
Glasgow Math. J. 48 (2006) 125–143. C© 2006 Glasgow Mathematical Journal Trust.
doi:10.1017/S0017089505002934. Printed in the United Kingdom

MIXED STRUCTURES ON A MANIFOLD WITH BOUNDARY

ALBERTO CAVICCHIOLI
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Dipartimento di Matematica, Università di Modena e Reggio Emilia, Via Campi 213/B,

41100 Modena, Italia
e-mail: spaggiari.fulvia@unimo.it

(Received 19 July, 2005; accepted 8 September, 2005)

Abstract. For a closed topological n-manifold X , the surgery exact sequence
contains the set of manifold structures and the set of tangential structures of X .
In the case of a compact topological n-manifold with boundary (X , ∂X), the classical
surgery theory usually considers two different types of structures. The first one concerns
structures whose restrictions are fixed on the boundary. The second one uses two similar
structures on the manifold pair. In his classical book, Wall mentioned the possibility
of introducing a mixed type of structure on a manifold with boundary. Following this
suggestion, we introduce mixed structures on a topological manifold with boundary,
and describe their properties. Then we obtain connections between these structures
and the classical ones, and prove that they fit in some surgery exact sequences. The
relationships can be described by using certain braids of exact sequences. Finally, we
discuss explicitly several geometric examples.

2000 Mathematics Subject Classification. Primary 57R67, 57Q10 Secondary
57R10, 55U35, 18F25.

1. Introduction. Let X be a closed topological manifold of dimension n. Let
S(X) = Ss(X) denote the set of equivalence classes of simple homotopy equivalences
f : M → X , where M is a compact topological n-dimensional manifold. The
equivalence relation is given by the usual s-cobordism of such maps (see [14], [15],
and [24]). It is well-known that for n ≥ 5 the set S(X) fits into the surgery exact
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sequence (see, for example, [15] and [24, § 10])

· · · → Ln+1(π1(X)) → S(X) → [X, G/TOP] → Ln(π1(X)) → · · · (1.1)

where L∗ denotes the surgery obstruction groups. In fact, the set of homotopy classes
[X, G/TOP] coincides with the set of equivalence classes T (X) of tangential structures
on the manifold X (see [15] and [24]).

Given a compact topological n-manifold with boundary (X, ∂X), we can consider
a set of manifold structures S∂ (X, ∂X) and a set of tangential structures T ∂ (X, ∂X) on
X , where the structures are fixed on the boundary ∂X . For n ≥ 5 these sets fit in the
surgery exact sequence of a bordered manifold with fixed structures on its boundary

· · · → Ln+1(π1(X)) → S∂ (X, ∂X) → T ∂ (X, ∂X) → Ln(π1(X)) → · · · (1.2)

A third type of structure is given by a set of manifold structures and a set of tangential
structures on the pair (X, ∂X). For n ≥ 5 these structures fit in a surgery exact sequence
of relative groups (see [15] and [24])

→ Ln+1(π1(∂X) → π1(X)) →S(X, ∂X) → T (X, ∂X) → Ln(π1(∂X) → π1(X)). (1.3)

Recent results on various types of relative groups which arise naturally in surgery
theory were obtained in [4] and [5]. This permits the investigation of the splitting
obstruction groups and the surgery obstruction groups for a manifold pair and for a
triple of manifolds, obtaining explicit computations in many cases (see [3], [12], [13],
and [20]).

Following the classical book of Wall (see [24, p. 116]), we introduce a mixed type
of structure on a pair (X, ∂X), where X is a compact topological n-manifold. We deal
with a set of tangential structures on X whose restrictions on the boundary give a set
of manifold structures on ∂X together with the corresponding equivalence relations.
We shall denote such structures by T S(X, ∂X).

By using the realizations of exact sequences (1.1)–(1.3) on the spectra level (see [2],
[3], [5], [14] and [15]) we obtain a spectrum ��(X, ∂X) with homotopy groups

πi(��(X, ∂X)) = T Si(X, ∂X)

for which there exists an isomorphism

T Sn+1(X, ∂X) ∼= T S(X, ∂X). (1.4)

So the set T S(X, ∂X) is a group. Then we study the relationships between this group
and the algebraic version of exact sequences (1.1)–(1.3). The connections are given by
certain braids of exact sequences shown in the statement of Theorem 6 (see Section 3).
In Section 2 we recall some necessary definitions and results of Ranicki on algebraic
surgery exact sequences and applications of spectra to L-theory. In Section 3 we
define mixed structures on a manifold with boundary, and describe their properties.
This section contains the main theorem of the paper. In Section 4 we discuss some
applications of our results, also considering several geometrical examples for which
explicit computations are obtained.

