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THE BOTT SUSPENSION AND THE INTRINSIC JOIN 

JAMES A. LEISE 

Introduction. If (G ; U, V) is a triad with G a group we define 

CG(U, V) = {g G G|[g, u] e V for all u £ U) 

where [g, u] = gug~lu~l is the commutator. CG(U, V) will be called the (left) 
center of U in G modulo V or in brief a (left) C-space. If G is a topological group 
it will be understood that the topology on CG(U, V) is the relative topology 
of G. For (G; H, K, L) a tetrad of topological groups with L C K and 
(R, S) C (CG(L, H), CG(K, H)) we define the (left) C-pairing as the map 
(R, S) X (K, L) —> (G, i7) induced by the commutator map in G, where 

(X, A) X (F, B) = (X X F, X X 5 U 4 X F). 

This paper then shows that in the classical groups the Bott suspension, the 
James join, the Samelson product, and the Jacobi identity are all part of the 
same phenomenon, C-pairings. By treating these topics in a unified manner 
we will show how the James join can be used to prove the existence of Lundell's 
factorization [6] of the Bott suspension for the unitary groups. The unified 
treatment then makes it possible to obtain some new results concerning the 
action of this factorization on the Samelson ring. 

1. C-spaces and pairings. In the sequel we will make use of the following 
Hall identities valid for any elements a, b, c of a group G: 

H(l) [a, b] [6, a] = e 

H(2) [a, be] = [a, b] [a, c] [[c, a], 6] 

ff(2') [aft, c] = [a, [b, c]] [b, c] [a, c] 

H(S) [[a, 6], à] [[6, c], ac] [[c, a], ba] = e 

H(3f) [ac, [6, c]] [c\ [a, b]] [b\ [c, a]] = e 

where ab = bab~l and e denotes the identity of G. 
To help acquaint the reader with C-spaces we list a few elementary proper

ties for a triple of groups, (G, H, K). 
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Lattice of inclusions. 

G 
KJ 

C0(K, H) 

u u 
C0(K, K) CG{H, H) 

\J U W W 
K C0(H, K) H 

C0{H) 

where C0(H) = C0(H, e) is the center of H in G. 
Algebraic properties. 

A{\) C0(K, H) = {gd G\gKrl C H\ 

4(2 ) a € CG{H, H), b 6 CG{K, H) => ab € CG(K, H) 

A(3) a £ CG(K, K), b £ CG(K, H)=ïba£ CG(K, H) 

A (4) a, bÇ. CG(H, K)^ab 6 C0(i7, # ) 

A (5) a G CGCff, # ) , fe G 27=* [a, A], [h, a], hah-1 £ CG(77, K). 

We prove .4 (4) to indicate the use of the Hall identities. 

Proof. Let a, b 6 CG(27, 2£) and h £ H. From the definition of CG(H, K) 
and the assumption that K is a group it easily follows that [h, a], [h, b] and 
[[b, h], a] are in K and consequently so is [h, ab] = [h, a] [h, b] [[b, h], a]. 
Hence ab 6 CG*(H, K) = CG(H, K). 

In particular we see from A (4) that if (G, 27, K) is a triple of topological 
groups then CG(H, K) as a submonoid of G is an 27-space. 

For (G; 77, K, L) a tetrad of groups with L (Z K we adopt the following 
notation 

T = T(G, 27; K, L) = (CG(L, H)/CG{K), CG(K, H)/CG(K)) 

F = F(G, 27; K, L) = (CG(L, H)/CG{K), *) 

and these will be called the T and F pairs for the tetrad. 
If (G; 77, K, L) is a tetrad of topological groups with L C K, the C-pairings 

of interest are then the following: 
(I) the Samelson pairing 

(G, e) X (G, e) -* (G, e) 
(II) the relative Samelson pairings 

(77, e) X (G, 77) -» (G, 77) and (G, 77) X (77, e) -» (G, 77) 
(III) the transfer pairings (definition) 

(R, S) X CK, L) -> (G, 77) and {K, L) X (22, 5) -> (G, 77) 
where (7?, 5) C ^(G; 77, 2sT, L). 
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These pairings induce products in homotopy in the usual manner [1], 
which we denote by (a, b ). 

