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The main purpose of this paper is to prove that every automorphism of the
semigroup of all Hadamard-differentiable mappings of a separable real Banach
space into itself is inner. This generalizes the result of [7] which is a generalization
of a result proved by Magill, Jr. [5].

We start with a brief account on the Hadamard differentiation.

1. The Hadamard differentiation

The following method of defining derivatives has been given by Averbukh
and Smolyanov [1,2], where it was also proved that the Hadamard differentiabil-
ity denned below is equivalent to the quasi-differentiability denned by Dieudonne
[3, p. 151].

Let £ be a real Banach space, and let M be a class of some subsets of E. We
denote by JSf = SC(E) the Banach algebra of all continuous linear mappings of
E into itself with the usual algebraic structure and the upper bound norm. Then,
a mapping/: E->E is said to be M-differentiable at aeE if there exists u
such that, for any MeM,

sup |£- 1 r ( / , a ,£x) |^0 if
x e M

where
r(f,a,x) =f(a + x) - / (a) - u(x).

We denote by 3>M the set of all f: E-*E which are M-differentiable at every
point of E.

(1) If M is the class of all single point sets, t hen /e^ M is said to be Gateaux-
differentiable. In this case, we denote S>M by SiG.

(2) If M is the class of all compact subsets, then fe 3>M is said to be Hada-
mard-differentiable. In this case, we denote 3>M by @H.

(3) If M is the class of all bounded subsets, then/e J^M is said to be Fre'chet-
differentiable. In this case, we denote 3)M by 2F.
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In each of these cases, the continuous linear mapping u is determined uniquely
and is denoted by/'(a). It is called the Gateaux-, the Hadmarad- or the Frechet-
derivative of fat a respectively.

Obviously,
JSP c ®F c S)a c 3sG,

and the inclusions are generally strict. If E is finite-dimensional, we have
3>F = 2G, and if E is one dimensional we have 3>F = 2H = 3G.

The following theorem will be used in the following section. We shall denote
by JT the set of all completely continuous (i.e,. continuous and compact) mapping
of E into itself. We also denote by JTj the set of a l l / : E -> E such that

f(x) = JU«X,a» for every xeE ,

where fi is any differentiable £-valued function of a real variable, aeE (the
conjugate space of E and <x, a> is the value of a at x. Obviously, X~t c Jf.

In the sequel, the composition of two mappings / , g: E -»E is denoted by /#
that is,

(fg) (x) = f(g(x)) for every x e £ .

THEOREM 1. 1) Iffe@B, then fk e 3)> for any keS>Fn^ and

(*) (fky(a)=f'(k(a))k'(a) for any aeE.

2) Iffe£$G, and if for every ke@Fr\^i it is true that fkeS>G and (*) is
satisfied, thenfeS>H.

PROOF. 1) Foife@H and fce^n^",

/fe(fl + x) -fk{a) -f'(k(a))k'(a)(x)

= f'(k(a)) [k(a +x)- fc(fl)] + r(/, k(a), k(a + x) - k(a)) -

-f'(k(aW(a)(x)

= f'(k(a))r(k,a,x) + r(fk(a),k(a + x) - k(a)).

Then, for a bounded set B, since k e 2F,

sup ||£-
1/'(fc(a))r(/c,a,8x)|

^ |/'(fc(«))| sup|e-1r(fe,a,ex)|->0 ife-»0,
and ' xeB

sup I e- V(/, fe(a), fc(a + ex) - fe(a)) |
xsB

= sup || s- V / , fc(a), e[£- ̂ fcCa + ex) - fc(a))]) || -»0 if e -> 0,

because, since k s JT, for any sn -»0, the set
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{e;1(k(a+e.x)-k(a))\ xeB, n = l,2,-}

is contained in a compact set. In fact, since

£~\k{a + enx) - k(a)) = k'(d)(x) + en~*r(k,a,snx),

the fact that k'(a) e Jf ([6, p. 27]) implies that {k'(a) (x) j x e B] is contained in a
compact set and the fact that keSiF implies that the second term converges to 0
as n -» oo. Therefore,

fkeS>F and (fk)'(a) =f'(k(a))k'(a).

2) Let us assume that/"#3>H. Then, there exist en\0, aeE and xn -*• x0 such
that

£n~'»"(/.«, £„*„) -« 0 as n -> co.

Now, the method used in [2,!p,92] supplies a differentiable £-valued function
of a real variable such that

H(0) = a, n(en) = a + snxn and n'(0) = x 0 .

Then, consider the mapping k e J f t defined by

k(x) = n(<x,a}),

•where a eE and <a,a> = 1. By the assumption,

fkeS>G and (//c)'(O) =/'(/c(O))/c'(O).