2. Preliminaries. First we recall some basic facts about the application of
homotopy category of spectra to surgery theory (see [2]–[5], [14], and [23]). A spectrum
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� consists of a collection of CW -complexes {(En, ∗)}, n ∈ �, together with a collection
of cellular maps {εn : SEn → En+1}, where SEn denotes the suspension of the space
En. A spectrum � is called an �-spectrum if the adjoint maps ε′

n : En → �En+1 are
homotopy equivalences, for every n ∈ � (see [23]). Given a spectrum �, the spectrum
�� with

{��}n = �n+1, {�ε}n = εn+1

is defined. The functor � has an inverse functor �−1. Iterated functors �k, k ∈ �, on
the category of spectra are also defined. According to [23] there is an isomorphism of
homotopy groups πn(�) = πn+k(�k�), for every spectrum �. A homotopy commutative
square of spectra

� → �

↓ ↓
� → �

(2.1)

is a pull-back square if and only if the fibres of the parallel maps are naturally homotopy
equivalent. Square (2.1) is a push-out square if and only if the cofibers of the parallel
maps are naturally homotopy equivalent (see [23]). In the homotopy category of spectra
the concepts of pull-back and push-out squares are equivalent.

Recall that the surgery obstruction groups Ln(π ) are defined for every group π

with an orientation homomorphism w : π → {±1}. For brevity, we shall not include
orientation homomorphisms in our notation, and assume that all homomorphisms of
groups agree with the corresponding orientation homomorphisms. For every oriented
group π there exists a �-spectrum �(π ) with homotopy groups πn(�(π )) = Ln(π ). A
homomorphism f : π → π ′ of oriented groups induces a cofibration of �-spectra

�(π ) −−−−→ �(π ′) −−−−→ �( f ) (2.2)

with a homotopy long exact sequence

· · · → Ln(π ) → Ln(π ′) → Ln( f ) → Ln−1(π ) → · · · (2.3)

Now we recall the definition of a topological normal map into a closed topological
manifold X of dimension n (see for example [15]). A topological normal map (or,
equivalently, a t-triangulation of X)

( f, b) : M → X

is given by the following conditions:
(i) an n-dimensional manifold M with a normal topological block bundle

νM = νM⊂Sn+k : M → BTOP(k),

ρM : Sn+k → Sn+k/Sn+k − E(νM) = T(νM);

(ii) an n-dimensional manifold X with a topological block bundle

νX : X → BTOP(k),

ρX : Sn+k → T(νX );
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(iii) a degree one map f : M → X ;
(iv) a map of topological block bundles b : νM → νX , covering f , such that

T(b)∗(ρM) = ρX ∈ πn+k(T(νX )).

The topological normal structure set T (X) of the manifold X is the set of
concordance classes of normal maps ( f, b) : M → X . For n ≥ 5, it coincides with
the set [X, G/TOP] (see [15]). Recall that a concordance of topological normal maps

( fi, bi) : Mi → X, i = 0, 1

is given by a topological normal map of triads

((g, c); ( f0, b0), ( f1, b1)) : (W ; M0, M1) → (X × I ; X × {0}, X × {1}),

where I = [0, 1] and W is a compact (n + 1)-dimensional topological manifold with
boundary ∂W = M0 ∪ M1 (see [15, § 7.1]).

Let X be a closed topological n-dimensional manifold. An s-triangulation of X
is a simple homotopy equivalence f : Mn → X , where Mn is a closed topological
n-dimensional manifold. The set of concordance classes of s-triangulations of X is
denoted by S(X) (see [14], [15], and [24]). Recall that a concordance between two
s-triangulations

( fi, bi) : Mi → X, i = 0, 1

is given by a simple homotopy equivalence of triads

(g; f0, f1) : (W ; M0, M1) → (X × I ; X × {0}, X × {1}),

where W is a compact (n + 1)-dimensional topological manifold with boundary ∂W =
M0 ∪ M1 (see [15, § 7.1]).

Now let (X, ∂X) be a compact n-dimensional topological manifold with boundary
∂X . Let us consider the case of structures on X (rel ∂) for which a manifold structure
on the boundary ∂X is fixed. A topological normal map of pairs (see [15, § 7.1])

(( f, b), (∂f, ∂b)) : (Mn, ∂M) → (X, ∂X)

together with a homeomorphism ∂f : ∂M → ∂X is called a t∂ -triangulation of the
compact n-dimensional manifold X . The set of concordance classes of t∂ -triangulations
is denoted by T ∂ (X, ∂X) (see [15, § 7.1] and [24, § 10]). Recall that a concordance of
t∂ -triangulations

(( fi, bi), (∂fi, ∂bi)) : (Mi, ∂Mi) → (X, ∂X), i = 0, 1

is given by a topological normal map of 4-ads

((h, d); (g, c), ( f0, b0), ( f1, b1)) : (W ; V, M0, M1) → (X × I ; ∂X × I, ∂X × {0}, ∂X ×{1})

where

V = ∂M0 × I, ∂V = ∂M0 ∪ ∂M1
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and

(g, c) = ∂f0 × Id : V → ∂X × I.

An s∂ -triangulation of a compact n-dimensional manifold X with boundary ∂X is
a simple homotopy equivalence of pairs (see [15, § 7.1])

( f, ∂f ) : (Mn, ∂M) → (X, ∂X)

together with a homeomorphism ∂ f : ∂M → ∂X . The set of concordance classes of
s∂ -triangulations is denoted by S∂ (X, ∂X) (see [15, § 7.1] and [24, § 10]). Recall that a
concordance of two s∂ -triangulations

( fi, ∂fi) : (Mi, ∂Mi) → (X, ∂X), i = 0, 1

is given by a simple homotopy equivalence of 4-ads

(h; g, f0, f1) : (W ; V, M0, M1) → (X × I ; ∂X × I, ∂X × {0}, ∂X × {1})
where

V = ∂M0 × I, ∂V = ∂M0 ∪ ∂M1

and

g = ∂ f0 × Id : V → ∂X × I.

