INTEGRAL GROUP RINGS WITH NILPOTENT UNIT GROUPS

CÉSAR POLCINO MILIES

Introduction. Let R be a ring with unit element and G a finite group. We denote by $R G$ the group ring of the group G over R and by $U(R G)$ the group of units of this group ring.

The study of the nilpotency of $U(R G)$ has been the subject of several papers.
First, J. M. Bateman and D. B. Coleman showed in [1] that if G is a finite group and K a field, then $U(K G)$ is nilpotent if and only if either char $K=0$ and G is abelian or char $K=p \neq 0$ and G is the direct product of a p-group and an abelian group.

Later K. Motose and H. Tominaga [6] corrected a small gap in the proof of the theorem above and obtained a similar result for group rings of finite groups over artinian semisimple rings (which must be commutative for $U(R G)$ to be nilpotent).

For group rings over commutative rings of non-zero characteristic it is possible to obtain a natural generalization of the theorem in [1]. (See I. I. Khripta [5] or C. Polcino [7]).

In this paper we study the nilpotency of $U(\mathbf{Z} G)$ where \mathbf{Z} is the ring of rational integers. In Section 2 we consider also group rings over rings of p-adic integers. A brief account of the results in that section was given in [7].

1. Units of integral group rings.

Proposition 1. Let G be a non abelian finite group. If $U(\mathbf{Z} G)$ is nilpotent then G is a Hamiltonian group.

Proof. Suppose that G is not Hamiltonian. Then, there exist elements a, $b \in G$ such that $a^{-1} b a$ is not a power of b. Let n be the order of b and $u=$ $(1-b) a\left(1+b+\ldots+b^{n-1}\right)$.

Now, $u \neq 0$ and $u^{2}=0$ so $\alpha_{0}=1+u$ is a unit in $\mathbf{Z} G$ whose inverse is $\alpha_{0}{ }^{-1}=1-u$. Inductively, we define:

$$
\begin{equation*}
\alpha_{k}=\left[\alpha_{k-1}, b\right]=\alpha_{k-1} b \alpha_{k-1}^{-1} b^{-1} . \tag{1}
\end{equation*}
$$

It follows, by an induction argument, that:

$$
\begin{equation*}
\alpha_{k-1}=1+(1-b)^{k-1} u . \tag{2}
\end{equation*}
$$

Set $\Gamma=a\left(1+b+\ldots+b^{n-1}\right)$. We then have:

$$
\begin{equation*}
(1-b)^{k-1} u=(1-b)^{k} \Gamma=\Gamma-\binom{k}{1} b \Gamma+\ldots+(-1)^{k} b^{k} \Gamma \tag{3}
\end{equation*}
$$

[^0]For an arbitrary element $\alpha=\sum_{\theta \in G} a_{o} \cdot g \in \mathbf{Z} G$ let the support of α be the set:

$$
\operatorname{supp}(\alpha)=\left\{g \in G \mid a_{g} \neq 0\right\}
$$

Now, if $r=\min \left\{x \in \mathbf{Z} \mid x>0, b^{x} \Gamma=\Gamma\right\}$ it is easy to see that $\operatorname{supp}\left(b^{h}\right) \cap$ $\operatorname{supp}\left(b^{k} \Gamma\right) \neq \phi$ if and only if $h \equiv k(\bmod r)$ and in this case $b^{h} \Gamma=b^{k} \Gamma$. So (3) may be written in the form:

$$
\begin{equation*}
(1-b)^{k-1} \cdot u=x_{0} \Gamma+x_{1} b \Gamma+\ldots+x_{r-1} b^{r-1} \Gamma \tag{4}
\end{equation*}
$$

with $x_{s}=\sum_{i \geqq 0}(-1)^{s+i r}\binom{k}{s+i r}$, where the sum runs over all integers $i \geqq 0$ such that $s+i r \leqq k$.

Now, since all summands in the right-hand member of (4) have disjoint support, if we prove that all coefficients $x_{s}, 0 \leqq s \leqq r-1$, cannot vanish simultaneously, it will follow that $(1-b)^{k-1} \neq 0$.

