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We construct examples of compact homogeneous Riemannian manifolds admitting
an invariant Bismut connection that is Ricci flat and non-flat, proving in this way
that the generalized Alekseevsky–Kimelfeld theorem does not hold. The
classification of compact homogeneous Bismut Ricci flat spaces in dimension 5 is also
provided. Moreover, we investigate compact homogeneous spaces with non-trivial
third Betti number, and we point out other possible ways to construct Bismut Ricci
flat manifolds. Finally, since Bismut Ricci flat connections correspond to fixed points
of the generalized Ricci flow, we discuss the stability of some of our examples under
the flow.
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1. Introduction

Let (M, g) be a Riemannian manifold, denote by ∇g its Levi Civita connection,
and consider a non-vanishing 3-form H ∈ Ω3(M). The Bismut connection associated
with the pair (g, H) is defined via the identity

g(∇XY,Z) = g(∇g
XY,Z) +

1
2
H(X,Y,Z),

for all X, Y, Z ∈ Γ(TM), it is the unique metric connection on M with totally
skew-symmetric torsion H, and it has the same geodesics as ∇g.

These connections were successfully used in index theory problems in complex
non-Kähler geometry [7], where they are characterized as the only complex metric
connections with totally skew-symmetric torsion H = dcω on a given Hermitian
manifold (M, g, J), see e.g. [16]. In this setting, strong Kähler with torsion (SKT)
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complex manifolds are precisely the Hermitian manifolds (M, g, J) whose Kähler
form ω satisfies the condition ddcω = 0, or, equally, whose Bismut connection has
closed torsion, see for instance the survey [11] for more details. On the other hand,
the class of Riemannian manifolds admitting a Bismut connection ∇ whose torsion
H is ∇-parallel has been throughly studied in the literature, as this condition nat-
urally holds for several geometrically significant structures as naturally reductive
spaces, nearly Kähler and Sasakian structures among others, see e.g. [1, 2, 10]. Fur-
thermore, Bismut connections are also of interest in theoretical and mathematical
physics, see [12] and the references therein for a detailed explanation.

Bismut connections with closed torsion form play a central role in generalized
Riemannian geometry, where they are naturally associated with generalized metrics
on exact Courant algebroids, see [13, 15]. In this case, since the torsion of ∇ is
non-vanishing, the Ricci tensor Ric∇ is not symmetric, and one has (see [15, Prop.
3.18])

Ric∇ = Ricg − 1
4
H2 − 1

2
δgH, (1.1)

where Ricg denotes the Ricci tensor of ∇g, δg is the formal adjoint of d, and the
symmetric 2-tensor H2 is defined as H2(X, Y ) := g(ıXH, ıY H), for every X, Y ∈
Γ(TM).

It is clear from (1.1) that a Bismut connection ∇ with closed torsion form H is
Ricci flat, i.e., Ric∇ = 0, if and only if H is a g-harmonic 3-form and the Ricci tensor
of g satisfies the equation Ricg = 1

4H2. A pair (g, H) with dH = 0 and giving rise
to a Ricci flat Bismut connection ∇ is called a Bismut Ricci flat pair (BRF pair for
short) throughout the following. In generalized Riemannian geometry, such pairs
correspond to special types of generalized Einstein structures, see [15, Ch. 3] for
more information. We recall here that for a BRF pair (g, H) the scalar curvature
Scalg and the norm of H, which are related by the identity Scalg = 1

4 ||H||2, are
constant on M, see [18, lemma 2.24].