Let X be a compact n-dimensional topological manifold with boundary ∂X . A
t-triangulation of (X, ∂X) is a topological normal map of pairs (see [15, § 7.1])

(( f, b), (∂f, ∂b)) : (Mn, ∂M) → (X, ∂X)

where M is a compact n-dimensional topological manifold with boundary ∂M. The
set of concordance classes of t-triangulations is denoted by T (X, ∂X) (see [15, § 7.1]
and [17, § 10]). Recall that a concordance of t-triangulations

(( fi, bi), (∂fi, ∂bi)) : (Mi, ∂Mi) → (X, ∂X), i = 0, 1

is given by a topological normal map of 4-ads

((h, d); (g, c), ( f0, b0), ( f1, b1)) : (W ; V, M0, M1) → (X × I ; ∂X × I, ∂X ×{0}, ∂X × {1})
where

∂V = ∂M0 ∪ ∂M1.

An s-triangulation of (X, ∂X) is a simple homotopy equivalence of pairs

( f, ∂f ) : (M, ∂M) → (X, ∂X)

where M is a compact n-dimensional topological manifold with boundary ∂M (see
[15, § 7.1]). The set of concordance classes of s-triangulations of (X, ∂X) is denoted by
S(X, ∂X) (see [15, § 7.1] and [17, § 10]).
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Recall that a concordance of two s-triangulations

( fi, ∂fi) : (Mi, ∂Mi) → (X, ∂X), i = 0, 1

is given by a simple homotopy equivalence of 4-ads

(h; g, f0, f1) : (W ; V, M0, M1) → (X × I ; ∂X × I, ∂X × {0}, ∂X × {1})

where

∂V = ∂M0 ∪ ∂M1.

For every topological space X there exists an algebraic surgery exact sequence (see
[14] and [15])

· · · → Ln+1(π1(X)) → Sn+1(X) → Hn(X ; L•) → Ln(π1(X)) → · · · (2.4)

where L• is the 1-connected cover of the simply connected surgery �-spectrum
L•(�) with L•0 � G/TOP. This algebraic surgery sequence is a homotopy long exact
sequence of the cofibration

X+ ∧ L• → �(π1(X)). (2.5)

By definition, we have Si(X) = πi(�(X)) for a homotopy cofiber �(X) of the map in
(2.5). If X is a closed n-dimensional topological manifold, then we have

πn+1(�(X)) = Sn+1(X) ∼= S(X)

and sequence (1.1) is isomorphic to the left part (for m ≥ n) of the algebraic surgery
exact sequence in (2.4). For the case of a compact topological manifold (X, ∂X) with
boundary, we have a spectrum �∂ (X, ∂X) with homotopy groups

πi(�∂ (X, ∂X)) = S∂
i (X, ∂X)

and

S∂
n+1(X, ∂X) ∼= S(X, ∂X), Hn(X ; L•) ∼= T ∂ (X, ∂X).

Furthermore, a similar situation holds for exact sequences (1.2) and (1.3) (see [14] and
[15]). More precisely, there exist �-spectra �(X, ∂X) and �∂ (X, ∂X) with homotopy
groups

πi(�∂ (X, ∂X)) = S∂
i (X, ∂X), πi(�(X, ∂X)) = Si(X, ∂X)

for which there are isomorphisms

S∂
n+1(X, ∂X) ∼= S∂ (X, ∂X), Sn+1(X, ∂X) ∼= S(X, ∂X).

For the tangential structures in exact sequences (1.1) and (1.2), we have

T (X, ∂X) ∼= Hn(X, ∂X ; L•), T ∂ (X, ∂X) ∼= Hn(X ; L•).
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It follows from [14], [15], and [23] that there exists the following commutative diagram
of exact sequences

↓ ↓ ↓ ↓
Ln+1(π1(X)) → S∂

n+1(X, ∂X) → Hn(X ; L•) → Ln(π1(X)) →
↓ ↓ ↓ ∗ ↓

Lrel
n+1 → Sn+1(X, ∂X) → Hn(X, ∂X ; L•) → Lrel

n →
↓ ↓ ↓ ↓

Ln(π1(∂X)) → Sn(∂X) → Hn−1(∂X ; L•) → Ln−1(π1(∂X)) →

(2.6)

where

Lrel
∗ = L∗(π1(∂X) → π1(X)).

It is necessary to remark here that the left parts of the horizontal exact sequences in
diagram (2.6) are isomorphic to exact sequences (1.1)–(1.3) (see [14] and [15]).

LEMMA 1. There is a homotopy commutative square of spectra

X+ ∧ L• → �(π1(X))
↓ ↓

(X/∂X)+ ∧ L• → �(π1(∂X) → π1(X))
(2.7)

such that the square ∗ in diagram (2.6) is obtained by applying πn to homotopy
commutative square (2.7).

