
Effects on phenotypic variability of directional selection
arising through genetic differences in residual variability

WILLIAM G. HILL* AND XU-SHENG ZHANG
Institute of Cell, Animal and Population Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh,
EH9 3JT, UK

(Received 5 September 2003 and in revised form 18 November 2003 )

Summary

In standard models of quantitative traits, genotypes are assumed to differ in mean but not variance
of the trait. Here we consider directional selection for a quantitative trait for which genotypes also
confer differences in variability, viewed either as differences in residual phenotypic variance when
individual loci are concerned or as differences in environmental variability when the whole genome
is considered. At an individual locus with additive effects, the selective value of the increasing allele
is given by ia/s+1

2 ixb/s
2, where i is the selection intensity, x is the standardized truncation point, s2

is the phenotypic variance, and a/s and b/s2 are the standardized differences in mean and variance
respectively between genotypes at the locus. Assuming additive effects on mean and variance across
loci, the response to selection on phenotype in mean is isAm

2 /s+1
2 ixcovAmv/s

2 and in variance is
icovAmv/s+1

2 ixs
2
Av/s

2, where sAm
2 is the (usual) additive genetic variance of effects of genes on the

mean, s2
Av is the corresponding additive genetic variance of their effects on the variance, and covAmv

is the additive genetic covariance of their effects. Changes in variance also have to be corrected for
any changes due to gene frequency change and for the Bulmer effect, and relevant formulae are
given. It is shown that effects on variance are likely to be greatest when selection is intense and when
selection is on individual phenotype or within family deviation rather than on family mean
performance. The evidence for and implications of such variability in variance are discussed.

1. Introduction

In a standard model of a quantitative trait, it is as-
sumed that the genotypes at loci that affect the trait
differ in their mean performance (Bulmer, 1980; Fal-
coner & Mackay, 1996; Lynch & Walsh, 1988). For
example, in the notation ofFalconer&Mackay (1996),
at a locus with two alleles, A1 and A2, the genotypes
A1A1, A1A2 and A2A2 have means (ignoring a con-
stant) of a, d andxa, respectively. In the infinitesimal
model, all genes are assumed to act additively (d=0)
and to be of small effect, such that the population can
be described solely in terms of its mean and (additive)
genetic variance, VA. In these and more general multi-
locus models, it is also assumed that the environ-
mental variance is the same for any genotype. When a
single locus is considered, the variance of phenotypes
of each genotype, which comprises both genetic vari-
ance at other loci and the environmental variance, is

also assumed to be constant. (Formally this requires
linkage equilibrium, for otherwise the residual genetic
variance may be heterogeneous.) If necessary, data
may be transformed, for example by taking logar-
ithms, in order to effect this homogeneity of variance
or at least reduce heterogeneity.

In the standard model differences in genetic and
hence phenotypic variance found within any en-
vironment between populations or which are induced
by forces such as selection or migration arise from
differences between genotypes in mean phenotypic or
genotypic value. At individual loci they depend on
quantities such as gig jpipjgij

2x(gig jpipjgij)
2, where pi

and gij are allele frequencies and genotypic values,
respectively, and at multiple loci on correlations be-
tween frequencies at different loci due to linkage dis-
equilibrium (e.g. induced by migration or the Bulmer
effect). They do not arise because of any difference
between genotypes in their environmental or residual
variance. Differences in variance in such models may* Corresponding author. e-mail : w.g.hill@ed.ac.uk
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be incorporated as scale effects, where the variance is
a simple function of the mean, or as environmental
effects, where the environmental variance is assumed
to depend on environmental group (Falconer &
Mackay, 1996, ch. 17; Lynch & Walsh, 1998, ch. 11).
Similarly they can arise as a consequence of ‘canali-
zation’ (Rendel, 1967) or of ‘genetic assimilation’
(Waddington, 1957), where the genetic and pheno-
typic variances are some function of background
genotype or environment. The variance is then as-
sumed to be a function of the mean rather than of
individual genotype.

The a priori reasons for assuming homogeneity of
environmental variance are simple convenience and
the paucity of data to assume otherwise. SanCristobal-
Gaudy et al. (1998) reviewed some of the evidence for
heterogeneity ; this includes, for example, the Ubx lo-
cus in Drosophila. Further evidence comes from the
comparison of inbreds and outbreds, where inbreds
may show inflated environmental variance (Lerner,
1954); although the phenotypic variances may be
similar despite the very different levels of genetic
variance (see Falconer & Mackay, p. 267; Hill &
Bünger, 2004). Extreme selected lines may show much
higher levels of variation than can be explained by
scale effects (see e.g. Falconer & Mackay, 1996, p.
221). For example, Clayton & Robertson (1957)
found that the phenotypic variance was higher in both
low and high selected lines of Drosophila than in the
unselected base population. In a thorough analysis of
alternative models, Sorensen &Waagepetersen (2003)
have shown there is substantial variability among
genotypes in residual variance (i.e. after removing
other identifiable effects) for litter size in pigs. Un-
published data of T. F. C. Mackay and colleagues
(personal communication) show substantial variation
in within-line variability (expressed as the coefficient
of variation) in abdominal bristle number among
chromosome substitution lines in Drosophila melano-
gaster. Information will come in due course from
analyses of genes or quantitative trait loci where
both means and variances can be computed for each
variant.

Levels of environmental or phenotypic variability
are important topics : for example, in animal or plant
improvement it may be important to reduce variation
to obtain a more homogeneous product; and in
natural populations, the evolutionary forces that de-
termine the observed levels of variability are import-
ant questions. As discussed by Hill & Bünger (2004),
why, for example, is the coefficient of variation of
juvenile body weight about 10% in a wide range of
species, and what controls the level? Selection must be
acting on the variance per se, it cannot just be a
consequence of variability in genotypic means.