PROPOSITION 1.1. If a and b are given by one of the following sets of conditions 
(i) a e 7rr(G), b e TTS(G) 

(ii) a e Tr(H),b 6 irs(G,H) 
(iii) a 6 irr(R,S),b e TTs(KyL) 

then (a,b) = ( - 1 ) " - 1 (b, a). 

Proof. Parts (i) and (ii) are well known [5; 8], and the proof of (iii) is 
similar. 

In certain cases the transfer pairing can be improved. 

PROPOSITION 1.2. For (G, H, K, L) a 4-tuple of groups and P any pair con
tained in T(G, H; K, L) there is a factorization {left cosets) of the transfer pairing 

P X (K, L) > (G, H) 

P 

PX (K/L,*) -* (G/H,*). 

Furthermore this factorization induces a pairing 

J : (OP, *) X (K/L, *) -> (Q(G/H), *) 

for which there is the commutative square 

( • > 

Tr(P) ® T,{K/L) » Tr+s(G/H) 

Tr-l(QP) ® T.(K/L) > TTr+s-^aG/H) 

ÔX1 j 

where Sl(Xt A) denotes the space of paths (I, 1, 0) —> (X, A, *) and d is the 
transgression of the path-loop fibration. 

Proof. Let k £ K, t e L, g e CG(L, H) and u G CG(K). Then 

[gu, kt] = [g, kt] = [g, k] [g, t] [[/, g],k]. 

By definition of g, [[g, t] is in H and consequently so is [g, t] [[/, g], k]. Thus 
p[gu, kt] = p[g, k] and the factorization exists. The pairing, / , is then obvious 
and the commutativity of the square is an exercise in the use of representatives 
of homotopy classes and their adjoints. The sign ( — l ) s occurs since the order 
in which the adjoints are taken do not line up. 

In particular if we set P = F(G, H; K, L) in Proposition 1.2, we see that 
diagram (2), which is a commutative diagram of C-pairings, can be factored. 
Thus elements, b € irk(F), can be interpretated as maps of "nbrations" 
(diagram (3)) — i.e., the map K/L —>Qk(G/H) is the adjoint of a map 
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SK A K/L —» G/H which is defined via a representative of b. Such maps of 
fibrations can, in turn, be used to define spectra and maps of spectra (see 
Lundell [7]). 

(H, e) X (H, e) -» (H, e) FX (L, e) -> (H, e) L -+ Û*ff 

(tf, e) X (G, e) -» (G, e) FX (K, e) -> (G, c) # -> 0*G 

(H, e) X (G, H) -» (G, ff) F X (£ , i ) -» (G, if) K/L -»• £2»G/fl" 

diagram (1) diagram (2) diagram (3) 

We finally observe from the commutative diagrams, diagram (1) and 
diagram (2), together with the following proposition that elements in w*(H) 
or ti*(F) will induce maps of long exact homotopy sequences of pairs. 

PROPOSITION 1.3. If a and b are given by one of the following sets of conditions 
(i)a G TT(H),b 6 ws(G,H) 

(ii) a e 7rr(F),b e T,(K,L), 
then d (a, b) = (a, db) and d (b, a) = ( — l)r(db, a) where d denotes the 
transgression homomorphism for the appropriate pair. 

Proof. Again (i) is a standard result with a proof that can be adapted to 
prove (ii). 

2. Jacobi identities. In the proof of Proposition 2.1 below we show that 
Jacobi identities can be verified in a natural way using the Hall identity, 
H(S'). 

PROPOSITION 2.1. Suppose that (K, L) C (G, H) are two pairs of topological 
groups and that a, b, c are given by one of the following sets of conditions: 

(i) a £ irp(G), b <G irg(G), c £ irT(G) 
(ii) a £ TP(H), b e *q(H), c G «AG, H) 

(iii) a G TP(L), b G TQ(L), c £ irr(R} S) ; (R, S) C T(G, H; H, L) 

(iv) a e TP(L), b G Tq(K, L), c G TT(R, S) ; (R, S) C F(G, H; K, L). 