Proof. The result follows from [14] and [15]. �
We remark that the left vertical column of diagram (2.6) coincides with relative

exact sequence (2.2) for the map π1(∂X) → π1(X).

3. Mixed structures on a bordered manifold. Let us consider a compact
topological manifold pair (X, ∂X) of dimension n. Let f : (M, ∂M) → (X, ∂X) be
a normal map of manifold pairs such that the restriction f |∂M : ∂M → ∂X is a simple
homotopy equivalence. Two normal maps fi : (Mi, ∂Mi) → (X, ∂X), i = 0, 1, are said
to be equivalent if there exists a normal cobordism F : W → X × I , where I = [0, 1],
satisfying the following properties:

(i) ∂W = M0 ∪ M1 ∪ V with V ∩ M0 = ∂M0, V ∩ M1 = ∂M1, ∂V = ∂M0
.∪ ∂M1,

and F |Mi = fi, for i = 0, 1;
(ii) setting V = F−1(∂X × I), the restriction F |V is an s-cobordism between

F |∂Mi = fi|∂Mi , for i = 0, 1.
The set of equivalence classes of such maps is denoted by T S(X, ∂X) (see

[24, p. 116]). The set T S(X, ∂X) has a base point which is represented by a
homeomorphism

f : (M, ∂M) → (X, ∂X).

If we weaken the equivalence relation on the boundary, then we obtain a natural map

τ : T S(X, ∂X) → T (X, ∂X) (3.1)
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where T (X, ∂X) is the set of concordance classes of t-triangulations of the manifold
pair (X, ∂X) (see [15, pp. 553–555]). In a similar way we obtain a further natural map

s : T ∂ (X, ∂X) → T S(X, ∂X). (3.2)

If we weaken the equivalence relation on the manifold M but preserve the equivalence
relation on the boundary, then we obtain a natural map

t : S(X, ∂X) → T S(X, ∂X). (3.3)

According to Wall’s book (see [24, p. 116]) and using results of Ranicki on surgery
in topological category (see [15] and [16]) we obtain the following exact sequences
which include the maps τ , t, and s, respectively:

· · · → Ln(π1(∂X)) → T S(X, ∂X)
τ→ T (X, ∂X) → Ln−1(π1(∂X)), (3.4)

· · · → Ln+1(π1(X)) → S(X, ∂X)
t→ T S(X, ∂X) → Ln(π1(X)) (3.5)

and

· · · → S∂ (∂X × I, ∂X × S0) → T ∂ (X, ∂X)
s→ T S(X, ∂X) → S(∂X). (3.6)

We can extend the homotopy commutative diagram of spectra in (2.7) to a bi-
infinite homotopy commutative diagram (see [11] and [23])

...
...

...� � �
· · · −→ X+ ∧ L• −→ �(π1(X)) −→ �∂ (X, ∂X) −→ · · ·�

�
�

· · · −→ (X/∂X)+ ∧ L• −→ �(π1(∂X) → π1(X)) −→ �(X, ∂X) −→ · · ·�
�

�
· · · −→ �(∂X+ ∧ L•) −→ ��(π1(∂X)) −→ ��(∂X) −→ · · ·�

�
�

...
...

...

(3.7)

in which the rows and the columns are sequences of cofibrations.
We remark that applying π0 to homotopy commutative diagram (3.7) yields the

bi-infinite commutative diagram of groups in (2.6).
For what follows, we need a technical result proved in [11].

LEMMA 2. Let

•
↓ ↘

• → • → •
↘ ↓

•
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be a homotopy commutative diagram of spectra in which the row and the column are
cofibrations. Then the cofibres of the sloping maps are naturally homotopy equivalent.

We define a spectrum ��(X, ∂X) which is the homotopy cofiber of the composition

�(π1(X)) → �∂ (X, ∂X) → �(X, ∂X)

fitting in diagram (3.7), and denote the homotopy groups of the obtained spectra by

πn(��(X, ∂X)) = T Sn(X, ∂X).

PROPOSITION 3. There are the following cofibrations of spectra

�(π1(X)) → �(X, ∂X) → ��(X, ∂X), (3.8)

�(∂X) → �(X+ ∧ L•) → ��(X, ∂X) (3.9)

and

(X/∂X)+ ∧ L• → ��(π1(∂X)) → ��(X, ∂X). (3.10)

Proof. The result follows from the definition of the spectrum ��(X, ∂X) and an
application of Lemma 2 to diagram (3.7). �

COROLLARY 4. There are the following exact sequences

· · · → Ln(π1(∂X)) → T Sn+1(X, ∂X) → Hn(X, ∂X ; L•) → · · · ,

· · · → Ln+1(π1(X)) → Sn+1(X, ∂X) → T Sn+1(X, ∂X) → · · ·
and

· · · → Sn+1(∂X) → Hn(X ; L•) → T Sn+1(X, ∂X) → · · · .

Proof. The result is obtained by considering the homotopy long exact sequences
of cofibrations listed in the statement of Proposition 3. �

PROPOSITION 5. There is an isomorphism

T Sn+1(X, ∂X) ∼= T S(X, ∂X).

