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The main purpose of this paper is to prove that every automorphism of the
semigroup of all Hadamard-differentiable mappings of a separable real Banach
space into itself is inner. This generalizes the result of [ 7] which is a generalization
of a result proved by Magill, Jr. [5].

We start with a brief account on the Hadamard differentiation.

1. The Hadamard differentiation

The following method of defining derivatives has been given by Averbukh
and Smolyanov [1,2], where it was also proved that the Hadamard differentiabil-
ity defined below is equivalent to the quasi-differentiability defined by Dieudonné
[3, p. 151].

Let E be a real Banach space, and let M be a class of some subsets of E. We
denote by ¥ = £(E) the Banach algebra of all continuous linear mappings of
E into itself with the usual algebraic structure and the upper bound norm. Then,
a mapping f: E > E is said to be M-differentiable at acE if there exists u €%
such that, forany M e M,

sup | e=1r(f,a,ex)| -0 if £-0,
xeM

where
r(f,a,x) = f(a + x) — f(a) — u(x).

We denote by 9, the set of all f: E — E which are M-differentiable at every
point of E.

(1) If M is the class of all single point sets, then fe @,, is said to be Gdteaux-
differentiable. In this case, we denote 9,, by Zg.

(2) If M is the class of all compact subsets, then fe D, is said to be Hada-
mard-differentiable. In this case, we denote Z,, by 2.

(3) If M is the class of all bounded subsets, then fe 2,, is said to be Fréchet-
differentiable. In this case, we denote 2, by D;.
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In each of these cases, the continuous linear mapping u is determined uniquely
and is denoted by f'(a). It is called the Gdteaux-, the Hadmarad- or the Fréchet-
derivative of f at a respectively.

Obviously,

FcDpr= Dy <D,

and the inclusions are generally strict. If E is finite-dimensional, we have
Dy = Dg, and if E is one dimensional we have 9 = @4 = Z;.

The following theorem will be used in the following section. We shall denote
by A the set of all completely continuous (i.e,. continuous and compact) mapping
of E into itself. We also denote by £, the set of all f: E — E such that

Jx) =p({x,ay) for every xcE,

where u is any differentiable E-valued function of a real variable, acE (the
conjugate space of E and {x, d) is the value of 4 at x. Obviously, ", < .
In the sequel, the composition of two mappings f,g: E — E is denoted by fg

that is,
(f9)(x) = f(g(x)) for every xcE.
THEOREM 1. 1) If f€ Dy, then fk € Dy for any ke Dr N A and
*) (fk)'(a) = f'(k(a))k'(a) for any ackE.

2) If fe Dg, and if for every k€ Zp A it is true that fkeDg and (*) is
satisfied, then fc Dy.

ProoF. 1) For fe D, and ke Dy X,
Jk(a + x) — fk(a) — f'(k(a))k'(a)(x)
= f'(k@) [k(a + x) — k(@)] + r(f, k(a), k(a + x) ~ k(a)) —
— ' (k(a))k'(a) (x)
= f'(k(@)r(k,a,x) + r(f, k(a), k(a + x) — k(a)).
Then, for a bounded set B, since k € Z,

sup | e~ (k(@)r(k, a,ex) |

< |f'k@)]| sup|etrk,a,ex)| >0 if e—0,
xeB

and
sup | &~ 'r(f, k(a), k(a + &x) — k(a)) |

xeB

= sup [l&~ (£, (@), e[e~ k(@ + ex) — k@)D | >0 if 60,

xeB

because, since k € £, for any ¢, — 0, the set
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{er'(k(a +e,x)— k@) | xeB, n=1,2,--+}
is contained in a compact set. In fact, since
g, '(k(a + &,x) — k(a)) = k'(a) (x) + ¢, 'r(k,a,&,%),

the fact that k'(a) € 4" ([6, p. 27}) implies that {k’(a) (x) I x € B} is contained in a
compact set and the fact that k € @ implies that the second term converges to 0
as n - 00. Therefore,

fkePy and (fk)'(a) = f'(k(a)k'(a).

2) Let us assume that ¢ @5. Then, there exist ¢, 0, a € E and x, —» x, such
that

e, 'r(fa,8,x,)+0 as n-» 0.

Now, the method used in [2,'p.92] supplies a differentiable E-valued function
(&) of a real variable such that

uO) =a, ple,) =a+ex, and p'(0) = x,.
Then, consider the mapping k € ¢, defined by
k(x) = u(Kx,a@3),
whered €E and {a,a) = 1. By the assumption,
fke2g and (fk)'(0) = f'(k(0)k'(0).
On the other hand,
k’'(0)(a) = lim e~ ![k(ea) — k(0)]

=0

= },1_{13 e~ [ue) — wO)] = #'(©0) = xo,
and
&x '1(f,a,8,%,)
= & '[f(a +&,x,) = f(a) — (@) (e,%,)]
= &, '[fk(e,a) — fk(0) — (fk)'(0) (&,@)] + (fk)'(0)(a) — " (@) (x,)
er 'r(fk,0,e,a) + f'(a) (xo — x,) >0 if n-— oo,

which is a contradiction.