Previous analyses using models in which the as-
sumptions of homogeneity of phenotypic, residual

(i.e. phenotypic given genotype at one locus) and en-
vironmental variance are relaxed have analysed sta-
bilizing selection on phenotype (Gavrilets & Hastings,
1994; Wagner et al., 1997) or a more complex arti-
ficial selection scheme, aimed at changing the level of
variability (SanCristobal-Gaudy et al., 1998). In this
paper we shall consider the correlated effects of di-
rectional selection on phenotype on the underlying
variability, expanding on some preliminary results
(Hill, 2002)

2. Single-locus model

(i) Selective value

Consider genotypic values at an arbitrary locus A, at
which genotypes affect both the mean and residual
variance of a quantitative trait. Residual variances are
assumed to be normally distributed, although for-
mally the distributions are mixtures of normals as
summation is made over possible genotypes, such that
AiAj individuals, for example, have phenotypic dis-
tribution N(mij, sij

2 ). Assume the overall mean is m and
the phenotypic variance is s2 and further that, despite
the heterogeneity of variance, the overall distribution
is well approximated by a normal distribution. As-
sume the population is large and a proportion p of the
population is selected on phenotype using truncation
selection and mated at random; p is also the prob-
ability of selection of a random individual with phe-
notypes distributed as N(m, s2). Fig. 1 illustrates the
selection for three genotypes differing in mean and/
or in residual variance. It shows in particular that,
although D2 and D3 (arbitrary genotypic distribu-
tions) have the same mean, D3 has an increased
probability of selection, particularly if a small pro-
portion of the overall population is selected. Haldane
(1930) noted this dependency on both mean and

Fig. 1. Example of truncation for three arbitrary
genotypes differing in mean and residual standard
deviation: D1BN(0, 1), D2BN(0.25, 1), D3BN(0.25, 1.25).
The vertical bars represent the truncation points for
selecting 50%, 20% and 5% of type D1. Note that as
selection becomes more intense, a relatively higher
proportion of D3 would be selected.
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variability of performance, and computed prob-
abilities of selection as a function of both. Other,
related derivations of the probability of selection
in terms of differences in mean have been given else-
where (e.g. Latter, 1965; Kimura & Crow, 1978;
Falconer & Mackay, 1996).

Assume that AiAj individuals are distributed with
mean and variance mij=m+a, sij

2=s2+b, i.e. as
N(m+a, s2+b). Using a Taylor series expansion, the
probability of selection of individuals of this genotype
is, if only linear terms are included,

P(a, b)=p+a@p=@aja,b=0+b@p=@bja,b=0+ � � � (1)

=p+za=s+ 1
2xzb=s

2+ � � � (2)

where x and z are, respectively, the abscissa (trunc-
ation point) and the ordinate of the standardized
normal distribution for a proportion p selected. In the
previous note (Hill, 2002), the heterogeneity of vari-
ance was expressed in terms of differences in standard
deviation, whereas here it is expressed as differences of
variances to utilize their additive properties. Wagner
et al. (1997) and SanCristobal-Gaudy et al. (1998) use
a multiplicative rather than additive model for the
differences in variances, which can have benefits in
subsequent parametrization.

Further terms in the expansion of (1) are given in
the Appendix. In particular the second-order term
in effects on the mean leads to an additional term
+1

2 xza
2/s2 in (2) (see also Latter, 1965). As we are

concerned here with the effects of genes which influ-
ence the variability we assume that terms in a2/s2 and
terms of higher order than 1/s2 can be ignored relative
to a/s and b/s2. This assumption holds, for example,
with simple multiplicative scaling effects where k=s/m
is the coefficient of variation: then b/s2=(ds2/ds)ka/
s2=2ka/s, approximately, and higher-order terms
become trivial if a/s is small.

The selection intensity (selection differential in
standard units) is given by i=z/p for this distribution.
Hence, the probability of selection or fitness of in-
dividuals of a genotype that increases the mean by a/s
and the variance by b/s2, relative to that of a random
individual, is given by

P(a, b)=p=1+ia=s+ 1
2 ixb=s

2: (3)

The term ia/s in (3) is the standard coefficient for
truncation selection (see Falconer & Mackay, 1996),

and the second is the additional term that accounts
for heterogeneity in variance (Hill, 2002). Thus, as
Haldane (1930) noted, the probability of selection of
the genotype with higher mean is increased relatively
more under intense selection if the genotype also
confers more variability ; whereas under weak selec-
tion increased variability reduces its advantage.
Equivalently, the selective value (increment in relative
fitness) of the genotype is given by

s(a, b)=P(a, b)=px1=ia=s+ 1
2 ixb=s

2: (4)

The value of x increases monotonically with p, and
for p=0.5, x=0. Values of p and corresponding
values of i and 1

2ix are given in Table 1, indicating
how the latter becomes relatively more important
with increasing intensity of selection, such that geno-
types conferring high variability become relatively
more favoured as the intensity of selection rises. With
very weak selection, such genotypes are at a selective
disadvantage.

(ii) Bi-allelic locus with additive effects

We utilize for reference the notation of Falconer &
Mackay (1996), where q refers to the frequency of the
selectively disadvantaged allele, s to the difference in
fitness and 2a the difference in mean phenotype be-
tween homozygotes. Let us assume that the pheno-
typic distributions of A1A1 individuals have a units
higher mean and b units higher residual variance than
A1A2 individuals, and 2a and 2b respectively higher
than A2A2 individuals. Further, let us assume there is
random mating and Hardy–Weinberg equilibrium.
Hence the selective value of the A1 gene (A1A1xA2A2

difference in Falconer & Mackay, 1996) is

s=2(ia=s+ 1
2 ixb=s

2): (5)

(iii) Changes in gene frequency and population mean

The change in the frequency (q) of the A2 allele from
one generation of selection is given by

Dq=xsq(1xq)=2=xq(1xq)(ia=s+ 1
2 ixb=s

2): (6)

The mean phenotype is given by a constant term +a
(1x2q) under random mating and Hardy–Weinberg

Table 1. Proportion selected (p), selection intensity (i) and selection coefficient for variance term (12ix) in a very
large population

p 0.80 0.60 0.50 0.40 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001

i 0.35 0.64 0.80 0.97 1.40 1.75 2.06 2.42 2.66 2.89 3.17 3.37
1
2ix x0.15 x0.08 0.00 0.12 0.59 1.12 1.70 2.49 3.12 3.72 4.56 5.20
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equilibrium (Falconer & Mackay, 1966) and that
in variance similarly by a constant term +b(1–2q).
Hence dm/dq=x2a, for example, and the change
in population mean due to the change in gene fre-
quency is

Dm=(dm=dq)Dq=

x2aDq=2q(1xq)(ia2=s+ 1
2 ixab=s

2) ; (7)

and the consequent change in variance due to the
heterogeneous variance is

DV=(dV=dq)Dq=

x2bDq=2q(1xq)(iab=s+1
2 ixb

2=s2): (8)

There is, of course, an additional change in genetic
and thus phenotypic variance due to genotype fre-
quency change affecting the variation among means
of each genotype. This is given by

2a2[(q+Dq)(1xqxDq)xq(1xq)]� 2Dq(1x2q)a2 (9)

if terms in (Dq)2 are ignored. The relative size of the
variance changes due to ‘ indirect ’ (variance among
genotypes) and ‘direct ’ changes in variance (variance
within genotypes) from (8) and (9), respectively, is
therefore x(1x2q)(a/s)2/(b/s2), i.e. proportional to
the ratio of squared standardized effect of the gene
on the trait and standardized effect on the variance;
but the indirect change is negligible at intermediate
gene frequencies. (The multi-locus ‘Bulmer effect ’ on
variance has been ignored here, but is included later.)