Furthermore, we have a commutative diagram

→ Ln(π1(∂X)) → T Sn+1(X, ∂X) → Hn(X, ∂X ; L•) → Ln−1(π1(∂X))
↓= ↓∼= ↓∼= ↓=

→ Ln(π1(∂X)) → T S(X, ∂X) → T (X, ∂X) → Ln−1(π1(∂X)).
(3.11)

In particular, there is a group structure on T S(X, ∂X) making the bottom sequence in
(3.11) an exact sequence of groups.

Proof. The results of Wall (see [24, pp. 116–117]) and Ranicki (see [16, § 7.2])
provide commutative diagrams

Hn+1(X, ∂X ; L•) → Ln+1(π1(∂X) → π1(X)) → Ln(∂X)
↓∼= ↓= ↓=

T ((X, ∂X) × D1 rel X × S0) → Ln+1(π1(∂X) → π1(X)) → Ln(∂X)
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and

Hn(X, ∂X ; L•) → Ln(π1(∂X) → π1(X)) → Ln(∂X)
↓∼= ↓= ↓=

T (X, ∂X) → Ln(π1(∂X) → π1(X)) → Ln(∂X).

The compositions in the upper rows are maps of homotopy groups which are induced
by the map of spectra

(X/∂X)+ ∧ L• → ��(π1(∂X)). (3.12)

This map fits in the extended cofibration sequence (3.9). Then the result in the
statement follows from the uniqueness of the cofibration exact sequence (see for
example [23]). �

REMARK. In a way similar to Proposition 5 we can obtain isomorphisms between
other exact sequences of Corollary 4 and exact sequences (3.4) and (3.5), respectively.

Now we describe further algebraic properties of the introduced groups T Si(X, ∂X)
and their relations to some classical groups in surgery theory for a manifold with
boundary.

THEOREM 6. We have the following braids of exact sequences

→ Sn+1(∂X) → Hn(X ; L•) → Ln(π1(X)) →
↗ ↘ ↗ ↘ ↗ ↘

S∂
n+1(X, ∂X) T Sn+1(X, ∂X)

↘ ↗ ↘ ↗ ↘ ↗
→ Ln+1(π1(X)) −→ Sn+1(X, ∂X) −→ Sn(∂X) →,

(3.13)

→ Hn+1(X, ∂X ; L•) → Ln(π1(∂X)) → Sn(∂X) →
↗ ↘ ↗ ↘ ↗ ↘

Hn(∂X ; L•) T Sn+1(X, ∂X)
↘ ↗ ↘ ↗ ↘ ↗

→ Sn+1(∂X) −→ Hn(X ; L•) −→ Hn(X, ∂X ; L•) →

(3.14)

and

→ Ln+1(π1(X)) → Sn+1(X, ∂X) → Hn(X, ∂X ; L•) →
↗ ↘ ↗ ↘ ↗ ↘

Lrel
n+1 T Sn+1(X, ∂X)

↘ ↗ ↘ ↗ ↘ ↗
→ Hn+1(X, ∂X ; L•) → Ln(π1(∂X)) → Ln(π1(X)) →.

(3.15)

Proof. To prove the result we have to consider the diagonal maps in diagram (3.7),
and then apply Lemma 2. First we examine the case of diagram (3.13). From the
definition of the spectrum ��(X, ∂X) we have a homotopy commutative diagram of
spectra

�(π1(X)) → �∂ (X, ∂X) → �(X+ ∧ L•)
↓= ↓ ↓

�(π1(X)) → �(X, ∂X) → ��(X, ∂X)
(3.16)
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in which the rows are cofibrations and the right vertical maps are induced by two
maps arising from (3.7). The right square in (3.16) is a pull-back since the fibres of the
right horizontal maps are naturally homotopy equivalent. The homotopy long exact
sequences of maps fitting in right square (3.16) give the braid of exact sequences shown
in (3.13).

From diagram (3.7) and cofibration (3.9) we obtain a homotopy commutative
diagram of spectra:

�(∂X) −−−−→ �(∂X+ ∧ L•) −−−−→ ��(π1(∂X))�=
�

�
�(∂X) −−−−→ �(X+ ∧ L•) −−−−→ ��(X, ∂X)

(3.17)

where the right vertical map is induced by two left vertical maps (see [23]). The
horizontal rows in (3.17) are cofibrations. Furthermore, the right square is a pull-
back since the fibers of its horizontal maps are naturally homotopy equivalent. Then
the homotopy long exact sequences of maps from this square give rise to the braid of
exact sequences shown in (3.14).

From diagram (3.7) and cofibration (3.10) we obtain a homotopy commutative
diagram of spectra:

(X/∂X)+ ∧ L• −−−−→ �(π1(∂X) → π1(X)) −−−−→ �(X, ∂X)�=
� �

(X/∂X)+ ∧ L• −−−−→ ��(π1(∂X)) −−−−→ ��(X, ∂X)

(3.18)

where the right vertical map is induced by two left vertical maps (see [23]). As in the
previous case, the right square in (3.18) is a pull-back. Then the homotopy long exact
sequences of maps from this square give the braid of exact sequences shown in (3.15).
Thus the theorem is completely proved. �

4. Examples and applications. In this section we discuss several geometric
examples, and apply our results for computing different structure sets of certain
manifolds with boundary.