To see this, let ξ be a primitive root of unity of order r. Then

$$
(1-\xi)^{n}=x_{0}+x_{1} \xi+\ldots+x_{r-1} \xi^{\tau-1}
$$

If they could vanish simultaneously we would have $\xi=1$.
Finally, (2) shows that we have found a sequence of commutators that are never 1 so $U(\mathbf{Z} G)$ is not nilpotent. This completes the proof.

Every Hamiltonian group G can be written as a direct product $G=T_{1} \times$ $T_{2} \times Q$ where T_{1} is an abelian group such that every element in T_{1} is of odd order, T_{2} is an abelian group of exponent 2 and Q a quaternion group of order 8. In what follows a and b will denote two elements of G that are generators of Q, verifying the relations:

$$
a^{4}=1 ; a^{2}=b^{2} ; b^{-1} a b=a^{-1}
$$

Lemma 1. Let $G=T \times Q$ where T is an abelian group and Q a quaternion group of order 8 . If T contains an element of order 3 then $U(\mathbf{Z} G)$ is not nilpotent.

Proof. Suppose T contains an element g of order 3. Then

$$
\begin{equation*}
u=1+\left(225\left(2-g-g^{2}\right)+390\left(b g^{2}-b g\right)\right)\left(1-b^{2}\right) \tag{5}
\end{equation*}
$$

is a unit in $\mathbf{Z} G$ whose inverse is

$$
u^{-1}=1+\left(225\left(2-g-g^{2}\right)-390\left(b g^{2}-b g\right)\right)\left(1-b^{2}\right)
$$

(See A. A. Bovdi [3, Lemma 10]).
Since g commutes with a and $a b a^{-1}=b^{3}, a b^{2} a^{-1}=b^{2}$, it follows that $a u^{-1} a^{-1}=u$. Thus, setting $\alpha_{1}=[u, a], \alpha_{k}=\left[\alpha_{k-1}, a\right]$ it is easily seen by induction that $\alpha_{k}=u^{2^{k}}$.

Finally if u were a unit of finite order, writing $u=\sum_{g \in G} u_{g} g$ we would have $u_{1}=0$ (see S. D. Berman [2, Lemma 2]) or S. Takahashi [9]) but formula (5) shows that this is not the case.

Thus we have found a sequence of commutators that is never equal to 1 ; hence $U(\mathbf{Z} G)$ is not nilpotent.

Lemma 2. Let $G=T \times Q$ where T is an abelian group and Q a quaternion group of order 8 . If T contains an element of prime order $p>3$, then $U(\mathbf{Z} G)$ is not nilpotent.

Proof. Suppose that T contains an element g of prime order $p>3$. Let $H=(g) \times(a)$. The decomposition of $\mathbf{Q} H$ as direct sum of bilateral ideals is

$$
\mathbf{Q} H=I_{1} \oplus \ldots \oplus I_{6}
$$

where the idempotent elements e_{i} such that $I_{i}=\mathbf{Q} H \cdot e_{i}, 1 \leqq i \leqq 6$, are:

$$
\begin{aligned}
& e_{1}=\frac{1}{4 p}\left(1+a+a^{2}+a^{3}\right)\left(1+g+\ldots+g^{p-1}\right), \\
& e_{2}=\frac{1}{4 p}\left(1-a+a^{2}-a^{3}\right)\left(1+g+\ldots+g^{p-1}\right), \\
& e_{3}=\frac{1}{2 p}\left(1-a^{2}\right)\left(1+g+\ldots+g^{p-1}\right), \\
& e_{4}=\frac{1}{4 p}\left(1+a+a^{2}+a^{3}\right)\left(p-1-g-\ldots-g^{p-1}\right), \\
& e_{5}=\frac{1}{4 p}\left(1-a+a^{2}-a^{3}\right)\left(p-1-g-\ldots-g^{p-1}\right), \\
& e_{6}=\frac{1}{2 p}\left(1-a^{2}\right)\left(p-1-g-\ldots-g^{p-1}\right) .
\end{aligned}
$$