Then a, b} c satisfy the following Jacobi identities: 

( - i r < a , (b, c))+ (-ÎYHC (a,b))+ (-l)"(b, (c,a)) = 0 

(-l)»((c,b),a)+ (-iy((b,a),c)+ ( - l ) " ( ( a , c ) , l ) = 0 

where the products in these identities must be interpreted as absolute Samelson 
products, relative Samelson products or C-products as needed. For example in 
case (iv) all elements of the Jacobi identity lie in irp+Q+r(G, H). Furthermore, 
(a, b ), (c, a ) and (b, c ) lie in wp+q(K, L), irp+r{H), and irq+r(G, H) respectively. 
Thus in the product (b, (c, a ) ) we must interpret b as an element of TTQ(G, H) via 
the inclusion (K, L) C (G, H). 
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Proof. Since the format of the proof is the same in all cases we prove (iv) 
only. Let Jn~l = p-1 X I U In~l X 1 

/ : (P, 1") - (L, e) 
g (/« /«, / ' -"') - (*, i , «) 
h (IT r, JT--

1) - (*, 5, «) 

represent a, b, and c respectively where the basepoint of the unit w-cube, I", is 
taken to be the origin. We then define basepoint preserving homotopies 
Ht : (IP+t+r, p+<+r, * ) x / - > (G, H, e) for i = 1, 2, 3 as follows 

#!(*, y, «; 0 = [*(&)/(*) *"1 (to). [g(y), *(»)]] 
#,(*, y, 2; 0 = [ g f o O A ^ r m [/(*). «(y)]] 
H,(x, y,z;t)= [}{tx)g{y)tl{tx), [*(*),/(*)]] 

where /w denotes the scalar multiplication of a vector. 
Now when t = 0, ifi, H2, and i73 are seen to represent (a, (b, c ) ), 

(-l)<*+fl)r<c, (a, 6 ) ) and ( - l ) p ( r + s ) (6, <c, a ) ) respectively. On the other 
hand we see from the Hall identity H(3') that at / = 1, HiH2Hs = e and 
the proof is complete. 

We remark that the above list of Jacobi identities is not exhaustive and that 
whenever the various iterated C-products of three elements are all defined then 
there is probably a Jacobi identity. 

3. The C-space structure of the classical groups. It On denotes one of 
the classical groups On, Un, or Spn, let On>k = On/On-k be the Stiefel manifold 
of ^-frames in w-space and GHtk = 0Uik/Ok the Grassmann manifold of ^-planes 
in w-space. Our choice of commutator then requires that 0Hyk be a left coset 
space which in turn fixes the matrix interpretation of On,k as the set of matrices 
consisting of n rows and k orthonormal column vectors. 

We next adopt the following conventions regarding imbeddings of these 
groups. With p ^ q let i, V : Op —» Oq be the imbeddings 

If Op and Op denote the image of Op under i and i' respectively then the pairs 
{Oqi Op) and (Oq, OJ) have a precise meaning and we define projections 

P : (0„ Op) -+ (Oq>P.q, *) and p' : (0„ Op
f) -> ( 0 , l M / , *). 

Consequently with m ^ n and (G, Hy K) = (On+^, On, On_m) the C-spaces 
Cn+*(w — m, n) = CG(K, H), Cn+k{n) = CG(H) have a fixed interpretation. 
We then obtain the following structure theorem using standard techniques of 
linear algebra. 

THEOREM 3.1. For m S n, Cn+k(n — m, n) is the set of matrices of the form 
i(A)ï(B) where A £ On and B £ Ok+m. 
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We shall refer to 0nj 0k+m' and 0m
n = 0n C\ 0k+m

f as the left, right, and 
overlap subspaces of Cn+k(n — m, n). Furthermore, an inclusion 

Cn+k(n - m,n) C Cn>+k>(n' - m', n') 

will be called aligned if it preserves this subspace structure and this can 
happen if and only if n ^ nf, m S mf, m -\- k f^ mr -\- k', and n + k ^ n' + 
k''. Moreover, if equality occurs in any of these inequalities the aligned in
clusion will be unique. 

With G a topological group suppose that X and F are right and left G-spaces 
respectively. Then XX F is a right G-space with the action of G defined 

(X X Y) X G -> X X F: ((*, y), g) -> (*, y)g = (xg, g~ly). 

The orbit space will then be denoted (X X Y)/G and with this notation we 
therefore see from Theorem 3.1 that for n > m, Cn+k(n — m, n) = 
(0n X 0k+m')/0m". One should take care, however, not to confuse this nota
tion with the various left and right coset spaces which will be used in the 
sequel. 