Let (M, ∂M) be a compact topological n-manifold with boundary. According to
[14], [15, pp. 560–561], and [16, § 18], there are isomorphisms

S∂ (M × 	k, ∂(M × 	k)) −−−−→∼=
Sn+k+1(M), k ≥ 0

S(M × 	k, ∂(M × 	k)) −−−−→∼=
Sn+k+1(M, ∂M), k ≥ 0

(4.1)

and, in particular,

S(M, ∂M) −−−−→∼=
Sn+1(M, ∂M),

S∂ (M, ∂M) −−−−→∼=
Sn+1(M).

(4.2)

The first isomorphism in (4.1) also works in the case ∂M = ∅.
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THEOREM 7. Let M2 be a Möbius band with boundary ∂M2 = S1. For any n ≥ 6,
the structure sets of M2 are related by the isomorphisms

S∂
n (M2, ∂M2) ∼= Sn(M2, ∂M2).

If n ≥ 5, then there are isomorphisms

T Sn+1(M, ∂M) ∼= Hn(M; L•) ∼= �, �, �2, �2

for n = 0, 1, 2, 3 (mod 4), respectively. Furthermore, we have

Sn(M2, ∂M2) ∼= �

for n ≡ 1 or 2 (mod 4), and for n ≡ 3 (mod 4) there is an exact sequence

0 → Sn+1(M2, ∂M2) → �2 → �2 → Sn(M2, ∂M2) → 0 (4.3)

where the middle map arises from the assembly map

�2
∼= H4k+3(M2; L•) −−−−→ L4k+3(π1(M2)) ∼= L4k+3(�−) ∼= �2.

Proof. Consider the exact sequence

→ Sn+1(∂M2) → S∂
n+1(M2, ∂M2) → Sn+1(M2, ∂M2) → Sn(∂M2) →

which fits in commutative diagram (3.13). Since ∂M2 = S1 we get

S∂ (S1 × 	k, S1 × Sk−1) = 0

for any k ≥ 3 (see for example [1, p. 403], [22, p. 277], and [24, p. 236]). This result
and isomorphism (4.1) imply that Sk+2(∂M2) = Sk+2(S1) = 0 for k ≥ 3. Now the first
statement of the theorem follows by the exactness of the sequence above. Similarly,
from the exact sequence

· · · → Sn+1(∂M) → Hn(∂X ; L•) → T Sn+1(M2, ∂M2) → · · ·
fitting in diagram (3.13) we get an isomorphism

Hn(M; L•) ∼= T Sn+1(M2, ∂M2).

For n ≥ 5, the homotopy equivalence M2 � S1 yields

Hn(M2; L•) ∼= Hn(S1; L•) ∼= Ln(�+)

(see for example [22, p. 277] and [24, p. 236]). By [24, p. 181], we have

Ln(�+) ∼= �, �, �2, �2

and

Ln(π1(M2)) ∼= Ln(�−) ∼= �2, 0, �2, �2

for n ≡ 0, 1, 2, 3 (mod 4), respectively. Look at the braids of exact sequences in
Theorem 6. Their upper and bottom rows, considered as chain complexes, have
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isomorphic homology groups in the corresponding members. For n ≥ 6, consider the
following part of diagram (3.13):

0 −→ Hn(M2; L•) −→ Ln(π1(M2)) −→ Sn(M2, ∂M2) −→ 0�
�

�
�

Ln+1(π1(M2)) −→ Sn+1(M2, ∂M2) −→ 0 −→ Hn−1(M2; L•) −→
(4.4)

Assume n = 4k + 1. Then we have Ln(�−) ∼= 0, Hn(M2; L•) ∼= �, andSn(M2, ∂M2)
in the upper row of the above diagram will be full in homology. To describe the map

�2
∼= Hn+1(M2; L•) → Ln+1(π1(M2)) ∼= L2(�−) ∼= �2

we consider a commutative square from diagram (3.15)

Ln+1(π1(∂M2)) −−−−→ Ln+1(π1(M2))� �
T Sn+2(M2, ∂M2) T Sn+2(M2, ∂M2).

(4.5)

The map in the upper row of (4.5) is induced by the map

i : �+ ×2−−−−→ �−

which gives the homomorphism i∗ : L2(�+) ∼= �2 → L2(�−) ∼= �2.

Consider the commutative diagram of groups

�+ ×2−−−−→ �−
�

�
1 −−−−→ �−

2

(4.6)

where the vertical maps are the natural projections. Diagram (4.6) induces a
commutative diagram of Wall groups

L2(�+)
i∗−−−−→ L2(�−)

∼=
� �

L2(1) −−−−→∼=
L2(�−

2 )

in which the left vertical map is an isomorphism (indeed, the inclusion 1 → � admits
a left inverse), and the bottom horizontal map preserves the Arf invariant. Thus the
upper horizontal map (and hence the horizontal map in (4.5)) is an isomorphism, too.
From diagram (3.13) we have isomorphisms T Sn+1(M2, ∂M2) ∼= Hn(M2; L•) hence for
n = 4k + 1 all the groups in (4.5) are �2, and all the maps are isomorphisms (since the
upper horizontal map is an isomorphism). Consider the commutative diagram arising
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from (3.13)

�2
∼= H4k+2(M2; L•) −−−−→ L2(π1(M2)) ∼= �2

∼=
� �∼=

T S4k+3(M2, ∂M2) T S4k+3(M2, ∂M2)

(4.7)

in which the right vertical map is an isomorphism by (4.5). Hence the upper row in
(4.7) is an isomorphism, and the map L2(π1(M2)) → S4k+2(M2, ∂M2) in (4.4) is trivial.
This implies S4k+2(M2, ∂M2) ∼= H4k+1(M2; L•) ∼= �.

