model admits a geometrically consistent R-
charge, then it is algebraically consistent.

In this section, we will extend this result to any consistent R-charge. The proof given
will follow the same lines as Broomhead’s proof. In particular, we will use the following
important lemma:
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LEMMA 7.3 [5, Lemma 6·1·1]. If Q is a dimer model on a torus, then AQ is
algebraically consistent if it is cancellation and for every pair of vertices v and w in the
universal cover Q̃, there is a path p : v → w and a perfect matching P̃ that does not
meet p.

We also need these three lemmas.

LEMMA 7.4. Suppose AQ is cancellation and deg : Q1 → � is any (not necessarily
positive) grading such that deg � �= 0. Then, two paths in AQ are equivalent if and only if
they are homotopic and have the same deg-degree.

Proof. It is clear that the relations ra imply that equivalent paths are homotopic and
must have the same degree. Because homotopies in the dimer model are generated by
substituting paths p → q such that pq−1 = �, homotopic paths can only differ by a factor
�k. The degree of � is not zero, so if homotopic paths have the same degree, they must be
equal in AQ. �

LEMMA 7.5. If AQ admits a consistent R-charge, P is a perfect matching and p and q
are cyclic paths with opposite homology classes, then either p or q meets P .

Proof. Suppose degP p = degP q = 0. Take any path r from h(p) to h(q); then
degP (prq) = degP r and prq and r have the same homology class, so by Lemma 7.4, they
must be the same. But this is impossible because for the R-charge, prq and r must have
different degrees. �

LEMMA 7.6. If Q satisfies condition (Z) and χQ = 0, then given a zigzag path Z1 in
the universal cover, there is always another zigzag path Z2 making a positive angle with
Z1 less than π radians: 0 < �(eZ1 , eZ2 ) < π .

Proof. Suppose that the lemma does not hold. Let Z2 be the zigzag path whose angle
with Z1 is smallest and let a be an arrow in their intersection. There are two possibilities:
Z1 = �Z+

a and Z2 = Z−
a or Z1 = �Z−

a and Z2 = Z+
a . In the first case, the directions in the

zigzag paths show that there must be another arrow in the intersection behaving like the
second case.

Z1
�������	

(( ))

Z2

Z2
�������	





)) (( Z1

So, suppose Z1 = �Z+
a and Z2 = Z−

a and let b = Z+
a [−1]. By our hypothesis, the zigzag

path Z+
b makes a positive angle with Z1 that is at least as big as the angle with Z2.

Therefore, the Z+
b must intersect Z1 a second time, but by condition (Z), Z+

b [i] =
Z1[j] =⇒ ij < 0. This also implies an intersection of Z+

b with Z2. This implies that Z2

and Z+
b cannot have the same direction; otherwise, they would intersect multiple times

in this direction (take shifts of the intersection). So, Z+
b makes a positive angle with Z1

that is bigger than the angle with Z2. Now this implies a second intersection with Z2
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contradicting Z.

Z1

**

Z+
b Z2

��
�������	

b ++��
��
�������	

a ���������	

,,��
Z2 Z+

b





Z1

�
THEOREM 7.7. A dimer model with χQ = 0 is algebraically consistent if and only if

it is cancellation.

Proof. Note that algebraic consistency automatically implies that cancellation as BQ
is a subalgebra of the cancellation algebra Matn(�[M]).

Suppose that Q is cancellation and let 0 ≥ θ1 > · · · > θu > 2π be the directions of
the zigzag paths. Use these directions to construct an R-charge as in Theorem 6.6 and its
corresponding embedding with isoradial cycles. For each i ∈ {1, . . . , u}, we define Pi :=
P+

θi
(note that by the isoradial construction, θi = εZi ).
Every vertex in the universal cover has an arriving and a leaving arrow not in Pi−1 ∪

Pi. Indeed if we look at the arrows in a vertex v, then by Remark 6.8, every arrow is a vector
from eZ−

a
to eZ+

a
, so the tail of each arriving arrow a and the head of the leaving arrow b in

the same negative cycle are both in the same direction viewed from their positive cycles.
So, if we shift all arrows arriving in and leaving from v to the unit circle, they will form a
path as illustrated below.

The second consistency condition implies that the path goes around the unit circle
n − 1 times where n is the number of incoming arrows.∑

h(a)=v

(1 − Ra) +
∑

t(a)=v

(1 − Ra) = 2 =⇒
∑

h(a)=v

Ra +
∑

t(a)=v

Ra = 2n − 2.

An arrow sits in Pi−1 ∪ Pi if and only if its head, tail or body cross the direction θi. If all
incoming arrows would cross θi, the path would go round n times which is a contradiction.
The same can be said about the leaving arrows.

This means that there is a path from every vertex v that does not meet Pi−1 ∪ Pi, and
hence does not intersects the zigzag path Zi. It also does not self-intersect because it does
not meet Pi. Therefore, it must either be parallel or antiparallel2. Parallel is impossible

2(anti-)parallel means that the homology classes on the torus are the same (opposite), see [5].
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because of Lemma 7.5 and the existence of a path in the opposite direction of the zigzag
path.