BRF pairs are fixed points of the generalized Ricci flow, a geometric flow intro-
duced in [8, 19] in the context of renormalization group flows of two-dimensional
nonlinear sigma models. To describe this flow, consider a family of Riemannian
metrics gt depending on a real parameter t, fix a closed 3-form H0 ∈ Ω3(M) and
let Ht = H0 + dbt, where bt ∈ Ω2(M). Then, the generalized Ricci flow for (gt, bt)
is defined as follows ⎧⎪⎪⎨

⎪⎪⎩
∂

∂t
gt = −2Ricgt

+
1
2
H2

t ,

∂

∂t
bt = −δgt

Ht,

(1.2)

and it is well-posed on compact manifolds, see e.g. [15]. Notice that BRF pairs can
also be regarded as trivial examples of steady solitons for the generalized Ricci flow.
Indeed, the latter are defined by pairs (g, H) satisfying the more general equations

Ricg =
1
4
H2 − LXg, δgH = −ıXH,

for some vector field X ∈ Γ(TM). The existence of non-trivial solitons on compact
(complex) 4-manifolds has been recently proved in [23, 27].
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Remarkably, the flow (1.2) can be seen as a generalization of Hamilton’s Ricci
flow to Bismut connections with closed torsion form [20] and as a flow of general-
ized metrics on exact Courant algebroids [13, 21]. Moreover, it is related to some
geometric flows in Hermitian Geometry, like the pluriclosed flow and the general-
ized Kähler Ricci flow, see e.g. [14, 22, 24–26]. The reader may refer to the recent
book [15] for an excellent introduction to the topic.

Standard examples of manifolds carrying BRF pairs are provided by compact
simple Lie groups endowed with the bi-invariant metric (given by the negative of
the Cartan–Killing form) and the standard harmonic 3-form, see e.g. [15, Prop.
3.53]. Notice that, in such a case, the corresponding Bismut connection is flat.
On the other hand, a simply connected compact Riemannian manifold admitting
a flat Bismut connection is isometric to a product of compact simple Lie groups
with bi-invariant metrics [15, Thm. 3.54]. It is currently not known whether other
left-invariant BRF pairs may exist on compact Lie groups.

Since in the Riemannian case every homogeneous Ricci flat manifold is flat [4],
M. Garcia-Fernández and J. Streets asked the following:

Question 1.1 ([15]). Given (M, g, H) a homogeneous Riemannian manifold with
H invariant and zero Bismut Ricci curvature, is the associated Bismut connection
flat?

In this paper, we answer this question negatively. After showing some general
facts on compact homogeneous spaces with non-zero third Betti number in § 2,
we examine low dimensional compact homogeneous spaces in § 3. Since the 3-
and 4-dimensional case are well understood from the results of [15], we focus on
5-dimensional compact homogeneous spaces and we obtain a full classification of
those admitting invariant BRF pairs in theorem 3.2. Beyond the case of compact
Lie groups, we find a family of compact homogeneous spaces Mp,q parametrized
by a pair of positive integers p � q with gcd(p, q) = 1, all diffeomorphic to
S3 × S2, where we prove the existence of invariant BRF pairs (g, H) for which
the corresponding Bismut connection ∇ is not flat, the metric g is not Einstein and
the torsion form H is not ∇-parallel, see theorem 3.3. The uniqueness of such pairs
is also studied in the same theorem. Finally, in § 4, we investigate the behaviour of
the homogeneous generalized Ricci flow on the spaces Mp,q with p �= q, showing that
the invariant BRF pairs found in theorem 3.3 are global attractors, see theorem 4.1.

As an additional remark, in § 3.1 we show that our examples are particular cases
of a general construction by Kobayashi in the Riemannian Einstein setting [17],
and we pave the way for a possible use of his construction to provide new examples
of generalized Einstein manifolds, see proposition 3.7.

Notation. Throughout the paper, Lie groups will be denoted by capital letters
and their Lie algebras will be denoted by the respective gothic letters. The Car-
tan–Killing form of a Lie algebra will be always denoted by B. When a Lie group
G acts on a manifold M, the vector field associated to any X ∈ g will be denoted
by X̂. Finally, the space of Riemannian metrics on a manifold M will be denoted
by M(M).
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2. Compact homogeneous spaces with positive third Betti number

A preliminary step in the search for invariant Bismut Ricci flat connections on
compact homogeneous spaces consists in finding conditions under which the third
Betti number of the space is positive.