(iv) Dominance

In the above it has been assumed that the gene has
additive effects on both the mean and variance.
If there is any dominance, whether partial, full or in-
deed over-dominance for either or both parameters
(equality is not required), then equivalent formulae
for non-additive genes can be used, with a replaced by
a=axd(1x2q), the average effect of the gene sub-
stitution on the mean (from Falconer & Mackay,
1996), where d is the dominance deviation, and
equivalently b by b as the average effect of the gene
substitution on the variance. Hence s=2(ia/s+1

2 ixb/
s2) from (5), dV/dq=x2bDq and formulae for chan-
ges in mean and variance are obvious : (7) and (8)
generalize to Dm=2q(1xq)(ia2/s+1

2 ixab/s
2) and

DV=2q(1xq)(iab/s+1
2 ixb

2/s2).

(v) Fixation probability of a mutant;
long-term selection

In a finite population of effective size Ne the fixation
probability, u, of a mutant gene with additive effects is

given by u=s for s>1/Ne (Kimura, 1964), with s=
2(ia/s+1

2 ixb/s
2) from (5) in this model. For |s|<1/Ne,

u=s/2+1/2Ne, approximately (Hill, 1982), otherwise
u=0. Hence a gene that increases the variance has
a higher probability that it will survive (Fig. 1) and
ultimately be fixed in the population if selection is
intense. Predictions of long-term selection response
and limits as functions of gene effects could also be
made based on results of Robertson (1960), but we
shall not pursue this here. The present analysis merely
illustrates the problem of making long-term predic-
tions because potential changes in variance due to
selection have to be accommodated.

3. Multi-locus models

(i) Non-epistatic model

To extend the analysis to multiple loci let us assume
that effects of different loci on the mean and on the
variance are additive, i.e. there are no epistatic effects.
SanCristobal-Gaudy et al. (1998), however, assumed
additivity of the logarithm of the variance, which leads
to more tractable distributional properties (Foulley &
Quaas, 1995) and management of scale effects, but
may or may not be a better biological model. Hence
the distribution of phenotypes for an individual with
genotype AhiAhj at locus h is N(m+gh(ahi+ahj+
dhij), sE

2+gh(bhi+bhj+ehij)) where, respectively, m and
sE
2 denote the genotypic mean and environmental

variance, ahi and dhij, average and dominance effects
at locus h on the mean and bhi and ehij its correspond-
ing average and dominance effects on the phenotypic
variance. With the assumption of additive gene action
across loci, the selective values and changes in fre-
quency of individual genes are as in the previous cal-
culations (Eqns 4 and 6), where s2 formally refers to
the sum of the environmental variance and the genetic
variance attributed to all other loci. We assume that
the contribution of any individual locus to the mean or
variance of the variance is small, and hence assume s2

equals the phenotypic variance. Let s2
Am=ghgiqhiahi

2

denote the usual additive genetic variance (in terms
of effects of genes on the mean, usually written s2

A or
VA), and similarly let s2

Av=ghgiqhibhi
2 and covAmv=

ghgiqhiahibhi denote, respectively, the additive genetic
variance in the variance and in the covariance between
effects on mean and variance. Extending (7) and (8),
where it is noted that, for example, 2q(1xq)b2 is the
contribution to s2

Av from that locus :

Dm=is2
Am=s+

1
2 ixcovAmv=s

2 (10)

and

DV=icovAmv=s+ 1
2 ixs

2
Av=s

2: (11)
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Equations (10) and (11) apply whether or not genes
are of large effect, except that higher-order terms from
(1) and the indirect effects of gene frequency change
on the variance (9) are ignored. The results include the
infinitesimal model in which it is assumed that all of
the very many unlinked loci affecting the trait are
additive within and between loci and have an in-
finitesimally small effect on both the mean and the
variance. Hence a non-trivial response, in terms of
standard deviations (Dm/s) or heritability, implies
that the sum over loci, gh, to give the total variance,
sAm
2 /s2=gh2qh(1xqh)(ah/s)

2, is finite, where ah de-
notes the gene effect at locus h on the mean. Similarly,
a non-trivial proportional change in variance, DV/s2,
implies that s2

Av/s
4=gh2qh(1xqh)(bh/s

2)2 is finite.

(ii) Scale

As noted by Hill (2002), if the differences in variance
can be assumed to be due solely to scale, appropriate
results are obtained. Thus if there are multiplicative
effects such that s=km, and there are no other differ-
ences among genotypes in the variance they contribute,
a small increment a in genotypic mean contributes
an increment in standard deviation of ka and in vari-
ance of b=(ds2/ds)ka=2ksa at any locus (see also
Section 2(i) above). Hence covAmv=2kssAm

2 , sAv
2 =

4k2s2sAm
2 , and from (10) and (11)

Dm=is2
Am=s+ixks2

Am=s

and

DV=2iks2
Am+2ixk2s2

Am=2ksDm,

i.e. the change in variance is proportional to the
change in mean, DV/Dm=2ks, and the coefficient of
variation is unchanged. Clearly, if a scale transform
such as the logarithmic can substantially reduce the
relationship between mean and variability of the
population, then it seems appropriate to do so, and
then define terms such as b, covAmv and sAv

2 for the
log-transformed data.