Berman has also shown that $\xi=\operatorname{gae}_{6} \in I_{6}$ is a primitive root of unity of order $4 p$ and that identifying $\mathbf{Q}=\mathbf{Q} e_{6} \subset I_{6}$ we have $I_{6}=\mathbf{Q}(\xi)$. He also observed that if s stands for the number of residue classes modulo $4 p$ in $\mathbf{Q}(\xi)$ that are relatively prime with $4 p$, then:

$$
\begin{align*}
u=e_{1}+\ldots+e_{5}+\left(1+g a+g^{2} a^{2}\right)^{s} e_{6}=e_{1}+\ldots+ & e_{5} \tag{7}\\
& +\left(1+\xi+\xi^{2}\right)^{s} e_{6}
\end{align*}
$$

is a unit in $\mathbf{Z} H$.
Since $[\mathbf{Q}(\xi): \mathbf{Q}]=2(p-1), u$ can be written in the form:

$$
\begin{equation*}
u=e_{1}+\ldots+e_{5}+f(\xi) e_{6} \tag{8}
\end{equation*}
$$

where $f \in \mathbf{Z}[X]$ with degree $(f)<2(p-1)$ and f contains non zero terms of both odd and even order (see again Berman [2, Lemma 9]).

We shall now show that:

$$
u^{-1} b^{-1} u b=e_{1}+\ldots+e_{5}+f_{1}(\xi) e_{6}
$$

where $f_{1} \in \mathbf{Z}[X]$ satisfies the same conditions as f above.
In fact, it is easy to see that $b^{-1} e_{i} b=e_{i}, 1 \leqq i \leqq 6$, thus:

$$
\begin{equation*}
b^{-1} u b=e_{1}+\ldots+e_{5}+b^{-1} f(\xi) b e_{6} . \tag{9}
\end{equation*}
$$

Let $h \in \mathbf{Z}[X]$ be the polynomial formed by the odd terms of f. Since $b^{-1} a^{i} b=$ a^{i} if i is even, $b^{-1} a^{i} b=a^{i+2}$ if i is odd and $\left(1-a^{2}\right) e_{6}=2 e_{6}$, it follows that:

$$
\begin{equation*}
b^{-1} u b=e_{1}+\ldots+e_{5}+(f(\xi)-2 h(\xi)) e_{6} . \tag{10}
\end{equation*}
$$

Now, $u^{-1} \in \mathbf{Z} H$ so it is integral over \mathbf{Z} and there exists $f^{*} \in \mathbf{Z}[X]$ such that $\operatorname{degree}\left(f^{*}\right)<2(p-1), f(\xi) \cdot f^{*}(\xi)=1$ and

$$
\begin{equation*}
u^{-1}=e_{1}+\ldots+e_{5}+f^{*}(\xi) e_{6} . \tag{11}
\end{equation*}
$$

From (10) and (11) we get:

$$
\begin{equation*}
u^{-1} b u b=e_{1}+\ldots+e_{5}+\left(1-2 f^{*}(\xi) h(\xi)\right) e_{6} \tag{12}
\end{equation*}
$$

Let $f_{1}(\xi)=1-2 f^{*}(\xi) h(\xi)$ (after reducing to a polynomial of degree less than $2(p-1)$). We must still show that f_{1} has non-zero terms of both even and odd degree.

First, suppose that f_{1} contains no terms of odd order. Then, we would have $f_{1}(\xi)=f_{1}(-\xi)$, i.e.:
(13) $1-2 f^{*}(\xi) h(\xi)=1+2 f^{*}(-\xi) h(\xi)$
where degree $(h)<2(p-1)$; hence $h(\xi) \neq 0$ and (13) gives:

$$
\begin{equation*}
-f^{*}(\xi)=f^{*}(-\xi) \tag{14}
\end{equation*}
$$

Since ξ is a primitive root of unity of order $4 p$, there exists a \mathbf{Q}-automorphism ϕ of $\mathbf{Q}(\xi)$ that takes ξ to $-\xi$ so $f^{*}(-\xi)=f(-\xi)^{-1}$ and (14) gives $f(\xi)=$ $-f(-\xi)$, a contradiction.