We abbreviate the T and F pairs for the tetrad (0 n + r ; 0n+r-s, 0nf 0n-s) to 

Tn/ = (Cn+T(n — s, n + r — s)/Cn+T(n), Cn+r(n, n + r — s)/Cn+r(n)) 

K,sr = (Cn+r(n — s,n + r — s)/Cn+r(n), *) 

so that the transfer pairing now has the following (factored) form. 

Tn,s
T X (OntS, ) —> (On+rfS, ) 

Finally, for 0 / C Cn+r(n) there are pairs 

fn,s
r = (Cn+r(n - s, n + r — s)/0/, Cn+r(», n + r — s)/0r

f) 

which in addition to having properties similar to the pairs TniS
T also give 

inclusions Tn<s
r —•> Tn+PtS

r which are induced from aligned inclusions. The main 
result of this section is then the following. 

THEOREM 3.2.(i) For r, n ^ s, k è 0; irk{fntS
T) = Tk(GT+s,s, Gr,,). 

(ii) For p è 0 the natural inclusion Tn>s
r —> Tn+P>S

T induces isomorphism in 
homotopy. 

(iii) Fork è 0,Tk(THy) = Tk(tny). 

Proof. Let (X, A) = (Cn+r(n — s, n + r — s), Cn+r(n, n + r — s)). Since 
0r' acts freely from the right on X and A we see that 7r*(X, A ) = ir*(tn<s

T). For 
n ^ 5, 0n + r_ s is the left subspace of both X and 4̂ and thus acts freely from the 
left on both spaces. Recalling that X = (On+T-s X 0T+S

f)/0T" and identifying 
On+r-s with (0n+r-s X 0T")IOr" we see that there is a fibration 
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and we consequently have 

7T*(X, ^4) = 7T#(0r+S(S, 0TtS) = ir*(GT+StS, GTtS). 

For (ii) let (X'y A') be the corresponding pair for fn+PtS
r then the above 

left group actions on the spaces of the pairs (X, A) and (Xf, Ar) commute with 
inclusion (X, A) C (Xf, A') and the induced map on the quotient spaces is an 
isomorphism. The proof of (iii) parallels (i). 

4. Transfer products in the classical groups. We shall now confront 
the technical difficulties in relating the transfer product to the intrinsic map 
of James. 

For A and B pointed spaces the join, A * B of A and B is the pointed space 
obtained from A X I X B by identifying a X 0 X B with a X 0 X (*), 
a £ A and A X I Xb with (*) X 1 X 6, b 6 B. The basepoint of A * B is 
the class (*) X 1 X (*). 

If we now consider an element of 0n>k as a matrix of k rows and n columns 
then James [4] defines the intrinsic map h : 0m>k * 0Utk —» 0m+n>k by h(U, V, t) 
= (U cos 6, V sin 6) where 0 = irt/2. The transpose of this map defines the 
intrinsic map when elements of 0mik have m rows and k columns. In homotopy 
we get the James join, denoted a * b. 

With the notation of the preceding section we proceed to define maps 

X : 0m,k ' -* QTn,k
m. 

First with $ = wt/2 and A € 0m set 

r{t) = 
sin 6Ik 0 cos 61\ 
0 In-h 0 

_ — cos 6lk 0 sin Blk_ 
, R{A,t) =r(t) 

If (X, Y) = (Cn+m{n — k, n + m - k), Cn+m(n, n + m — 

(0m< 0, _*') X / - » ( * , Y). 

»(*). 

k)) then R is a map 

For t = 0 or A £ 0 m _/ we furthermore have i^(^4, /) 6 0m
r. Since 7̂ ,*™ = 

(X/0m
r, Y/Om) it then follows that the composition (0TOI 0m_/) X I —• 

(X, F) —•> fn<k
m factors through 0mJ X I. The adjoint of this factorization is 

defined to be X. 
Next let A* be the adjoint of the composition 

OmJ A O ^ A A ^ Q J ; , ™ A 0n,k-
J 

120, m-fn.A; » &0m+nik 

where (p(w)(t) = w{\ — t) and J is the induced map of Proposition 1.2. We 
can now state a theorem conjectured by Bott [2] and proved by Husseini [3]. 