(iii) Recurrent selection, the infinitesimal model and
the Bulmer effect

Truncation selection induces negative gametic (link-
age) disequilibrium between increasing alleles at dif-
ferent loci, which in turn leads to a reduction in
genetic variance (the Bulmer effect). Recurrence for-
mulae that do not involve gene frequency changes can
be derived under the assumption of the infinitesimal
model, in which cases all changes are due to the gen-
eration of disequilibrium. These formulae are derived
in the Appendix; regrettably they are not neat ! For
example the recurrence equation for the additive
genetic variance (in the mean) is as follows, from

appendix equation (A6):

s2
Am,t+1=

1
2s

2
Am,0+

1
2 [s

2
Am,txi(ixx)(s2

Am,t=st

+ 1
2 ixcovAmv,t=s

2
t )

2xi(s2
Am,tcovAmv,t)=s

3
t

x 3
4 ix(cov

2
Amv,t=s

4
t )], (12)

where, for example, sAm,t
2 is the variance at generation

t and sAm,0
2 is that in the base population. This reduces

to sAm,t+1
2 =1

2sAm,0
2 +1

2{sAm,t
2 – i(i – x)(sAm,t

2 /st)
2} in

the standard model where genetic variance in varia-
bility is assumed to be absent. Recurrence formulae
for covAmv,t and sAv,t

2 follow by extension of the
analysis in the Appendix :

covAmv, t+1= 1
2 covAm,0+ 1

2 [covAmv,txi(ixx)

r(s2
Am, t=st+ 1

2 ixcovAmv,t=s
2
t )

r(cov2Amv,t=st+ 1
2 ixs

2
Av, t=s

2
t )

x 1
2 i(s

2
Am, ts

2
Av, t+cov2Amv,t)=s

3
t

x 3
4 ix(covAmv,ts

2
Av, t=s

4
t )], (13)

s2
Av, t+1=

1
2s

2
Av,0+

1
2 [s

2
Av, txi(ixx)(covAmv,t=st

+ 1
2 ixs

2
Av, t=s

2
t )

2xi(covAmv,ts
2
Av, t)=s

3
t

x 3
4 ix(s

2
Av, t=s

4
t )]: (14)

If selection ceases, the changes in variances due to the
gametic disequilibrium return asymptotically to those
in the initial population, whereas those due to the
(infinitesimally small) changes in gene frequency are
permanent.

A particular complication is that as the phenotypic
variance is changed by selection, so also is the herita-
bility. If additive variance does not increase in pro-
portion, there is therefore a bigger reduction in
heritability and thus response; the phenotypic stan-
dard deviation is rising, however, which may com-
pensate at least in part. Equilibrium may not,
therefore be reached in this and other cases when the
phenotypic variance changes as a direct consequence
of selection, as will be illustrated in numerical ex-
amples. This contrasts with the usual analysis for the
infinitesimal model when equilibrium is approached
asymptotically, but when most change in variance
occurs in the first two or so generations and is solely a
consequence of the gametic disequilibrium induced by
the selection.

4. Selection other than on simple phenotype

(i) Within- and between-family selection

The foregoing analysis deals solely with mass selec-
tion. More generally we need to consider selection
with different weights given to individual and
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relatives’ performance, as is normal practice in genetic
improvement programmes for livestock. It is simplest
first to consider two special cases – selection within
families and selection between families – which point
towards the general solution. (We assume the multi-
locus case and, where appropriate, the infinitesimal
model.) The results can be derived either by con-
sidering the selective value of individual genes or by
using a variance component argument for a continu-
ous trait. The former seems simpler and is used here.
Consider the single-locus model used previously and
a mating A1A2rA2A2, such that one-half the n off-
spring are expected to inherit the A1 allele and have
increased mean and variance by a and b units re-
spectively. Let sB

2 and sW
2 denote the between- and

within-family variances respectively, which typically
can be partitioned as sB

2=1
2 sAm

2 +sC
2 , where sC

2 is the
common environment of full sibs, and sW

2 =1
2sAm

2 +
sE
2 , where sE

2 is the within-family error variance, such
that sC

2 +sE
2=s2xsAm

2 . The variance of mean per-
formance of a full-sib family of n individuals is
sB
2+sW

2 /n.

(a) Selection within families

Offspring inheriting the A1 gene are expected to have
1
2a higher mean and 1

2b higher variance than their sibs.
Hence, from (4) their relative probability of selection
is increased by

sW(a, b)= 1
2 (ia=sW+ 1

2 ixb=s
2
W): (15)

Except that their effects are scaled proportional to the
within-family rather than phenotypic variance, genes
directly influencing variability therefore have a similar
relative impact on changes in parameters for within-
family as for mass selection.

(b) Selection between families

Compared with families which are bred from
A2A2rA2A2 matings, the offspring mean of A1A2r
A2A2 matings is increased by 1

2a and, since the residual
error terms are assumed to be uncorrelated within
families, the variance of the family mean is increased
by 1

2b/n. Hence the relative probability of selection is
increased by

sB(a, b)= 1
2 {ia=(s

2
B+s2

W=n)1=2

+ 1
2 ixb=[n(s

2
B+s2

W=n)]}: (16)

Relative to its effect on the mean, the gene therefore
has a 1/n proportionately smaller effect on the vari-
ance. Hence it is clear that family selection, or indeed
other schemes whereby selection is placed on the
means of groups of relatives, puts relatively much less
direct selection pressure on the variance than do
schemes based on individual selection such as mass or

within-family selection, particularly when family sizes
are large. Analogously, sib selection in animal breed-
ing or kin selection in natural populations will be in-
creasingly less affected by heterogeneity of variance as
survival of the individual depends on the performance
of increasing number of sibs.

(c) Index and BLUP selection

Index and BLUP selection comprise weightings to the
individual’s own and to relatives’ performance, with
more to the former when heritability is high. Hence
the impact of differences in variance will usually
be smaller than for mass selection, particularly if the
heritability is small.