Now suppose $f_{1}(\xi)$ contains no terms of even order. We would then have $f_{1}(\xi)=-f_{1}(-\xi)$, i.e.:

$$
1-2 f^{*}(\xi) h(\xi)=-1-2 f^{*}(-\xi) h(\xi)
$$

so

$$
\begin{equation*}
1=\left(f^{*}(\xi)-f^{*}(-\xi)\right) h(\xi) \tag{15}
\end{equation*}
$$

If $k \in \mathbf{Z}[X]$ denotes the polynomial formed by the even terms of f^{*}, (15) can be written in the form

$$
1=2 k(\xi) h(\xi)
$$

and $1 / 2$ would be an algebraic integer.
Finally, if we define $u_{0}=u, u_{k}=\left[u_{k-1}^{-1}, b^{-1}\right]$ a repetition of the argument above shows that this is a sequence of commutators that are never equal to 1 so $U(\mathbf{Z} G)$ is not nilpotent.

Theorem 1. Let G be a finite group. Then $U(\mathbf{Z} G)$ is nilpotent if and only if G is commutative or a Hamiltonian 2-group.

Proof. If $U(\mathbf{Z} G)$ is nilpotent, from Proposition 1, G is either commutative or a Hamiltonian group of the form $G=T_{1} \times T_{2} \times Q$. Lemmas 1 and 2 show that T_{1} must be trivial, hence G is a 2 -group.

Now, if G is commutative so is $U(\mathbf{Z} G)$, and G. Higman ([4, Theorem 11]) has shown that, for non-abelian groups, $U(\mathbf{Z} G)=\{ \pm 1\} \times G$ if and only if G is a Hamiltonian 2 -group. Thus, the converse follows trivially.

Theorem 2. Let G be a non-abelian finite group. Then the following are equivalent:
(i) $U(\mathbf{Z} G)$ is nilpotent.
(ii) $U(\mathbf{Z} G)$ is periodic.
(iii) $U(\mathbf{Z} G)=\{ \pm 1\} \times G$.
(iv) G is a Hamiltonian 2 -group.

Proof. After the previous results it remains only to prove that if $U(\mathbf{Z} G)$ is periodic, then G is a Hamiltonian 2 -group.

We first observe that if $U(\mathbf{Z} G)$ is periodic and $\alpha, \beta \in \mathbf{Z} G$ are elements such that $\alpha \beta=0$ then $\beta \alpha=0$. In fact, if $\beta \alpha \neq 0$, since $(\beta \alpha)^{2}=0$ it follows that $u=1+\beta \alpha$ is a unit in $\mathbf{Z} G$ and it is easy to see that $u^{n}=1+n \beta \alpha$. Thus u would be a unit of infinite order. Now, the proof of Theorem 10 in Higman [4] can be carried out in this case to show that G must be Hamiltonian.

Finally, write $G=T_{1} \times T_{2} \times Q$ as above. If T_{1} were not trivial, it would contain an element g of order $p \geqq 3$ and taking $H=(g) \times(a)$, it follows from [4, Theorems 3 and 6$]$ that $\mathbf{Z H}$ would contain a unit of infinite order.
2. Units of group rings over p-adic integers. In this section we shall denote by $J_{p^{n}}$ the ring of integers modulo p^{n}. If $p>0$ is a prime number and G is a finite p-group, it follows from I. I. Khripta [5] or C. Polcino [7] that $U\left(J_{p^{n}} G\right)$ is nilpotent.

Lemma 3. Let $p>0$ be a prime number and G a finite p-group. The epimorphism $\phi_{m n}{ }^{*}: J_{p^{n}} G \rightarrow J_{p^{m}} G$ induced by the natural morphism $\phi_{m n}: J_{p^{n}} \rightarrow J_{p^{m}}$ yields by restriction an epimorphism of the groups of units.

