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K. Shoji has pointed out to me that construction [1] does not always yield a
completion. In the notation of [1], the homomorphism from the strong semilattice of
cancellative semigroups S to its purported completion T in Abian’s order is not always a
monomorphism. The difficulty arises when there is e€E,e=sup{e’'e E|e'<e} but
{¢eo}e<e is not faithful, i.e. there are x, y with x#y in S, such that ¢,,.(x) = ¢, .(y) for
all ¢’ <e. A modification of the construction saves all parts of Theorem 1 except the fact
that the new embedding S = T need not preserve suprema existing in S; it does if S is a
semilattice of groups. The sequel [2] also needs a modification in the form of an additional
hypothesis.

THeoreM 1 (cf. [1, Theorem 1]). Let S=J S, be a strong semilattice of cancellative
E

semigroups. Then S has a completion T in Abian’s order where T is also a strong semilattice
of cancellative semigroups. If the S, are groups the completion is supremum preserving.

The remaining results of [1] need not be changed except that the phrase ‘“‘supremum
preserving” must be dropped from Theorems 5 and 6.

The modified construction is in two stages. The first is to eliminate the problems
which hinder the construction in [1], and then the latter is applied to the result. The
example suggested by K. Shoji is a very simple one, namely that shown as A in Fig. 1,
where {1, g} is a group. The original construction yields B, while what is wanted is
something like C where the boundable set {e, f} now has a supremum, h.

Given S=UJ S., a chain of extensions is built transfinitely as follows. Suppose for an
E
ordinal a«, $*=J S¢ has already been constructed and that for some ec E* e=
Ee
sup{e’e E* | ¢’ <e}, but {¢2,} is not faithful. Then a new element ¢ is added to E* with

e'<é<e, for all e’ <e, and multiplication is defined by

e if ge=e,
ée= e E*
8¢ {ge if ge<e. (g )

Then E**'=E*U{e}. Also S**' is formed as S7*'=S7 if f#¢é and S*' is the inverse
limit of the system {¢.. | e’ <e}.
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Figure 1

If B8 is a limit ordinal then S?= |J S*

a<fl
The next lemma shows that what has been done at one stage in the process is not
destroyed later.

Lemma 1. (1) If e € E* and e# sup{e’ <e} then, for y>{, SY= S and e # sup{e’' <e}.
E* EY
(2) If ec E%, e =sup{e'<e} and {¢..} is faithful, then, for y>{, S}=SE.
E¢

Proof. (1) The construction does not change any existing S? in subsequent stages.

Further if e = sup{e <e}, let a be the least ordinal with e =sup{e’ <e}. For any { <B<q,
Ee

there is some u € E® with u an upper bound of {¢'<e | e’ € E?}, but use. Hence for some
least o, B <o <a, there is v € E°, v <e but v u. It follows that v = w for some we E°~,
for o is clearly not a limit ordinal. Then uw <w so that uw =uw and ew=w so that
ew=w. Thus in E°"!, w<e and wsu, contradicting the choice of a.

(2) is obvious.

By the lemma, for some ordinal vy, the construction stops with no ee EY with
e =sup{e’ <e} and {¢ .} not faithful. Let S=SY, E=E".
E‘V

LEMMA 2. Every element of S is the supremum of a boundable subset of S.

Proof. It is first noted that if at some stage in the construction E**' = E* U{e}, then
e € E. If not, then e was added at some stage, let us say in going from E® to E®*'. Then in
E®*!, e =sup{e’<e} and {¢. .} is faithful. In all subsequent steps the corresponding family
{d..} is faithful, so that e is not used again in the construction. This contradiction shows
that e E.

This shows that if E**'= E*U{¢é} for some a, then $¢=, for all 8.

Next, suppose that every element of S$* is the supremum of a subset of S. Let
E>*'=E>U{é}. By construction, every element of S¢*' is the supremum of all the
elements below it, and these are, by the induction hypothesis, suprema of subsets of S. As
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already seen, if te S2*', te S. Finally if te S§*', f# e, f# ¢, then S§*'=S7. If t is not the
supremum of a subset of § in $**', then there is u € S¢™*' which is an upper bound for
X={seS|s=<t}, but tu. If fé =€ then fe = e and ¢;.(f) is an upper bound of X below t,
since XN SI"'=¢. Hence fe<é and fe=fe. For xe X, xe Sg*', g<f and g<eé. Hence
g <fe and it follows that ¢(t) and ¢,z (u) would be upper bounds for X in S3*', and
hence they coincide, say ¢;p(t)=v. Then v would be greater than or equal to the
supremum of X in S, contrary to the induction hypothesis.

If « is a limit ordinal and every element of $® is a supremum in S® of a subset of S,
for all B <a, then for te€ S, if t is not the supremum of X ={se S |s=<t}, then there is
B < a such that there is an element u with u € $®, « an upper bound for X but t< u. This
contradicts the induction hypothesis.

Now the completion may be constructed using the techniques of [1]. To do so, S is
first embedded in S, as above, and then S may be completed.
If S is a semilattice of groups, suprema which exist in S are preserved in the passage

to S. One sees that if s =sup X we may take X ={xe S |x <s} and then if s#sup X it is
N S

because at some stage in the construction of S, & is added and ¢, ,(s) = u is a new upper
bound for X. But ¢, ; is not a monomorphism, so that any preimage of u in S, must be an
upper bound for X; this is impossible since two elements of S, are incomparable.

In [2] it was claimed that the above construction may be used to construct the
injective hull of certain S-sets where S is a semilattice of groups. The claim is false as
stated since if S# S the extension S<§ is not essential, although the completion T is
indeed S-injective. However we shall show that S=S in the important case where the
semilattice of groups S is non-singular.

Johnson and McMorris [3, Theorem 2] characterize semilattices of groups, with 0,
S =J S, and which are non-singular. Necessary and sufficient conditions are that (i) E be

E

disjunctive and (ii) for any large ideal L and e =e?¢ L, [ {ker .. | ¢’ <e}={e}. In this
case it will be seen that S = S. The following weaker theorem replaces the theorem of [2].

THEOREM, Let S = S, be a non-singular semilattice of groups, with 0. If F is the BL
E

completion of E, then the completion T constructed over F is the injective hull of S, as an
S-set. T is the complete semigroup of quotients of S.

Proof. It suffices to show that, in the notation established earlier, S = S. Hence it must
be shown that if ecE is such that e=sup{e’'<e} then {¢..} is faithful. Let J=
E

U SoU U S Itis seen that J is an ideal. To show that J is large it suffices to show that

e'<e enf=0

for any 0 # g € E, some non-zero multiple of g is in J. If g<e then geJ; if g=e then
there is 0#e'<e and ge'=e’'eJ. Finally, if gfe then there exists 0<f<g such that
fae=0 since E is disjunctive, and then f=fgeJ. But now the condition (ii) above says
precisely that {¢, .} is faithful.
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