A typical example is given by compact semisimple Lie groups, where b3 coincides
with the number of simple factors, see [9]. In particular, when G is a compact
simple Lie group, then the third cohomology group H3(G, R) is generated by the
standard 3-form ω defined as follows

ω(X,Y,Z) := B([X,Y ], Z), (2.1)

for every left-invariant vector fields X, Y, Z on G. More generally, in [3] it was
proved that the isotropy subgroup K of a compact homogeneous space M = G/K
such that b3(M) � 1 must be finite whenever G is simple. In the next theorem, we
review this result and we obtain some new restrictions on K in the case where G is
locally a product of two simple factors.

Theorem 2.1. Let G be a compact Lie group and let M = G/K be a G-homogeneous
space with b3(M) � 1. Then

(a) if G is simple, then K is finite;

(b) if G is locally a product of two simple factors G1, G2, then either the Lie
algebra k is contained in one of the two factors gi or the Lie algebras gi

contain subalgebras ki isomorphic to k and the projections pi : k → gi are
isomorphisms onto ki, for i = 1, 2.

Proof. The assertion (a) was proved in [3]. We review the proof here. Let π : G →
G/K be the projection and consider a closed 3-form φ on M. As G is compact, we
can suppose that φ is G-invariant. If φ̂ ∈ Ω3(G) is the closed 3-form π∗(φ), then φ̂ is
invariant under left G-translations and right K-translations. Since G is simple, the
third cohomology group H3(G, R) is generated by the standard 3-form ω defined
in (2.1). Thus, φ̂ = c ω + dξ, for some c ∈ R and some 2-form ξ ∈ Ω2(G). Again by
compactness, we can suppose that ξ is invariant under left G-translations and right
K-translations. This implies that, given X, Y ∈ g and Z ∈ k, we have

ξ([Z,X], Y ) + ξ(X, [Z, Y ]) = 0,

where we see ξ as an element of Λ2(g∗). Moreover, ıZ φ̂ = 0, so that

c ω(Z,X, Y ) = −dξ(Z,X, Y ) = ξ([X,Y ], Z).

Hence

cB([X,Y ], Z) = ξ([X,Y ], Z).

As G is simple, we have g = [g, g] and therefore for every U ∈ g

ξ(U,Z) = cB(U,Z). (2.2)

Suppose now k �= {0} and choose a non-zero element Z ∈ k. By (2.2) we have that
0 = cB(Z, Z), hence c = 0 and ıkξ = 0. This means that ξ descends to a 2-form
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on M with dξ = φ. Consequently, every element in H3(M, R) must be trivial, a
contradiction.

We now prove (b). Using the same notation as in (a), suppose 0 �= [φ] ∈ H3(M, R)
and consider the corresponding 3-form φ̂ ∈ Ω3(G). The form φ̂ can be written as
φ̂ = c1 ω1 + c2 ω2 + dξ, where ωi is the standard 3-form on Gi, for i = 1, 2. If Z ∈ k,
then for every X, Y ∈ g

c1 ω1(Z,X, Y ) + c2 ω2(Z,X, Y ) = −dξ(Z,X, Y ) = ξ([X,Y ], Z).

Hence

ξ([X,Y ], Z) = c1B1([X,Y ]1, Z1) + c2B2([X,Y ]2, Z2),

where Bi is the Cartan–Killing forms on gi, and the subscript −i denotes the
projection along the ith-component gi. Now, suppose that, say, p1 has a non-trivial
kernel containing some Z �= 0 such that Z1 = 0 and Z2 �= 0. As G is semisimple, we
can express Z =

∑
k[Xk, Yk] for some vectors Xk, Yk ∈ g. Hence,

0 = ξ(Z,Z) = c2B2(Z2, Z2),

forcing c2 = 0. If c1 = 0, then φ̂ = dξ and ıkξ = 0, so that ξ descends to an invariant
2-form on M and φ is exact, a contradiction. Therefore c1 �= 0, and for every Z ′ ∈ k
we have 0 = ξ(Z ′, Z ′) = c1B1(Z ′

1, Z ′
1) so that Z ′

1 = 0, implying k ⊆ g2. �

Remark 2.2. Note that if a projection, say p1, is also surjective, namely k1 = g1,
then M is diffeomorphic to the simple factor G2 (up to a covering).