Let us call this ray Yv
i . If Yv

i and Yv
i+1 intersect multiple times, we know that the pieces

between the intersections are equivalent because they both do not meet Pi. Hence, they also
both do not meet Pi±1. We can chose Yv

i and Yv
i+1 to overlap on that piece. Choosing the

Yv
i this way, we can divide the plane into sectors lying between the Yv

i and Yv
i+1.

Now let w be another vertex in the universal cover. If it lies on one of the rays Yi, then
there is a path from v to w that does not meet Pi. If it lies between Yv

i and Yv
i+1, we can

find a vertex u1 far enough on Yv
i and u2 far enough on Yv

i+1 such that w lies in the piece
cut out by Yv

i , Yu1
i+1, Yu2

i and Yv
i+1. Note that the middle two paths intersect because by

Lemma 7, the angle in the original embedding between them is smaller than π .

��������u2

Yu2
i+1 ��


��
����w


��
����v

Yv
i

��

Yv
i+1

����������u1

Yu1
i

--

The piece is bounded by two paths that do not meet Pi, so they have the same
homology and degPi

and by Lemma 7.4, they are equivalent. Hence, there is a sequence of
relations turning the first path into the second. One of the intermediate steps must meet w

because it is inside the piece. This will give us a path from v to w that does not meet Pi. �
REMARK 7.8. The idea of cutting out a piece bounded by paths that do not meet a

certain perfect matching is borrowed from Section 6.3.1 in [5]. In order to make this work
in the marginal consistent case, we used the new notion of these Pθ which do not appear
in [5].

8. Orders.

DEFINITION 8.1. An order A is a prime algebra (i.e. the product of nonzero ideals is
nonzero) which is a finitely generated module over its centre R. If K is the quotient field
of R and 	 = A ⊗R K , then we say that A is an R-order in 	.

Orders have a special property: Reichstein and Vonessen [21] showed they can be
reconstructed from a certain representation space. Suppose A can be written as a path
algebra with relations �Q/I.

For any dimension vector α, we can define rep(Q, α) as

rep(Q, α) :=
⊕
a∈Q1

Matαh(a)×αt(a) (�).

This space parametrizes the α-dimensional representations of Q.
On this space, we have a base change action of the group GLα = ∏

v∈Q0
GLαv

(�).
This group also acts on Mat|α|(�) by base change and we define Eqv(Q, α) as the ring of
equivariant polynomial maps from rep(Q, α) to Mat|α|(�)

Eqv(Q, α) := {f : rep(Q, α) → Mat|α|(�)|∀g ∈ GLα : f (ρg) = f (ρ)g}.

The multiplication in this ring comes from Mat|α|(�).
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For A, we define the simples(A, α) as the subset of rep(Q, α), containing all
representations of Q that are simple representation of A.

THEOREM 8.2 [21, Theorem 6·4]. If A is an orde, then there is an α such that

A ∼= Eqv(Q, α)
{f : f (simples(A, α)) = 0} .

REMARK 8.3. The original version of the theorem uses the terminology of PI-rings
which is a bit broader than orders. We also reformulated the theorem in the language of
quivers, whereas the original works with generators of an algebra. The dimension vector
is such that the PI-degree of A is |α|, this is the biggest α for which there exist simples or
equivalently the dimension vector of a simple representation of the form ρ : A → A ⊗R

R/m, where m � R is a maximal ideal.

In the case of dimer models, we already had a notion of reconstructing the algebra A
using the algebraic consistency. Algebraic consistency fits in this more general framework
because of the following lemma:

LEMMA 8.4. If Q is a dimer model, then BQ ∼= Eqv(Q,α)
{f :f (simples(AQ,α))=0} with α the

dimension vector that assigns 1 to each vertex.

Proof. One can easily check that using the terminology of the previous section

Eqv(Q, α) =
⊕

i,j

Span(d−1(i − j) ∩ nQ1 ) ⊂ Mat(�[�Q1 ]).

If two monomials of xα, xβ ∈ �[�Q1 ] evaluate the same on all simples, then they evaluate
the same on all representations for which all arrows are nonzero. This implies that α − β ∈
de−1(0) because such a simple representation is a representation of AQ if and only if all
cycles evaluate to the same number. Therefore,

Span(d−1(i − j) ∩ nQ1 )
{f : f (simples(AQ, α)) = 0} = Span

(
d−1(i − j) ∩ nQ1

de−1(0)

)
.

�
So, algebraic consistency seems just a specific consequence of being an order and

indeed we have the following theorem:

THEOREM 8.5. A Jacobi algebra of a dimer model on a torus is an order if and only
if it is algebraically consistent.

Proof. An algebraically consistent dimer model is always an order because BQ by
construction is prime and finite over its centre. If AQ is an order, then it is cancellation
because it is prime. Theorem 7.7 implies that it is algebraically consistent. �

REMARK 8.6. The Jacobi algebra of a dimer model on a higher genus surface can
never be an order. Indeed if the algebra is prime, then the central element � cannot be a
zero divisor, so AQ embeds in ÂQ = AQ ⊗ �[�, �−1] and the latter must also be prime
and finite over its centre. From [2, Theorem 8.4], we know that ÂQ is the matrix algebra
of a fundamental group algebra of a three-dimensional manifold. By construction, this
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manifold is a circle bundle over a higher genus surface group. Such algebras are never
finite over their centres.