(ii) Selection intensity in small population

The preceding formulae (in terms of i and ix) apply to
the case of selection from a large population. If
selection is within families, it is almost certain to be
from a limited number of individuals, certainly for
mammals. To check on the relation between proba-
bility of selection and difference in variance, Monte
Carlo simulation was used. (Numerical integration of
order statistics could be used, but is inefficient for
large n.) For a family of n individuals, n independent
N(0, 1) observations xj were sampled and the pheno-
type of one of these was scaled as x1k=x1(1+b)+a. As
the case of selection of only one individual is of most
relevance for within-family selection, the probability
p1 that this individual ranked highest was computed.
Results are expressed as, for example, (p1x1/n)n/b,
the increase in selective value per unit increase in b,
which for an infinitely large population is ix/2, com-
parable to i for a. Results are given in Table 2. It is
seen that just as the selection intensity term i is re-
duced for given proportion selected in a small popu-
lation, so is 1

2ix, but proportionately rather more.
Even so, as this case of selecting one individual from
a group is the most extreme situation, it seems there
is no need to evaluate different formulae to cater
specifically for groups of small size assuming relevant
correction is made where necessary.

5. Numerical results : simulation check

(i) Monte Carlo simulation method

To check both the formulae for the infinitesimal
model (Eqns 12–14) and the degree of fit of the
equations derived in the text and Appendix, Monte
Carlo simulation of directional selection was under-
taken using a finite-locus model. The model was,
however, designed to be close to the infinitesimal
model approximation and so no test was made of the
infinitesimal model per se. Eight hundred unlinked
bi-allelic loci were simulated with additive effects on

W. G. Hill and X.-S. Zhang 126

https://doi.org/10.1017/S0016672304006640 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672304006640


the mean and variance within and between loci, i.e. no
dominance or epistasis. Each allele had initial fre-
quency of 0.5, so as to minimize the change in vari-
ance due to change in gene frequency. As far as
possible consistent with the parameters simulated,
gene effects were the same at each locus. Allele Ai at
locus i had effect ai on the mean and bi on the vari-
ance, and the initial environmental variance was 1.0.
Hence, for example, to simulate sAm

2 =0.5, i.e. an in-
itial heritability of 1/3, the allelic effect at each locus
was ai=0.025d2, giving sAm

2 =800r2q(1xq)ai
2=0.5.

Then, for example : (a) to simulate sAv
2 =covAmv=0,

bi=0 at each locus ; (b) to simulate sAv
2 =0.25 and

covAmv=0, bi=0.025 for i=1 to 400 and bi=x0.025
for i=401 to 800; (c) to simulate sAv

2 =0.25 and
covAmv=0.187=0.25/d2, a correlation of 0.5 be-
tween effects on the mean and variance, bi=0.025 for
i=1 to 600 and bi=x0.025 for i=601 to 800. An
alternative simulation was also used as a check of
robustness for sAm

2 =0.5, sAv
2 =0.25, covAmv=0: for

i=1 to 400, ai=0.05, bi=0 and for i=401 to 800,
ai=0, bi=0.025d2; but short-term results were little
affected.

(ii) Comparison of simulation and infinitesimal
model approximation

For the infinitesimal model approximation, calcula-
tions were undertaken using (12–14). Some examples
are given in Fig. 2 for 5 generations of selection using
both methods. This short period was used because
subsequently gene frequency and hence variance
changes become appreciable, such that the simulation
becomes a poor check of the infinitesimal model cal-
culations. Simulation was undertaken with 100 re-
plicates, using a monoecious population with 100
selected out of either 400 (p=0.25) or 1000 (p=0.1)
recorded. The agreement is generally seen to be quite
good, even though large heritabilities, values of sAv

2

and correlations between mean and variance effects
are used. The poorest fit is found when the covariance
covAmv is negative; this is the situation where herita-
bility can increase, perhaps quickly, because the en-
vironmental variance may be falling as a consequence
of the selection on the mean. The simulations do in-
dicate that the infinitesimal approximations given in

the Appendix are correctly computed; but note the
good fit here has no wider implication as the simu-
lation model was chosen to be that best approximated
by the infinitesimal model.

6. Numerical results : patterns of change

Examples of predicted responses in mean and changes
in variances based on the infinitesimal model are
given in Tables 3–6, the number of relevant para-
meters that change precluding simple visual rep-
resentation. For reference, in all parameter sets the
environmental variance in the base population (sE0

2 ) is
set equal to 1.0.

Consider firstly Table 3, which shows the influence
of the magnitude of sAv

2 for a proportion selected of
p=10%, an initial value of sAm

2 =0.5 (i.e. h2=1/3 and
sP
2=1.5) and no correlation of effects on mean and

variance (covAmv=0). For sAv
2 =0, the results are the

standard values for the infinitesimal model with these
initial variances, with a decline in heritability and
phenotypic variance arising due to the Bulmer effect
that quickly reach an asymptote (in the absence of
linkage, as here). The pattern changes more as higher
initial values of sAv

2 are taken; but even for the lowest
non-zero value (0.0625) of sAv0

2 , the phenotypic vari-
ance increases above its initial value after four gen-
erations, while the heritability falls further than when
sAv
2 =0, and consequently response in the mean is

predicted to be smaller. The environmental variance
changes substantially over generations, increasing by
over 20% after 4 generations when sAv

2 =0.125. There
is only a small impact on the change in mean per-
formance, however. Note also that sAm

2 , sAv
2 and

covAmv decline a little from their initial values as a
consequence of the Bulmer effect, which implies that
a small negative correlation between genetic effects on
the mean and variance is generated (i.e. covAmv<0 for
t>0). Whilst in Table 3 comparisons are made among
values of sAv

2 for given initial sAm
2 , in Table 4 the same

value of sAv
2 (0.125) is used for a range of values of

sAm
2 . The impact of sAv

2 on the phenotypic variance,
for example, is seen to be greater in absolute terms,
and much greater in proportional terms, when sAm

2 is
small.