3. Compact homogeneous spaces with invariant BRF pairs

In this section, we investigate the existence of compact homogeneous spaces
admitting invariant pairs (g, H) such that the corresponding Bismut connection
∇ = ∇g + 1

2g−1H is Ricci flat and non-flat, and we aim at understanding whether
the generalized Alekseevsky–Kimelfeld theorem may hold, i.e., whether the Bismut
connection induced by an invariant BRF pair on a homogeneous space must be
necessarily flat.

Basic examples of such spaces are given by compact (semi)simple Lie groups
endowed with a bi-invariant metric g and the standard harmonic 3-form ω. In these
cases, the associated Bismut connection is flat. Particular examples are given by
the standard 3-sphere S3 ∼= SU(2) endowed with a constant curvature metric, and
the product M = S3 × S1 with the product metric and the standard 3-form on S3

viewed as a 3-form on M (cf. [15, Ex. 3.57]).
The 3-dimensional case is settled in [15, Prop. 3.55], where it is proved that

the existence of a BRF pair (g, H) on a 3-manifold M3 implies that (M3, g) has
constant sectional curvature and the associated Bismut connection is flat. The
4-dimensional case can be completely understood following the reasoning in the
proof of [15, Thm. 8.26]. We specify it here for the reader’s convenience.1

1We are indebted to Jeffrey Streets who pointed out to us this result.
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Proposition 3.1. Let M4 be a 4-dimensional compact manifold admitting a BRF
pair (g, H). Then, the associated Bismut connection is flat.

Proof. As the 3-form H is harmonic, the 1-form θ := ∗gH is also harmonic.
Therefore, by Bochner formula, we have

0 =
∫

M

〈Δθ, θ〉 dVg =
∫

M

(
Ric(θ#, θ#) + ||∇gθ||2) dVg,

so that θ is parallel and 0 = Ric(θ#, θ#) = 1
4H2(θ#, θ#) = 1

4 ||ıθ�H||2. This implies
that the universal cover of M4 splits isometrically as a product N3 × R, for some
3-dimensional space N3, and that ıvH = 0 whenever v is tangent to the flat factor.
The claim now follows from the 3-dimensional case. �

We now turn to the 5-dimensional case and in the next theorem we determine
which 5-dimensional compact homogeneous spaces may admit invariant BRF pairs.

Theorem 3.2. Let (M, g) be a compact 5-dimensional homogeneous Riemannian
manifold. If M admits a harmonic 3-form H such that (g, H) is a BRF pair, then
one of the following holds:

(i) M is finitely covered by a compact Lie group;

(ii) M is finitely covered by SU(2)2/T
1, where T

1 is embedded diagonally into
SU(2)2.

Proof. We consider the compact Lie group G given by the connected full isometry
group of (M, g), and we recall that any harmonic form is invariant under the G-
action. We start noting that we can assume H �= 0, as otherwise by [4] the Ricci
flat metric g would be flat and M would be covered by a torus.

We first study the case where G is semisimple. Let K denote the isotropy
group of the G-action on M at a fixed point p. Then, dim K belongs to the set
{1, 2, 3, 4, 5, 6}. Indeed, the isotropy representation embeds K into SO(5) and K
is a proper subgroup, as the standard representation of SO(5) has no non-trivial
invariant 3-forms. Moreover, a proper subgroup of SO(5) has dimension at most
6 = dim SO(4), with equality if and only if K is conjugate to the standard SO(4).
Again, this case can be ruled out as there are no non-trivial invariant 3-forms.

The case dim K = 5 cannot occur, as there are no 5-dimensional subgroups of
SO(5) (the rank is at most two: if the rank is 1, then K ∼= T

1 or SU(2), if the rank
is 2, then either K ∼= T

2 or K ∼= T
1 · SU(2), never with dimension 5).