THEOREM 4.3. The composition 

0m,k * 0nt) -> 0m,k A S1 A 0„lA; • 
A* 

0. 
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where -K is the natural projection is homotopic to the intrinsic map, h, except for 
the orthogonal groups when n, m, and k are all odd in which case the obstruction 
to their being homotopic is a column operation (4), of odd order. 

If <rn is the composition 

TTr(Om,k') > TrT(ÇlTn>k
m) > Tr+i(l ntk

m) 

we then obtain the needed relationship between the transfer product and the 
intrinsic join in the following. 

THEOREM 4.4. If a e irT{Omtk
f), b G Ts(On>k) then <<rn(a), b) = -V (a*b) 

where V : Om+7ltk —» Om+n<k is the identity except for the orthogonal groups when 
m, n and k are all odd in which case V is a column operation of odd order. 

Proof. This is an immediate consequence of Proposition 1.2 (ii) and Theorem 
4.3. The ( — 1) can be traced to <p in the definition of A*. 

With V as in Theorem 4.4 we have: 

COROLLARY 4.5. With a <E irp(Om), b £ irq(Om) and c £ 7rr(Om) 

V(a*(b,c)) = (a*b,c)+ (-1)«<*+-D (b, a*c) 

where ( , ) denotes the Samelson product on the left side of the identity and the 
relative Samelson product on the right. 

Proof. Consider (see Theorem 3.2) tm<m
m as included in f2m,m

m and let 
a = (Tm(a) £ Trv+\{Tm<m

m). Then from Proposition 2.1 (iii) with L = Om and 
(R, S) = fmiTn

m we have 

( - D ( m ) r ( â t (b,c))+(-iy<(c, (â,b))+(-l)«*+»(b, (c,â)) = 0. 

From Proposition 1.1, we have (c, â ) = ( —l)r(p+1)~"1 (â, c) and consequently 
Theorem 4.4 gives the identity 

( - l )«F(a*<&, c)) + (-iy(c, U (a*b))+ (-1)*<6, W(a*c)) = 0 

where U and W correspond to the V of Theorem 4.4 and where a = (p + l)r , 
/3 = rq and y = (q + r)(p + 1) — 1. Since a*b and a*c both lie in Tr*{02m,m) 
we see that U = W = 1. The stated identity then follows from the commuta-
tivity relation (c, a*b) = ( - 1 ) 5 (a*b, c) with 5 = r(p + q + 1) - 1. 

5. The unitary groups. With the notation of Section 3 we have: 

LEMMA 5.1. For the unitary groups with F = Fny we have wi(F) = 0 and 
T2(F) = Z. 

Proof. For the unitary groups it is readily seen that 

Cn+1(n - l,n) = (Un X U^/Ux"; Cn+1(n) = S'h X SK 

Consequently Cn+i(n) acts freely on Cn+i(n — 1, n) from both the left and 
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the right. The left coset space is by definition, F, and we will denote the right 
coset space by F. Then 

n*(F) = 7r*(Cn+i(n - 1, n), Cn+i(n)) = T*(F). 

To compute T*(P) define a projection 

p: F->PUnX G2.i 

by p{i{A)i'{B)) = [Aï(àet (A'1))] X [i(det (A))B] where the brackets de
note classes in the projective unitary group, PUn, and G2>i = S2. To evaluate 
the fiber of p we see that Ai'(det (A-1)) G SlIn if and only if det (A) = 1. 
Hence 4̂ £ Zw/n and there is a fibration 

from which the lemma follows. 

THEOREM 5.2. If fin G 7r2(.F) is an appropriate generator and Bn : irr{S2n~l) —> 
7rr+2(5'2w+1) is /fee map £n(a) = (|Sn, a ) , then Bn = n22 (S = suspension). 