Considering diagram (4.4) for n = 4k we obtain the following diagram.

0 −→ H4k(M2; L•) ∼= � −→ L4k(π1(M2)) ∼= �2 −→ S4k(M2, ∂M2) −→ 0�
�

0 −→ S4k+1(M2, ∂M2) −→ 0

(4.8)

First we remark that the map i∗ : L0(�+) ∼= � → L0(�−) ∼= �2 is surjective (see [24,
p. 189]). Then for n = 4k − 1 the map T Sn+2(M2, ∂M2) → L0(π1(M2)) in (4.5) is
surjective, too. From this and a commutative diagram similar to (4.7) it follows that
the map � ∼= H4k(M2; L•) → L0(π1(M2)) ∼= �2 is surjective with kernel isomorphic to
�. Thus the homology group in the left column of (4.8) is � and it is isomorphic to
S4k+1(M2, ∂M2). The exact sequence in (4.3) follows from the algebraic surgery exact
sequence in the corresponding dimensions. �

Of course, one can extend the results of Theorem 7 to any nontrivial (orientable or
not) surface with nonvoid boundary. In this case the manifold is homotopy equivalent
to a wedge of circles, its boundary is a disjoint union of circles, the fundamental group
is a free group, and the Wall groups are direct sums of factors Ln(�).

PROPOSITION 8. Let X = M2 × Tk be the product of a Möbius band with a k-
dimensional torus Tk = S1 × · · · × S1, k ≥ 1, with boundary ∂X = Tk+1.

For n ≥ 6, we have an isomorphism

S∂
n (X, ∂X) ∼= Sn(X, ∂X).

If n ≥ 5, there are also isomorphisms

T Sn+1(X, ∂X) ∼= Hn(X ; L•) ∼=
⊕

0≤i≤k

(
k
i

)
Ln−i(1)

for n = 0, 1, 2, 3 (mod 4), respectively.

Proof. The proof is similar to the first part of the proof of Theorem 7. In this case
the group Ln(�k) was computed in [24, Theorem 13A.8]. �

COROLLARY 9. Let X = M2 × S1 be the product of a Möbius band with a circle with
boundary ∂X = T2. For k ≥ 1, we have isomorphisms

S∂
4k+2(X, ∂X) ∼= S4k+2(X, ∂X) ∼= � ⊕ �.
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Proof. The inclusion-induced map π1(∂X) → π1(X) coincides with the map

i : �+ ⊕ �+ → �− ⊕ �+

which is the identity on the second summand and the multiplication by 2 on the first
summand. Here the sign “+” or “−” denotes an orientation of the corresponding
group. Consider a commutative diagram of groups

�+ ⊕ �+ i∗−−−−→ �− ⊕ �+
� �

�+ ×2−−−−→ �−

(4.9)

in which the vertical maps are given by projections on the first summand. We obtain
the following induced diagram of Ln-groups

Ln(�+ ⊕ �+)
i∗−−−−→ Ln(�− ⊕ �+)�

�
Ln(�+)

(×2)∗−−−−→ Ln(�−).

(4.10)

For n = 2, this diagram has the following form (see [24, § 13A] )

� ⊕ �2
i∗−−−−→ �2� �

�2
×2−−−−→ �2.

(4.11)

The vertical maps in (4.11) are splitting projections, and the lower horizontal map is
an isomorphism as follows from the proof of Theorem 7. Hence the upper horizontal
map in (4.11), which is the map

i∗ : L2(�+ ⊕ �+) → L2(�− ⊕ �+),

is an epimorphism. The vertical maps in (4.10) give a decomposition of the map

i∗ : L1(�+ ⊕ �+) → L1(�− ⊕ �+) (4.12)

into a direct sum of the maps (see [21])

L1(�+)
(×2)∗−−−−→ L1(�−) = 0

L0(�+)
(×2)∗−−−−→ L0(�−) = �2. (4.13)

The map in (4.12) is surjective as follows from the proof of Theorem 7. Hence the map
(4.13) is surjective, too. Now from the commutative triangle

T Sn+1

↗ ↘
Ln(π1(∂X)) −→ Ln(π1(X))

(4.14)
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fitting in diagram (3.15) it follows that the maps

T Sn+1 → Ln(π1(X))

are epimorphisms for n = 1, 2 (mod 4). Hence the second exact sequence from
Corollary 4 gives the exact sequence

0 → S4k+2(X, ∂X) → T S4k+2(X, ∂X)
epi−→ L1(π1(X)) = �2.

Now Proposition 8 yields isomorphisms

T S4k+2(X, ∂X) ∼= H4k+1(X, ∂X ; L•) ∼= � ⊕ �.