If dim K = 4, then, by dimensional reasons, K and G are locally isomorphic
to T

1 × SU(2) and SU(2)3, respectively. We denote by z the centre of k and by
ks

∼= su(2) the semisimple part of k. If g = ⊕3
i=1gi, with gi

∼= su(2), and pi : g → gi

are the projections for i = 1, 2, 3, then we may suppose that p1(z) �= {0}, so that
p1(ks) = {0}. Since ks cannot coincide with g2 or g3 and since it is simple, we see
that pi(ks) = gi and pi(z) = {0} for i = 2, 3. Therefore, the manifold M is (up to a
finite covering) G-diffeomorphic to SU(2)/T

1 × SU(2)2/ΔSU(2) ∼= S2 × S3. In this
case, the isotropy representation contains two inequivalent modules and therefore
the above diffeomorphism maps the metric g to a product metric. As the 3-form
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H on S2 × S3 is the pull-back of a 3-form on the S3-factor, we see that the Ricci
tensor on the S2-factor should vanish, a contradiction.

If dim K = 3, then dim G = 8 and, being semisimple, this implies G ∼= SU(3),
which is simple. This contradicts theorem 2.1.

The case dim K = 2 can be ruled out as there are no semisimple groups of dimen-
sion 7. The last case dim K = 1 forces G ∼= SU(2)2 and theorem 2.1 says that K is
embedded diagonally into G, unless k is contained in one of the factors su(2). When
this occurs, M is G-diffeomorphic (up to a covering) to SU(2) × S2. As the isotropy
k acts on the tangent space of S2 with no non-zero invariant vector and trivially
on the tangent space of SU(2), we see that the above splitting is isometric. More-
over, an invariant 3-form H on M is of the form H1 + H2, where H1 is an invariant
form on SU(2), while H2 = θ ∧ σ, where θ is any invariant 1-form on SU(2) and
σ is the volume form of S2. As dH2 = dθ ∧ σ and dH1 ∈ Λ3(su(2)), we see that
dH = 0 forces H = H1. This means that ıvH = 0 for every vector v tangent to the
S2 factor, implying that RicS2 ≡ 0, a contradiction.

We now deal with the non-semisimple case. Let Z be the connected centre of G
and let L be the semisimple part of G, which is a compact normal subgroup. We
first summarize some basic observations:

(1) all L-orbits are diffeomorphic. Indeed, L is a normal subgroup of G, so for
every p ∈ M and g ∈ G we have L · gp = g(L · p). A generic L-orbit will be
denoted by O;

(2) let U := {z ∈ Z | z(L · p) = L · p, ∀p ∈ M}. Then, U is a closed subgroup of
the torus Z and we can find a closed subgroup Z1 ⊆ Z with Z1 ∩ U = {e},
Z = U · Z1 and L · Z1 acting transitively on M. Indeed, at each point q ∈
M we have that TqM = Tq(Z1 · q) ⊕ Tq(L · q). In detail, if X ∈ z1 with X̂q ∈
Tq(L · q), then for every g ∈ G we have X̂gq = g∗X̂q ∈ Tgq(L · gq), meaning
that X ∈ u, whence X = 0;

(3) the manifold M is G-diffeomorphic (up to a finite covering) to the product
Z1 ×O. Indeed, the map F : Z1 ×O → M given by F (z, p) = z · p is a local
diffeomorphism, hence a covering thanks to the compactness of the involved
spaces.