Table 2. Selection of the most extreme individual from a group of size n. The coefficients i and 1
2ix are the

coefficients of a and b, respectively, with the standard error of their estimates, obtained by Monte Carlo
simulation each with 106 replicates

n 2 3 5 10 20 40 100

i* 0.56¡0.01 0.86¡0.01 1.20¡0.01 1.58¡0.02 1.98¡0.03 2.26¡0.04 2.69¡0.07
1
2ix 0 0.12¡0.01 0.39¡0.01 0.87¡0.02 1.42¡0.03 1.94¡0.04 2.79¡0.07
i+1

2ix 0.56¡0.01 0.97¡0.01 1.58¡0.01 2.39¡0.02 3.37¡0.03 4.30¡0.04 5.67¡0.07

* Model simulated (parameters a, b) : i (0.05, 0), 1
2ix (0, 0.05), i+1

2 ix (0.05, 0.05).
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The influence of selection intensity is considered in
Table 5, again for the case of covAmv=0 initially. In
these examples, the relative values of the importance
of selection on variance to that on mean in the first
generation (ix/2 to i : see (4)), takes values of ap-
proximately x1/3, 0, 1/3, 2/3 and 1 for p=0.75, 0.5,

0.15, 0.1 and 0.02, respectively. Selection has to be
relatively strong for the changes in phenotypic vari-
ance to be substantial, not least to overcome the
impact of the Bulmer effect in producing a nega-
tive covariance of effects on mean and variance.
But for the most intense selection, environmental

Fig. 2. Comparisons of multi-locus simulated (continuous line) and infinitesimal model theoretical (dashed line)
predictions of change in mean (Dm) and phenotypic variance (Ds2) for the same initial environmental variance, sE

2=1,
additive genetic variance on the mean, sAm

2 =0.5, and on variance sAv
2 =0.25, and differing values of additive genetic

covariance (covAmv), and of proportion selected (p).

W. G. Hill and X.-S. Zhang 128

https://doi.org/10.1017/S0016672304006640 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672304006640


variance is seen to increase by nearly 50% after 4
generations.

In Table 6 the influence of the magnitude of the
covariance between additive effects on the mean and
variance is considered for the same initial values of
sAm
2 and sAv

2 . The sign of covAmv has a major impact.
If it is positive the environmental variance rises more
rapidly, and the heritability consequently falls, such
that response in the population mean is reduced. If it
is negative, however, the environmental variance falls
and consequently the heritability rises increasingly
rapidly, with the impact on the variance becoming
sufficiently large that the model breaks down (sE

2<0
for t>9 with initial covAmv=x0.125 in this example).
These pairs of results with the same values of initial
|covAmv| (e.g. covAmv=0.0625 and x0.0625) can be
viewed as those for lines in a bi-directional selection
experiment: results for covAmv>0 can be regarded
as those for the high selection line, and those for
covAmv<0 as those for the low selection line, except
that the sign of the change in the population mean
has to be reversed. Asymmetry of response is there-
fore expected if covAmv is not zero, with more rapid
response in the direction in which environmental

variance is reduced; for example if covAmv=0.0625,
the expected response upwards after 8 generations is
4.53 and downwards is 4.82 (parameters and results in
Table 6).

7. Discussion

A critical question is whether these formulae and com-
putations have any practical value in the real world,
or are merely theoretical games, as would be the case
if, in fact, there is no genetic variance in the residual
variance (i.e. sAv

2 =0). Firstly, there is no a priori
reason to suppose that there is no heterogeneity in
environmental variance or residual phenotypic vari-
ance given genotype at a particular locus. Indeed it is
a convenience in statistics to assume homogeneity, for
example in enabling use of the analysis of variance
and in reducing numbers of parameters to be fitted;
for discussion see Foulley & Quaas (1995). When the
assumption has actually been tested heterogeneity has
often been found among environmental groupings
and may be substantial, for example in variation
among herds in the phenotypic variance of milk yield
in dairy cattle within herds (Brotherstone & Hill,
1986). Heterogeneity is, however, commonly assumed
in analysis of, for example, binomially distributed
data or body size data, and a transformation used
to induce homogeneity. Secondly, while there is a
remarkable homogeneity of variance of some traits,
for example when expressed as CV in juvenile body
weight of selected lines of mice (Hill & Bünger, 2004),
there are other situations where that is not the
case, for example in selected lines of Drosophila

Table 4. Changes in parameters with directional
selection in the infinitesimal model : effects of
magnitude of the genetic variance

t Dm DsE
2 sAm

2 covAmv sAv
2 sP

2 h2

Selection practised: p=0.1, i=1.755, x=1.282
0 0.000 0.000 1.000 0.000 0.125 2.000 0.500
1 1.241 0.070 0.792 x0.031 0.121 1.863 0.425
2 2.241 0.103 0.770 x0.036 0.121 1.873 0.411
4 4.164 0.155 0.770 x0.036 0.121 1.925 0.400
8 7.951 0.254 0.776 x0.034 0.121 2.030 0.382

0 0.000 0.000 0.500 0.000 0.125 1.500 0.333
1 0.716 0.094 0.431 x0.024 0.118 1.525 0.283
2 1.311 0.147 0.422 x0.027 0.117 1.569 0.269
4 2.447 0.237 0.423 x0.027 0.118 1.660 0.255
8 4.648 0.408 0.427 x0.024 0.119 1.835 0.233

0 0.000 0.000 0.250 0.000 0.125 1.250 0.200
1 0.250 0.112 0.229 x0.016 0.115 1.342 0.171
2 0.727 0.185 0.227 x0.018 0.114 1.411 0.160
4 1.361 0.311 0.227 x0.017 0.115 1.538 0.147
8 2.568 0.544 0.229 x0.015 0.117 1.772 0.129

Definitions as in Table 3.

Table 3. Changes in parameters with directional
selection in the infinitesimal model : effects of
magnitude of the genetic variance in residual variance

t Dm DsE
2 sAm

2 covAmv sAv
2 sP

2 h2

Selection practised: p=0.1, i=1.755, x=1.282
0 0.000 0.000 0.500 0.000 0.000 1.500 0.333
1 0.716 0.000 0.431 0.000 0.000 1.431 0.301
2 1.349 0.000 0.412 0.000 0.000 1.412 0.292
4 2.557 0.000 0.404 0.000 0.000 1.404 0.288
8 4.950 0.000 0.404 0.000 0.000 1.404 0.288

0 0.000 0.000 0.500 0.000 0.062 1.500 0.333
1 0.716 0.047 0.431 x0.012 0.061 1.478 0.292
2 1.329 0.076 0.417 x0.014 0.060 1.493 0.279
4 2.498 0.124 0.415 x0.015 0.060 1.539 0.270
8 4.783 0.215 0.418 x0.014 0.061 1.633 0.256

0 0.000 0.000 0.500 0.000 0.125 1.500 0.333
1 0.716 0.094 0.431 x0.024 0.118 1.525 0.283
2 1.311 0.147 0.422 x0.027 0.117 1.569 0.269
4 2.447 0.237 0.423 x0.027 0.118 1.660 0.255
8 4.648 0.408 0.427 x0.024 0.119 1.835 0.233