Thus the corollary is proved. �
Let us consider a non-trivial I-bundle over the real projective space 	Pn, n ≥ 5,

and denote by Xn+1 the total space of this bundle with boundary ∂X = Sn. In this case,
we have

Sn+1(∂X) = Sn+1(Sn) = 0

by a celebrated theorem of Smale, i.e., the Generalised Poincaré Conjecture in the
topological category. By [14, p. 310] we have Sn(Sn) = 0 and

Sn+k(Sn) ∼= Lk−1(1) for k ≥ 2.

The space X has the homotopy type of the real projective space 	Pn. Recall that by
[15], [17], and [24, § 10] there is an isomorphism

Hn(	Pn; L•) ∼= [	Pn, G/TOP].

The results of [19] can be applied to G/TOP as well as to G/PL. Thus we get the
formula

[	Pn, G/TOP] ∼=
∞⊕

i=1

H4i−2(	Pn; �2) ⊕ H4i(	Pn; �)

which gives (compare with [19, Lemma 14D.1])

[	P2i+5, G/TOP] ∼= [	P2i+4, G/TOP] ∼= �2 ⊕ �2

i⊕
j=1

�2.

The third exact sequence of Corollary 4 provides isomorphisms

Hi(X ; L•) ∼= T Si+1(X, ∂X) for i = n, n + 1

and the exact sequence

0 → Hm(X ; L•) → T Sm+1(X, ∂X) → L2k(1) → Hm−1(X ; L•) → T Sm(X, ∂X) → 0

where m = n + 2k + 1, k ≥ 1.
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Let K ⊂ S3 be a knot, that is, the image of a locally flat embedding of the circle S1

in the standard 3-sphere S3. Denote by C the complement of a tubular neighborhood
of K in S3.

PROPOSITION 10. For n ≥ 7, we have isomorphisms

T Sn(C, ∂C) ∼= 0, �, 0, �2 for n = 0, 1, 2, 3 (mod4).

Proof. According to [1] we have

S∂ (C, ∂C) = 0 for n ≥ 6.

For n ≥ 6, the braid of exact sequences (3.13) provides an isomorphism

Sn+1(C, ∂C)
∼=→ Sn(∂C)

and the short exact sequence

0 → Sn+1(C, ∂C) → T Sn+1(C, ∂C) → Ln(π1(C)) → 0. (4.15)

But we have

Sn(∂C) = Sn(T2) = 0

for every n ≥ 6, and

Ln(π1(C)) ∼= Ln(�) = �, 0, �2, 0 for n = 0, 1, 2, 3 (mod4)

(compare with [1]). Now the statement of the theorem follows from (4.15). �
The last example deals with Haken manifolds so we recall the definition to make

the reading self–contained (for more details see [6], [7], [8, p. 235], [9, p. 63], [10, § 6,
p. 215], and [18]). Let F be a compact proper surface embedded in a compact connected
3-manifold M. We call F a two-sided surface in M if F cuts a regular neighborhood of
F into two pieces, i.e., the normal bundle of F is oriented. Assuming that M is oriented,
this is equivalent to the condition that F is oriented. A two-sided surface F in M is
incompressible if every simple curve on F which bounds a disc in M with interior disjoint
from F also bounds a disc on F , i.e., the homomorphism π1(F) → π1(M − int F) is
injective. A 3-manifold M is said to be irreducible if every 2-sphere in M bounds a
3-ball in M. A compact connected oriented 3-manifold M is called a Haken manifold
if it is irreducible and contains a two-sided incompressible surface (whose boundary,
if any, is on ∂M) which is not a 2-sphere.

PROPOSITION 11. Let M be a compact oriented connected Haken 3-manifold with
non-empty boundary ∂M. For n ≥ 6, we have isomorphisms

T Sn+1(M, ∂M) ∼= Sn(∂M) ⊕ Ln(π1(M)).

Proof. According to [18, Theorem 1.1] we have S∂
n (M, ∂M) = 0 for n ≥ 6. For

n ≥ 6, the braid of exact sequences (3.13) provides an isomorphism

Sn+1(M, ∂M)
∼=→ Sn(∂M)
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and the short exact sequence

0 → Sn+1(M, ∂M) → T Sn+1(M, ∂M) → Ln(π1(C)) → 0. (4.16)

The commutative triangle fitting in (3.13)

T Sn+1(C, ∂C)
↗ ↘

Sn+1(C, ∂C)
∼=→ Sn(∂C)

implies that exact sequence (4.16) splits. From this the statement of the proposition
follows. �

The next result is a version of π − π -theorem for structure sets T Sn(M, ∂M).

PROPOSITION 12. Let M be a compact manifold of dimension n ≥ 6 with boundary
∂M. Suppose that the inclusion-induced homomorphism π1(∂M) → π1(M) is bijective.
For n ≥ 6, we have isomorphisms

T Sn+1(M, ∂M) ∼= Sn(M, ∂M) ⊕ Ln(π1(M)) ∼= Hn(M, ∂M; L•) ⊕ Ln(π1(M)).

Proof. The proof is similar to the proof of Proposition 11. But in this case it is
necessary to consider commutative diagram (3.15) instead of (3.13). �
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