Since L is non-trivial, its orbits have dimension at least 2, whence dim Z1 =
chm(M, L) � 3. We now proceed by looking at the possible dimensions of Z1:

(a) dim Z1 = 1. The generic L-orbit O has dimension 4 and, up to a finite covering,
it is L-diffeomorphic to SO(5)/SO(4), SU(3)/S(U(1)U(2)) or SO(4)/T

2 (cf.
[5]). As the isotropy representation has no non-trivial invariant vector in the
tangent space of O, we see that the splitting in (3) is isometric. As the space
of invariant 3-forms on O is trivial, the form H is given by H = dt ∧ σ, where
dt ∈ Λ1(T1)T

1
and σ is an L-invariant 2-form. Then, Ricg(∂t, ∂t) = 0, while

||ı∂t
H||2 �= 0, a contradiction;

(b) dim Z1 = 2. In this case, dimO = 3, and L must be either SU(2) or SO(3), up
to covering. In the former case, M is a Lie group up to covering; in the latter,
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O is covered by S3 and the same argument as above shows that the splitting
M = Z1 × S3 is isometric. In this case, H is a multiple of the volume form
on the S3 factor, as this has no non-trivial invariant 1- or 2-forms. Moreover,
the metric splits as the product of a flat metric on Z1 and a multiple of the
standard metric on S3. Consequently, the associated Bismut connection is
flat;

(c) dim Z1 = 3. Here O ∼= S2 = SU(2)/T
1, so that the splitting (3) is isometric.

The form H can be expressed as H = φ ∧ ν, where φ is an invariant 1-form
on Z1 and ν is the volume form on S2. Again, ||ıvH||2 �= 0, for every v in
TZ1, while Ricg(v, v) = 0, a contradiction. �

The previous result leads us to consider the homogeneous spaces M = (SU(2) ×
SU(2))/K, with K ∼= T

1 embedded diagonally. Up to an automorphism of G =
SU(2)2, we can suppose that K is of the form

Kp,q :=
{
(diag(zp, z−p),diag(zq, z−q)) ∈ SU(2)2 | z ∈ T

1
}

,

for some p, q ∈ N, with p � q � 1 and gcd(p, q) = 1. We then let Mp,q := G/Kp,q

and we recall that all these homogeneous spaces are diffeomorphic to S3 × S2,
see [28, Prop. 2.3], although no explicit diffeomorphism is known (except when
p = q = 1).

We have the following.

Theorem 3.3. The 5-dimensional compact homogeneous space Mp,q admits a G-
invariant BRF pair (go, Ho) such that the associated Bismut connection is non-flat.
More precisely

• when p �= q, the space of G-invariant BRF pairs B(Mp,q)G is given by
R

+(go, Ho);

• when p = q = 1, the pair (go, Ho) admits a suitable neighbourhood U in
M(M1,1) × Ω3(M1,1) such that U ∩ B(M1,1)G coincides with U ∩ R

+(go, Ho).

Proof. We begin observing that Mp,q does not admit any Bismut flat connection.
Indeed, by [15, Thm. 3.54], a simply connected compact Riemannian manifold
admitting a Bismut flat connection is isometric to a product of compact simple Lie
groups with bi-invariant metrics. We obtain our claim by observing that there are
no 5-dimensional compact semisimple Lie groups.

In the Lie algebra su(2) we select the elements

H =
(

i
2 0
0 − i

2

)
, E =

(
0 1

2
√

2

− 1
2
√

2
0

)
, V =

(
0 i

2
√

2
i

2
√

2
0

)
,

so that [H, E] = V , [H, V ] = −E, [H, V ] = −E and [E, V ] = 1
2H. If B denotes

the Cartan–Killing form of su(2), then B(E, E) = B(V, V ) = −1, B(H, H) = −2.
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Then, we can choose the following basis of g

e1 = (qH,−pH), e2 = (E, 0), e3 = (V, 0),

e4 = (0, E), e5 = (0, V ), e6 = (pH, qH),

so that kp,q = Re6, while m := span
R
(e1, . . . , e5) is an ad(kp,q)-invariant subspace

and g = kp,q + m is an ad(kp,q)-invariant B-orthogonal decomposition. An ad(kp,q)-
irreducible decomposition of m is given by

m = m0 ⊕ m1 ⊕ m2,

where m0 = Re1, m1 = span
R
(e2, e3) and m2 = span

R
(e4, e5). Moreover, we have

ad(e6)e1 = 0, ad(e6)e2 = p e3, ad(e6)e3 = −p e2,

ad(e6)e4 = q e5, ad(e6)e5 = −q e4,

thus the module m0 is trivial, while the modules m1 and m2 are non-trivial and
inequivalent if p �= q, and non-trivial and equivalent if p = q. We will discuss the
cases p �= q and p = q separately.