Proof. Let α be a unit in $J_{p^{m}} G$ with inverse α^{-1} and let α^{*} be any inverse image of α. We will show that α^{*} is a unit in $J_{p^{n}} G$.

In fact, if α^{\prime} is any inverse image of α^{-1} we have:

$$
\begin{aligned}
& \alpha^{*} \alpha^{\prime}=1+u \\
& \alpha^{\prime} \alpha^{*}=1+v
\end{aligned}
$$

where both u and v belong to $\operatorname{Ker}\left(\phi_{m_{n}}{ }^{*}\right)=p^{m} J_{p^{n}} G$; thus u and v are both nilpotent, so $1+u, 1+v$ are invertible elements. Let β and γ be their respective inverses Then:

$$
\left(\gamma \alpha^{\prime}\right) \alpha^{*}=\alpha^{*}\left(\alpha^{\prime} \beta\right)=1
$$

so $\gamma \alpha^{\prime}=\alpha^{\prime} \beta=\alpha^{*-1}$ and α^{*} is a unit in $J_{p^{n}} G$.
Lemma 4. Let G be a non-abelian, finite, p-group and $n=2 m>0$ an integer. Then the class of nilpotency of $U\left(J_{p^{n}} G\right)$ is greater than $m / 2$.

Proof. It is easy to see that there exist $a, b \in G$ such that $a b^{p}=b^{p} a$ and $a b^{i} \neq b^{i} a$ for all integers $i, 1 \leqq i \leqq p-1$.

We define:

$$
\begin{align*}
& (a-b)^{(1)}=a b-b a \tag{16}\\
& (a-b)^{(k)}=(a-b)^{(k-1)} b-b(a-b)^{(k-1)}
\end{align*}
$$

An induction argument shows that:

$$
\begin{equation*}
(a-b)^{(k)}=a b^{k}-\binom{k}{1} b a b^{k-1}+\binom{k}{2} b^{2} a b^{k-2}+\ldots+(-1)^{k} b^{k} a \tag{17}
\end{equation*}
$$

Since $b^{r} a b^{k-r}=b^{s} a b^{k-s}$ if and only if $r \equiv s(\bmod p)$ we can write:

$$
\begin{equation*}
(a-b)^{(k)}=x_{0} a b^{k}+x_{1} b a b^{k-1}+\ldots+x_{p-1} b^{p-1} a b^{k-p+1} \tag{18}
\end{equation*}
$$

with $x_{s}=\sum_{i \geqq 0}(-1)^{s+i p}\binom{k}{s+i p}$, where the sum runs over all integers $i \geqq 0$ such that $s+i p \leqq k$. Again, not all $x_{s}, 0 \leqq s \leqq p-1$, vanish simultaneously so, if p^{e} is the greatest power of p that divides every coefficient in the righthand member of (18), we have:

$$
\begin{equation*}
(a-b)^{(k)}=p^{e} \gamma \quad \text { where } \gamma \notin p \cdot J_{p^{n}} G \tag{19}
\end{equation*}
$$

with $e<k$ since $\left|x_{s}\right|<\sum_{i=0}^{k}\binom{k}{i}=2^{k} \leqq p^{k}$.
Set:

$$
\begin{align*}
& \alpha=1-p^{m} a, \beta=1-p b, \tag{20}\\
& \alpha_{1}=\left[\alpha^{-1}, \beta^{-1}\right], \alpha_{k}=\left[\alpha_{k-1}{ }^{-1}, \beta^{-1}\right]
\end{align*}
$$