On the other hand,

= lim s"10(8) - MO)] = /i'(0) = x 0 ,
E->0

and

enxn) -f(a) -f'(a)(emxmy]

a) -//c(0) - (//c)'(O)(ena)] + (fk)'(O)(a) -f'{a){xn)

= £„"^(/fc,0,sna) +f'(a) (x0 - x.) ^ 0 if n ^ co,

which is a contradiction.

2. Q)n as a semigroup

It is well-known that iif,geSiF then fg e@F. In other words, @>F is a semi-
group with respect to the composition. For any semigroup 2, a one-to-one
mapping <j> of 3) onto itself is called an automorphism if
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• <Kfg)=<Kf)4>(g) for f,ges>.

If there exists heS such that it has the two-sided inverse h~l in S and

(j>(f) = hfh-1 for every feS

then the automorphism is said to be inner.
Eidelheit [4] has proved that every continuous automorphism of the semi-

group £C is inner.
On the other hand, Magill, Jr. [5] has proved that, if E is one-dimensional,

every automorphism of the semigroup S>F ( = SH — SG) is inner.
These two results take us naturally to the question whether every automor-

phism of the semigroup SF on a general Banach space is inner.
Eidelhiet's result suggests that we may need some continuity assumptions.

In fact, in [9], we have shown that, in the semigroup of all boundely and continu-
ously differentiable mappings, where the topology is defined by

= sup
11*11^ »

an automorphism is inner if and only if it is continuous.
On the other hand, in [8] we have given a necessary and sufficient condition

for an automorphism <j> of SF to be inner. The method used there has been
refined in [7], where we have generalized the Magill's result mentioned above
to arbitrary finite-dimensional Banach spaces.

Now, we turn to the set SH.As Averbukh and Smolyanov [1,2] have pointed
out, the Hadamard differentiation is, in a sense, the weakest differentiation which
has the composition property: iffg eSiH, then fg eSiH and

(f9)'(ci)=f'(g(a))g'(a) for every aeE.

Moreover, if E is finite-dimensional, then SF = SH. Therefore, the following
result is a generalization of that of [7]:

THEOREM 2. Let E be separable. Then, every automorphism of the semi-
group SH is inner.

PROOF. Let <j> be an automorphism. Exactly the same argument as in [7], if
Sip there is replaced by S)H, gives the following facts:

(1) there exists a unique one-to-one mapping h of E onto E such that

4>(J) = hfh'1 for every fe®H.

(2) heSiG and h~l eS>G;
(3) (a ® a)h eSH for any aeE and a eE, where a ® a is an element of £C

defined by

(a ® a) (x) = <x, 5>a for every x e E ;
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and

(4) ((a ® 5)fc)'(x)G0 = <h'(x)(y),a}a

We shall prove that h e2dH. Since we may start with 0"1 instead of <j), we
use the fact that any result containing ft remains true if we replace h by ft"1.

Now, by Theorem 1, we have only to prove that

ft/q

and

Let us take an arbitrary fcx

and let o e £ be such that <a,a> = 1. Then, we have kt = fc](a®a). Since
Since a®ae£?c 2H, there exists ke@H such that

(j>(k) = a ® a .

Since
k(x) = h-

where<ft(x), a>is continuous by [8, p. 506] and h~l (£a) is continuous with respect
to £ by (2) above, we see that k e X. Therefore, from (3) it follows that

(o ® a)hk e 2H.
Since

(a ® a)hk(x) = <ftfc(x), a>a,

the mapping <ftfc(x), a> of E into the set of real numbers is Hadamard-differenti-
able. Therefore, the mapping fi{(Jik{x), a}) of £ into £ is Hadamard-differentiable
and obviously,

(i((hk(x),a» = kihkix) for every x e £ .

In other words,

Therefore,

and

•Kfciftfc) = hk^hkh-1 = hkl(j)(k) = ftfe^a ® a) = ftfcj,

from which it follows that
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Thus, it only remains to prove the equality (*) of Theorem 1. First, since a® de 3>H

and hk^eSijj, we have

(a ® d)hkt e ®H and ((a ® a)fc/q)'(*) 00 = <(Mi)'(*) GO, «>« •

Also, by applying Theorem 1,1) to (a ® a)h and kL we have

((a ® d)hk1)'(x)(y) = ((a ® a)/j)'(/<iWi(x)O0

and by (3) and (4) the right hand side here is <A'(ki(*))fci'(x)G0>5>a. Therefore,

<i(hkty(x)(y),a)a = ^ W W i M G O . S ^ .

Since 5 is arbitrary, (*) follows, Thus, ft £ 3iB and hence (/> is inner.

REMARK. With the product defined above and the addition/+ g defined by

( / + 9) (*) =/(*) + g(x) for every xeE,

S>H is a near-ring. The fact that every near-ring automorphism of £#H is inner can
be proved in the same way as in [9]. In this case, h is in ££.
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