In the following, B∗ = (e1, e2, e3, e4, e5) denotes the dual basis of B, and the
shortening eijk··· is used to denote the wedge product of covectors ei ∧ ej ∧ ek ∧ · · · .
Moreover, we fix the orientation on m for which B is positively oriented.

Case p �= q. We have

(Λ3m∗)kp,q = m∗
0 ⊗ Λ2m∗

1 ⊕ m∗
0 ⊗ Λ2m∗

2,

and a generic invariant 3-form is given by

H = h1e
123 + h2e

145,

for some h1, h2 ∈ R. Using the Koszul formula for the differential of invariant forms
on m

dH(X0,X1,X2,X3) =
∑
i<j

(−1)i+j H ([Xi,Xj ]m,Xk,Xl) , X0, . . . , X3 ∈ m,

(3.1)
where [Xi, Xj ]m denotes the projection of [Xi, Xj ] onto m, we see that H is closed
if and only if (h1, h2) = (λq, λp), for some λ ∈ R. Now, the generic invariant metric
on m has the following expression

g = μ2e1 � e1 + a2
(
e2 � e2 + e3 � e3

)
+ b2

(
e4 � e4 + e5 � e5

)
,

for some positive real numbers μ, a, b, where ei � ej := 1
2 (ei ⊗ ej + ej ⊗ ei). We can

then easily compute the Hodge dual of H obtaining

∗gH =
a2

μ b2
h2 e23 +

b2

μ a2
h1 e45,

and we see that it is always closed. Thus, up to a constant multiple, the generic
invariant harmonic 3-form on m is given by

H = q e123 + p e145.
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Now, we compute the symmetric 2-tensor H2 and we see that its non-zero
components are the following

H2(e1, e1) = 2
a4p2 + b4q2

a4b4
,

H2(e2, e2) = 2
q2

a2μ2
= H2(e3, e3),

H2(e4, e4) = 2
p2

b2μ2
= H2(e5, e5).

As for the Ricci tensor Ricg, we choose a g-orthonormal basis (E1, E2, E3, E4, E5)
of m, and we compute its components with respect to the basis B using the formula
[6, 7.38]. Since g is unimodular, this formula reads

Ricg(X,X) = −1
2

5∑
i=1

||[X,Ei]m||2 − 1
2
B(X,X) +

1
2

∑
1�i<j�5

g([Ei, Ej ]m,X)2,

(3.2)
for every X ∈ m. Since

[e2, e3]m =
q

2 (p2 + q2)
e1, [e4, e5]m = − p

2 (p2 + q2)
e1,

and [ei, ej ]m = [ei, ej ] otherwise, we obtain that the only non-zero components of
Ricg are the following

Ricg(e1, e1) = μ4 a4p2 + b4q2

8a4b4 (p2 + q2)2
,

Ricg(e2, e2) =
4a2

(
p2 + q2

)2 − μ2q2

8a2 (p2 + q2)2
= Ricg(e3, e3),

Ricg(e4, e4) =
4b2
(
p2 + q2

)2 − μ2p2

8b2 (p2 + q2)2
= Ricg(e5, e5).

Now, it is easy to see that Ricg = 1
4H2 has a unique solution under the constraints

μ > 0, a > 0, b > 0 and p2 + q2 �= 0, namely

μ =
√

2 (p2 + q2), a =

√
q2

p2 + q2
, b =

√
p2

p2 + q2
.

Thus, when p �= q, the homogeneous space Mp,q = G/Kp,q admits an invariant
metric go and an invariant harmonic form Ho giving rise to a Bismut Ricci flat
connection. Moreover, the pair (go, Ho) is unique up to scaling.