0 0.000 0.000 0.500 0.000 0.250 1.500 0.333
1 0.716 0.187 0.431 x0.048 0.222 1.618 0.266
2 1.277 0.276 0.431 x0.048 0.224 1.707 0.253
4 2.363 0.439 0.434 x0.045 0.227 1.873 0.232
8 4.437 0.749 0.439 x0.038 0.232 2.188 0.201

t, generations; Dm, response in population mean to gen-
eration t ; DsE

2 , response in residual variance at linkage
equilibrium to generation t ; sAm

2 , sAv
2 and covAmv are,

respectively, additive genetic variance, additive genetic
variance in residual variance, and covariance between them;
sP
2 , phenotypic variance; h2, heritability; p, proportion

selected; i, selection intensity ; x, truncation point.
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(Clayton & Robertson, 1957). Canalization (Rendel,
1967) is a description of heterogeneity of variance
associated with level of the mean, but not as a simple
transformation. Variation in phenotypic plasticity,
for example among varieties of cereals, in response to
environmental differences (see e.g. de Jong & Bijma,
2002, for a review) implies genetic differences in en-
vironmental variances. Comparisons of variation be-
tween individuals of inbred lines and their F1 crosses
typically show lower variance in the hybrid (for ex-
amples, see Falconer & Mackay, 1996, p. 268), which
led to Lerner’s (1954) theory of genetic homeostasis.
A more relevant example to this study is that of
Sorenensen & Waagepetersen (2003), who found
variation in breeding values for residual variance in
litter size of pigs for a large data set, which could not
be explained simply by the non-normal distribution
of that trait. SanCristobal-Gaudy et al. (1998) gave
evidence for such heterogeneity in two small data
sets of goat milk composition and muscle pH in
piglets. Other examples include heterogeneity among

chromosome substitution lines in Drosophila (T. F. C.
Mackay, personal communication). Whilst stabilizing
selection can lead to reduction in variance (see sum-
mary by SanCristobal-Gaudy et al., 1998), reductions
due to changes due to variation in mean between
genotypes and to variation within genotypes are
confounded; indeed some degree of such confounding
is inevitable in most experiments.

There are other potential sources of information
from which estimates of the parameters of hetero-
geneity used in this theoretical study could be ob-
tained, in particular large families of animals or plants
from which reliable estimates of within-family vari-
ance could be obtained and hence estimates of be-
tween-family variance in that quantity. For livestock,
a potential source is large half-sib families of broiler
chickens, which are kept in the same environment;
although progeny groups of dairy sires used in artificial
insemination are also very large, they are scattered
overmultiple farms, reducing the power of analysis. At
the single-locus level, analysis of data on distributions
of the alternative phenotypes at known quantitative
trait loci or genes would also provide information.

The theoretical analysis shows that there is sufficient
flexibility in the model to explain why phenotypic

Table 6. Changes in parameters with directional
selection in the infinitesimal model : effects of
magnitude of the genetic covariance

t Dm DsE
2 sAm

2 covAmv sAv
2 sP

2 h2

Selection practised: p=0.1, i=1.755, x=1.282
0 0.000 0.000 0.500 0.125 0.125 1.500 0.333
1 0.810 0.273 0.376 0.071 0.094 1.649 0.228
2 1.372 0.439 0.383 0.074 0.103 1.822 0.210
4 2.445 0.755 0.396 0.081 0.107 2.152 0.184
8 4.446 1.349 0.416 0.091 0.111 2.764 0.150

0 0.000 0.000 0.500 0.063 0.125 1.500 0.333
1 0.763 0.183 0.405 0.025 0.111 1.588 0.255
2 1.345 0.296 0.402 0.024 0.111 1.699 0.237
4 2.448 0.505 0.409 0.027 0.113 1.914 0.214
8 4.532 0.899 0.420 0.034 0.115 2.320 0.181

0 0.000 0.000 0.500 x0.000 0.125 1.500 0.333
1 0.716 0.094 0.431 x0.024 0.118 1.525 0.283
2 1.311 0.147 0.422 x0.027 0.117 1.569 0.269
4 2.447 0.237 0.423 x0.027 0.118 1.660 0.255
8 4.648 0.408 0.427 x0.024 0.119 1.835 0.233

0 0.000 0.000 0.500 x0.063 0.125 1.500 0.333
1 0.670 0.004 0.453 x0.076 0.123 1.457 0.311
2 1.270 x0.011 0.443 x0.080 0.123 1.432 0.309
4 2.443 x0.053 0.440 x0.082 0.123 1.386 0.317
8 4.822 x0.143 0.439 x0.084 0.122 1.295 0.339

0 0.000 0.000 0.500 x0.125 0.125 1.500 0.333
1 0.623 x0.085 0.472 x0.131 0.126 1.386 0.340
2 1.220 x0.178 0.463 x0.134 0.126 1.285 0.361
4 2.435 x0.374 0.461 x0.138 0.126 1.087 0.424
8 5.125 x0.795 0.472 x0.151 0.125 0.677 0.697

Definitions as in Table 3.

Table 5. Changes in parameters with directional
selection in the infinitesimal model : effects of selection
intensity

t Dm DsE
2 sAm

2 covAmv sAv
2 sP

2 h2

Selection practised: p=0.75, i=0.424, x=x0.674
0 0.000 0.000 0.500 0.000 0.125 1.500 0.333
1 0.173 x 0.012 0.461 x 0.001 0.126 1.449 0.318
2 0.336 x0.025 0.446 x0.002 0.126 1.422 0.314
4 0.652 x0.051 0.438 x0.002 0.126 1.387 0.316
8 1.287 x0.106 0.435 x0.002 0.126 1.328 0.327

Selection practised: p=0.50, i=0.798, x=0.000
0 0.000 0.000 0.500 0.000 0.125 1.500 0.333
1 0.326 0.000 0.447 x0.007 0.125 1.447 0.309
2 0.622 x0.005 0.430 x0.009 0.125 1.426 0.302
4 1.195 x0.017 0.423 x0.010 0.125 1.405 0.301
8 2.335 x0.046 0.421 x0.011 0.126 1.375 0.306

Selection practised: p=0.25, i=1.271, x=0.674
0 0.000 0.000 0.500 0.000 0.125 1.500 0.333
1 0.519 0.036 0.437 x0.015 0.122 1.472 0.297
2 0.972 0.055 0.422 x0.019 0.122 1.478 0.286
4 1.839 0.085 0.419 x0.020 0.122 1.504 0.278
8 3.543 0.141 0.421 x0.019 0.122 1.561 0.269