2. 9y as a semigroup

It is well-known that if £, g € 2, then fg € Dy. In other words, Dy is a semi-
group with respect to the composition. For any semigroup %, a one-to-one
mapping ¢ of 2 onto itself is called an automorphism if
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9(f9) =d(f)p(g) for fge2.

If there exists h € 2 such that it has the two-sided inverse A~ ! in 2 and
&(f) = hfh~' for every fe2P

then the automorphism is said to be inner.

Eidelheit [4] has proved that every continuous automorphism of the semi-
group .Z is inner.

On the other hand, Magill, Jr. [5] has proved that, if E is one-dimensional,
every automorphism of the semigroup 2y (= 9y = 2,;) is inner.

These two results take us naturally to the question whether every automor-
phism of the semigroup 2, on a general Banach space is inner.

Eidelhiet’s result suggests that we may need some continuity assumptions.
In fact, in [9], we have shown that, in the semigroup of all boundely and continu-
ously differentiable mappings, where the topology is defined by

I£1i- = Sup {lr@l+]ref n=12-,

an automorphism is inner if and only if it is continuous.

On the other hand, in [8] we have given a necessary and sufficient condition
for an automorphism ¢ of &y to be inner. The method used there has been
refined in [7], where we have generalized the Magill’s result mentioned above
to arbitrary finite-dimensional Banach spaces.

Now, we turn to the set Z. As Averbukh and Smolyanov [1,2] have pointed
out, the Hadamard differentiation is, in a sense, the weakest differentiation which
has the composition property: if f, g € @y, then fg € Dy and

(f9)' (@) = f'(g(a))g'(a) for every ackE.

Moreover, if E is finite-dimensional, then 2 = Zg. Therefore, the following
result is a generalization of that of [7]:

THEOREM 2. Let E be separable. Then, every automorphism of the semi-
group Dy is inner.

PROOF. Let ¢ be an automorphism. Exactly the same argument as in [7], if
2 there is replaced by 2y, gives the following facts:
(1) there exists a unique one-to-one mapping h of E onto E such that

&(f) = hfh=! for every fePy.

(@) heDgand h=1egg;
() (a® a)yhe 2y for any acE and ackE, where a® a is an element of &
defined by

(a®a)(x) = {(x,aya for every xekE;
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and

@) (@@ a)h)' (X)) = <h'(x)(y),a>a

We shall prove that h € Zy. Since we may start with ¢~! instead of ¢, we
use the fact that any result containing # remains true if we replace & by h~1.
Now, by Theorem 1, we have only to prove that

hk,e P, for any k; €, N\ D
and
(hky)'(x) = h' (k1 (x))ki(x).
Let us take an arbitrary k, e ¢ :
ki(x) = u(Kx,a3),

and let ae E be such that {a,a> = 1. Then, we have k, = k,(a ® a@). Since
Since a ® a € £ <= Dy, there exists k € Dy such that

pk)=a®a.
Since

k(x) = k= '(Kh(x), @a),

where (h(x), @pis continuous by [8,p. 506] and h~! (£a) is continuous with respect
to & by (2) above, we see that k € ", Therefore, from (3) it follows that

(a ® a)hk e Dy,
Since
(a ® Dhk(x) = {hk(x),ada,

the mapping (hk(x),d) of E into the set of real numbers is Hadamard-differenti-
able. Therefore, the mapping u(<hk(x),a)) of E into E is Hadamard-differentiable
and obviously,

u({hk(x),ay) = k hk(x) for every xeE,
In other words,
kihkeZy .
Therefore,

¢(k hk)e Dy
and

d(k hk) = hk,hkh=* = hk,p(k) = hk,(a ® @) = hk,,

from which it follows that
hk, € Dy.

https://doi.org/10.1017/5144678870001079X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870001079X

334 S. Yamamuro [6]

Thus, it only remains to prove the equality (*¥) of Theorem 1. First, since a ® d € Dy
and hk, € 2y, we have

(a®@a)hk, €Dy and  ((a ® Dhk,)'(x)(y) = {(hk,)'(x)(¥),@)a.
Also, by applying Theorem 1,1) to (¢ ® a)h and k, we have

((a @ a)hk ) (x)(y) = ((a ® a)h)'(k,(x))k' 1 (x)(y)
and by (3) and (4) the right hand side here is {h’'(k,(x))k{(x)(y),a>a. Therefore,

(k) (x) (0), @pa = <h'(ky(x)ki(x) (y), @Ya.
Since & is arbitrary, (¥) follows, Thus. h € @ and hence ¢ is inner,

ReMark. With the product defined above and the addition £+ g defined by

(f+9)(x)=f(x)+ g(x) for every x€E,

2y is a near-ring. The fact that every near-ring automorphism of 2 is inner can
be proved in the same way as in [9]. In this case, h is in 2.
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