Again, an induction argument shows that:

$$
\begin{equation*}
\alpha_{k}=1+(-1)^{k+1} p^{m+k}\left(1+\sum_{h=1}^{2 m-1} x_{h} p^{h} b^{h}\right)(a-b)^{(k)} \tag{21}
\end{equation*}
$$

where $x_{h} \in J_{p^{n}}, 1 \leqq h \leqq 2 m-1$. It follows from Lemma 3 that

$$
1+\sum_{h=1}^{2 m-1} x_{h} p^{h} b^{h} \in U\left(J_{p^{n}} G\right)
$$

thus $\alpha_{k}=1$ if and only if $p^{m+k}(a-b)^{(k)}=0$.
From (19) we have $p^{m+k}(a-b)^{(k)}=p^{m+k+e} \cdot \gamma$, where $\gamma \notin p J_{p^{n}} G$; thus $\alpha_{k}=1$ if and only if $m+k+e \geqq 2 m$. Hence, if $k \leqq m / 2$ then $\alpha_{k} \neq 1$ and the class of nilpotency of $U(\mathbf{Z} G)$ is greater than $m / 2$.

Theorem 3. Let \mathbf{Z}_{p} be the ring of p-adic integers and G a finite group. Then $U\left(\mathbf{Z}_{p} G\right)$ is nilpotent if and only if G is abelian.

Proof. Since $\mathbf{Z}_{p}=\lim \left\{J_{p^{n}}\right\}$, it follows as in Raggi [8] that $\mathbf{Z}_{p} G=\lim _{\leftrightarrows}\left\{J_{p^{n}} G\right\}$ and $U\left(\mathbf{Z}_{p} G\right)=\lim _{\leftrightarrows}\left\{\overleftarrow{U}\left(J_{p^{n}} G\right)\right\}$.

Suppose that $\overleftarrow{U}\left(\mathbf{Z}_{p} G\right)$ is nilpotent. Then G is also nilpotent and it will suffice to show that every Sylow subgroup of G is abelian. Since we have shown in

Lemma 3 that the morphisms $\phi_{m n}: U\left(J_{p^{n}} G\right) \rightarrow U\left(J_{p^{m}} G\right)$ are onto, the morphisms:

$$
\boldsymbol{\phi}_{n}: U\left(\mathbf{Z}_{p} G\right) \rightarrow U\left(J_{p^{n}} G\right)
$$

are also onto.
The nilpotency of $U\left(J_{p} G\right)$ implies that all q-Sylow subgroups of G, with $q \neq p$, must be abelian (see J. M. Bateman and D. B. Coleman [1]). Also, the class of nilpotency of all the groups $U\left(J_{p^{n}} G\right)$ is bounded above by the class of nilpotency of $U\left(\mathbf{Z}_{p} G\right)$; hence, after Lemma 4, also the p-Sylow subgroup of G must be abelian. The converse is trivial.

References

1. J. M. Bateman and D. B. Coleman, Group algebras with nilpotent unit groups, Proc. Amer. Math. Soc. 19 (1968), 448-449.
2. S. D. Berman, On the equation $x^{m}=1$ in an integral group ring, Ukrain. Mat. Ž 7 (1955), 253-261.
3. A. A. Bovdi, The periodic normal divisors of the multiplicative group of a group ring $I I$, Sibirsk. Mat. Ž 11 (1970), 492-511.
4. G. Higman, The units of group rings, Proc. London Math. Soc. 46 (1940), 231-248.
5. I. I. Khripta, The nilpotency of the multiplicative group of a group ring, Mat. Zametki 11 (1972), 191-200.
6. K. Motose and H. Tominaga, Group rings with nilpotent unit groups, Math. J. Okayama Univ. 14 (1969), 43-46.
7. C. Polcino Milies, The nilpotency of the group of units of a group ring, Atas da $3^{\text {a }}$. Escola de Álgebra, 1974, to appear.
8. F. F. Raggi Cardenas, Las unidades en anillos de grupo con coeficientes en $K_{p}{ }^{n}, Z_{p}{ }^{n}$ y \hat{Z}_{p}, Anales Inst. Mat. Univ. Nac. Aut. México 10 (1970), 29-65.
9. S. Takahashi, Some properties of the group ring over rational integers of a finite group, Notices Amer. Math. Soc. 12 (1965), 463.

Instituto de Matemática e Estatística, Universidade de São Paulo,
São Paulo, Brasil

[^0]: Received July 8, 1975 and in revised form, May 4, 1976.