Proof. With the notation of Lemma 5.1 there is a fibration of right coset 
spaces 

P-> F-+T 

where P = Cn+i(n, n)/Cn+i(n) and f = Cn+i(n — 1, n)/Cn+i(n, «). Now 
Cw+i(«, n) = Un X S1 acts freely from the left on Cn+i(n — 1, w) while Cn+i(w) 
acts freely from both the right and the left on Cn+i(w, w). Consequently from 
Theorem 3.2 we see that T*(T) = T*(T) = 7r*(G2,i) = TT*(S2) where 
r = T^,!1 = (Cn+i(w — 1, n)/Cn+i(n)} Cn+i(w, n)/Cn+i(n)) is the T-pair of 
left cosets. Since it is also readily seen that P = P Uny we have the equivalences 
**(P) = ir*(PE/»), TT*(F) = TT*(P), and 7r*(r) = 7r*(f) = TT*(S2) which 
together with the above fibration and the above lemma yields the short exact 
sequence 

0 > w2(F) _?—> 7r2(r) > in(PUn) > 0 

where -K is induced from the inclusion F (Z T. Finally iri(PUn) = Zn and so 
7T is multiplication by n. The stated result then follows from Theorem 4.4 
with m = k = 1. 

THEOREM 5.3. If Bn : Tr(Un) —» 7r7-+2(t/w+i) is /fee map £w(a) = (/3W, a ) /feew 

Bn<a,&> = (Bna} b) + (a,BHb) 

so Bn maps as a derivation on the Samelson ring. 

Proof. This is an easy consequence of Proposition 2.1 (iii). 

We now define a generator of 7r2(Cn+i(w — 1, n), Cn+\(n)) = 7r2(JF). Let r{t) 
be the 2 X 2 rotation matrix used in defining X in Section 4 when m = k = 1. 
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Set u(s, t) = [i(ei2*s), r(t)] = [if(e-^s)} r(t)] € U2 and inductively define 
yn+i(s,t) = i(yn(s,t)ï(u(ns,t)) in Un+i where 72(5, t) = u(s} t). Then 7„+i(0, t) 
= 7 n + i ( l , 0 = 7n+i(s,I) = ln+1<mdyn+1(s,0) = i(e^sIn)ï(e-^ns) £ Cn+1(n). 
We leave it as an exercise to the reader to trace 7^+1 through Theorem 4.4 to 
verify t ha t it is a representat ive of ($n with the proper orientat ion. 

For the transfer pairing, 7n+i, has the impor tan t proper ty t ha t for A £ t /w- i , 
[7„+i, ^(^4)] = i[yn, iA] and so induces a m a p of w-tuples 

(S2 A t / , , 5 2 A C/,-1, . . . , S2 A Ui) -> (£/n + i , C/n> . . . , £/2) 

of which an immediate consequence is the following. 

T H E O R E M 5.4. There is a homotopy ladder of long exact sequences with com
mutative squares (k ^ / ^ n) 

. . . - > lfr(Ul}Uk) -> TTr(UniUk) - • 7Tr(Un,Ul) -> . . . 

£ * B« -B» 

. . . —» 7Tr+2(t/?+l> £^fc+l) —* 7Tr+2(E/,i+l, C4+l) " ^ TTr+2(Un+i, Ui+i) —>.. . 

and when I = n — 1, Bn = n S 2 . 

T H E O R E M 5.5. rfo? raa£ i3w : 7rr(Un) —> 7rr+ 2 ( ^ + 2 ) w aw isomorphism for 
r ^ 2n — I and when r = 2n, Bn maps a generator of ir2n(Un) = Zn[ to n + 1 
times a generator of ir2(n+i)(Un+i) = Z(W+i)i. 

Proof. This is a straightforward induction using Theorem 5.4 with k = 0 and 
/ = « - 1. 

Consequently Bn has all the properties of Lundell 's deformation [6, 7] of 
Bot t ' s suspension. 

T H E O R E M 5.6. For a <E irr(Un, Uk) and b Ç irs(Uk) 

Bn(a,b) = (Bn(a), i,{b) > + <*2(a), Bn(b) ) 

where all products are relative Samelson products and iu i2 are the inclusions 

ii : Ts(Uk) —» Trs(Uk+i), i2 : Trr(Un, Uk) —> 7r r(Z7n+i, t /*+i)-

Thusj when k — n — 1, 

£B<a,&> = n<2*(a),*'i(&)>. 

Proof. This is a straightforward application of Proposition 2.1 (iv). 

Remarks. We remark t h a t there are transfer pairings for the orthogonal and 
sympletic groups which factor the usual Bot t suspensions, however, even these 
factorizations do not seem to go far enough for non-stable homotopy theory. 
In any event it does seem significant t ha t for all the classical groups, the J ames 
join, the Bot t suspension, the Samelson product , and Jacobi identities fit 
together in such an intr icate manner . 
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