Selection practised: p=0.10, i=1.755, x=1.282
0 0.000 0.000 0.500 0.000 0.1 25 1.500 0.333
1 0.716 0.094 0.431 x0.024 0.118 1.525 0.283
2 1.311 0.147 0.422 x0.027 0.117 1.569 0.269
4 2.447 0.237 0.423 x0.027 0.118 1.660 0.255
8 4.648 0.408 0.427 x0.024 0.119 1.835 0.233

Selection practised: p=0.02, i=2.421, x=2.054
0 0.000 0.000 0.500 0.000 0.125 1.500 0.333
1 0.988 0.207 0.426 x 0.036 0.109 1.633 0.261
2 1.740 0.304 0.428 x 0.035 0.110 1.733 0.261
4 3.203 0.491 0.432 x 0.032 0.112 1.923 0.224
8 5.989 0.842 0.437 x 0.026 0.115 2.279 0.192

Definitions as in Table 3.
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variances can rise, fall, or remain fairly constant
(expressed as variance or CV as appropriate) under
directional selection. Indeed, this flexibility is such as
perhaps to hamper interpretation of data from ex-
periments. Further, it is important in any analysis to
consider correction for scale effects ; we are essentially
dealing here with components that can not be so ex-
plained. Perhaps the clearest prediction is that the
effect of directional selection on heterogeneity is likely
to be greatest when selection is intense. In experiments
in mice for growth, where CVs have remained fairly
constant, the fraction of animals selected is rarely
much less than one-quarter. In contrast, inDrosophila
much more intense selection can be and has been
practised. Selection experiments for high and low
bristle number have been conducted at different
selection intensities (Clayton & Robertson, 1957;
Frankham et al., 1968), but variances in the different
groups were not tabulated. In any case it would be
necessary to compare lines after different numbers of
generations but after similar changes in mean, i.e. for
given selection intensityrgeneration number.

To address the question of the relevance of the
theory reported here, it is clear that more data on
genetic variation in residual variation are necessary.
We do, however, consider that it would be worthwhile
to obtain information and meanwhile, in analysis of
selection experiments and breeding programmes, to
consider the possibility and impact of direct selection
on the variance when evaluating selection responses
and variability retained.

Appendix. Prediction of the probability of selection and

of induced linkage disequilibrium

In the text (Eqn 3) the probability of selection is
evaluated including only the terms in the Taylor series
that are linear in a and in b. At least quadratic
terms are needed to predict the magnitude of linkage
(gametic) disequilibrium induced by directional
selection (Bulmer effect).

Then, using the same method as for (3) and ex-
cluding cubic and higher terms,

P(a, b)=p=1+ia=s+ 1
2 ixb=s

2+ 1
2 ix(a=s)

2

+ 1
2 i(x

2x1)(a=s)(b=s2)

+(i=8)(x3x3x)(b=s2)2+ � � � (A1)

which can be rewritten

P(a, b)=p=1+i(a=s+ 1
2xb=s

2)

+ 1
2 ix(a=s+

1
2xb=s

2)2

x 1
2 i(a=s)b=s

2x( 38 )ix(b=s
2)2+ � � � (A2)

To compute the disequilibrium induced by selection
in a population initially at equilibrium assuming
bi-allelic loci, it is necessary to compute the value of
D12=f(A1B1)f(A2B2)xf(A1B2)f(A2B1), where, for ex-
ample, f(A1B1) is the frequency of the haplotype A1B1

after selection, and the corresponding effects on the
mean and variance of the trait are a1+a2 and b1+b2,
respectively. Excluding cubic and higher terms in a
and b and extending the results of Hill & Robertson
(1966), then among selected parents at loci 1 and 2

D12=[xi(ixx)(a1=s+ 1
2 xb1=s

2)(a2=s+ 1
2xb2=s

2)

x 1
2 i(a1b2+a2b1)=s

3x 3
4 ixb1b2=s

4]

rq1(1xq1)q2(1xq2): (A3)

Including terms contributed by disequilibrium, the
additive genetic variance is given by summing over
loci :

s2
Am=

X
j
2a2

j qj(1xqj)+
XX

jlk
2ajakDjk: (A4)

In the infinitesimal model negligible variance is con-
tributed by individual loci, so the inequality in the
second term can be removed. Hence, in the next gen-
eration, among selected individuals

s2
Am(S, 1)=

X
j
2a2

j qj(1xqj)

+
XX

jk
2ajak[xi(ixx)(aj=s+ 1

2xbj=s
2)

r(ak=s+ 1
2 xbk=s

2)x 1
2 i(ajbk+akbj)=s

3

x 3
4 ixbjbk=s

4]qj(1xqj)qk(1xqk)

=s2
Amxi(ixx)(s2

Am=s+
1
2 xcovAmv=s

2)2

xi(s2
AmcovAmv)=s

3x 3
4 ix(cov

2
Amv=s

4)]:

(A5)

Equation (A5) reduces to sAm
2 xi(ixx)(sAm

2 /s)2, the
standard formula, if bj=0 at all loci. In (A5) the first
term is also proportional to the selection response in
the mean, and it is tempting, for simplicity, to ignore
the second and third terms in (A5), but doing so can
only be justified if the terms in both covAmv/s

2 and
sAv
2 /s4 are negligible compared with sAm

2 /s.
The variance among selected individuals con-

tributes to the between-family variance in the next
generation, and assuming the infinitesimal model so
that the variance within families remains constant at
its value in the base population, the recurrence equa-
tion for variance in generation t+1 in terms of that in
generation t is given by

s2
Am, t+1=

1
2 s

2
Am, 0+

1
2 {s

2
Am, txi(ixx)[(s2

Am, t=st

+ 1
2 ixcovAmv,t=s

2
t ]

2xi(s2
Am, tcovAmv,t)=s

3
t

x 3
4 ix(cov

2
Amv,t=s

4
t )]}: (A6)
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Equivalent recurrence formulae for covAmv,t+1 and
sAv,t+1
2 in terms of quantities in the base population

and at generation t follow from (A3) and extending
(A4)–(A6) are given in the text (Eqns 12–14).
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