A dimer model on a sphere is an order if and only if it is cancellation. Indeed if it is
cancellation and we are on a sphere, then every path p is isomorphic to a �kp′, where p′

does not self-intersect. There are only a finite number of paths that do not self-intersect,
so AQ is finite over the central subalgebra �[�]. On the other hand, if AQ is an order,
then it is cancellation because it is prime. Because we have a simple representation AQ →
AQ ⊗�[�] �[�]/(� − 1) = Mat|Q0|(�), the α from Theorem 8.2 and its consequent remark
must be the dimension vector that assigns 1 to each vertex. Lemma 8.4 and Theorem 8.2
imply that the algebra is algebraically consistent.

9. Noncommutative crepant resolutions. In [23], Van den Bergh introduced the
notion of a noncommutative crepant resolution.

DEFINITION 9.1. Let R be an affine commutative Gorenstein domain, with quotient
field K . An algebra A is a noncommutative crepant resolution of R if A is homologically
homogeneous (i.e. the projective dimension of all simple representations of A is the same)
and A ∼= EndR(M) for some finitely generated reflexive R-module M (reflexive means
HomR(HomR(M, R), R) ∼= M).

As is explained in the discussion following this definition in and using results [23]
from [18] and [20], this definition is satisfied if

(1) A is an R-order in Matn×n(K),
(2) A has finite global dimension,
(3) A is Cohen-Macaulay as an R-module,
(4) the ramification locus has codimension ≥ 2.

The ramification locus of an order is defined as the set of points p ∈ MspecR such that
A ⊗R R/p �= Matn×n(�) (or in other words, the representation of A at the point p is not
simple).

THEOREM 9.2. The Jacobi algebra of a dimer model on a torus is a noncommutative
crepant resolution of its centre if and only if it is cancellation.

Proof. If AQ is a noncommutative crepant resolution of its centre, then it is an order
and hence cancellation.

Suppose that AQ is cancellation, then AQ is an order. Because AQ ⊗�[�] �[�, �−1] =
Matn(�[X±1

1 , X±1
2 , X±1

3 ]) and K = �(X1, X2, X3), we have that AQ ⊗R K = Matn×n(K).
By the CY-3 property, the global dimension is 3. From [22, Theorem 2.2]. we conclude
that A is Cohen-Macaulay.

Finally, if we show that the ramification locus has codimension at least 2, we are done.
If p � Z(A) lies in the ramification locus, then � must be in p, because otherwise all arrows
must evaluate to something nonzero and the representation is simple.

Now we show that there is at least one cycle with nonzero homology class that
evaluates to zero: if this were not the case, we could find two cycles c1 and c2 with linearly
independent homotopy classes that are not zero. Both cycles can be seen as h(c1)Trc1 and
h(c2)Trc2 where Trc1, Trc2 ∈ R. If v1 and v2 are two vertices, then we can look at v1Trc1

and v2Trc2. These are two cycles, they are nonzero and because the homotopy classes are
linearly independent, they must intersect. This means that there is a path of nonzero arrows
between v1 and v2. As this holds for every couple of vertices, the representation must be
simple.
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Two zero cycles (� and the one with nontrivial homology) with different homology
generate an ideal which defines a subscheme of codimension 2. �

REMARK 9.3. A different proof of this statement can be found in [5].

REMARK 9.4. A dimer model on a higher genus surface can never be an NCCR
because it is not an order. A dimer model on a sphere can never be an NCCR because
even if it were an order, its centre is �[�], which is smooth so that the NCCR should be
equal to �[�].

10. Summary. The following theorem is a summary of all main theorems from the
previous sections:

THEOREM 10.1. For a dimer model Q on a torus, the following are equivalent:
(1) AQ is cancellation.
(2) AQ is algebraically consistent.
(3) AQ is an order.
(4) AQ is an NCCR of its centre.
(5) The zig and zag rays in the universal cover do not intersect twice.
(6) There exists a consistent R-charge.

The remarks following these proofs show that in the higher genus case, this theorem
changes to:

THEOREM 10.2. For a dimer model Q on a higher genus surface, the following are
equivalent:

(1) AQ is cancellation.
(2) The zig and zag rays in the universal cover do not intersect twice.

While the following can never happen
(1) There exists a consistent R-charge.
(2) AQ is algebraically consistent.
(3) AQ is an order.
(4) AQ is an NCCR of its centre.

In the genus zero case, we have got:

THEOREM 10.3. For a dimer model Q on a sphere, the following are equivalent:
(1) AQ is cancellation.
(2) AQ is algebraically consistent.
(3) AQ is an order.

While the following can never happen:
(1) AQ is CY-3.
(2) The zig and zag rays in the universal cover do not intersect twice.
(3) There exists a consistent R-charge.
(4) AQ is an NCCR of its centre.
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