Case p = q. We have p = q = 1 and the modules m1 and m2 are equivalent. The
space of ad(k1,1)-invariant 3-forms is given by

(Λ3m∗)k1,1 = m∗
0 ⊗ Λ2m∗

1 ⊕ m∗
0 ⊗ Λ2m∗

2 ⊕ (m∗
0 ⊗ m∗

1 ⊗ m∗
2)

k1,1 ,

with dim(m∗
0 ⊗ m∗

1 ⊗ m∗
2)

k1,1 = 2.
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The generic invariant 3-form H ∈ (Λ3m∗)k1,1 has the following expression

H = h1 e123 + h2 e145 + h3

(
e125 − e134

)
+ h4

(
e124 + e135

)
, (3.3)

where hi ∈ R, for i = 1, 2, 3, 4. Using the Koszul formula (3.1), we see that H is
closed if and only if h2 = h1.

The generic invariant metric on m is given by

g = μ2e1 � e1 + a2
(
e2 � e2 + e3 � e3

)
+ b2

(
e4 � e4 + e5 � e5

)
+ 2c

(
e2 � e4 + e3 � e5

)
+ 2s

(
e2 � e5 − e3 � e4

)
,

(3.4)

where μ, a, b, c, s are real constants such that

μ > 0, a > 0, b > 0, a2b2 − c2 + s2 > 0.

We remark here that it is always possible to assume s = 0. Indeed, the one-
dimensional torus U := exp(Re1) centralizes K1,1 and therefore for every u ∈ U we
can consider the G-equivariant diffeomorphism τu ∈ Diff(M)G given by τu(xK1,1) =
xuK1,1, for x ∈ G. Then, for every g ∈ S2(m)k1,1 , which is given by the data
(μ, a, b, c, s) as in (3.4), the G-invariant symmetric tensor τ∗

ug corresponds to
the data (μ, a, b, c′ = c cos t + s sin t, s′ = −c sin t + s cos t), for u = exp(te1) ∈ U.
Therefore, we immediately see that we have s′ = 0 for an appropriate choice of
u ∈ U.

Now, we have

∗gH =
h1

(
a4 + c2

)− 2a2ch3

μ (a2b2 − c2)
e23 +

h1

(
b4 + c2

)− 2b2ch3

μ (a2b2 − c2)
e45

− h4

μ

(
e24 + e35

)− h3

(
a2b2 + c2

)− ch1

(
a2 + b2

)
μ (a2b2 − c2)

(
e25 − e34

)
,

and using again the Koszul formula, we obtain

d ∗g H = 2
h4

μ

(
e125 − e134

)− 2
h3

(
a2b2 + c2

)− ch1

(
a2 + b2

)
μ (a2b2 − c2)

(
e124 + e135

)
.

Thus, H is coclosed if and only if

h3 =
ch1

(
a2 + b2

)
a2b2 + c2

, h4 = 0.

The generic invariant harmonic 3-form on m is then given by

H = h1

(
e123 + e145 + c

a2 + b2

a2b2 + c2

(
e125 − e134

))
. (3.5)
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Consequently, the (possibly) non-zero components of the invariant symmetric
2-tensor H2 are the following

H2(e1, e1) = 2h2
1

a4 + b4 − 2c2

(a2b2 − c2) (a2b2 + c2)
,

H2(e2, e2) = 2h2
1

a2c2
(
a4 + b4

)− c4
(
2a2 + b2

)
+ a4b6

μ2 (a2b2 − c2) (a2b2 + c2)2
= H2(e3, e3),

H2(e4, e4) = 2h2
1

b2c2
(
a4 + b4

)− c4
(
a2 + 2b2

)
+ a6b4

μ2 (a2b2 − c2) (a2b2 + c2)2
= H2(e5, e5),

H2(e2, e4) = 2ch2
1

a2b2
(
a4 + a2b2 + b4 − 2c2

)− c4

μ2 (a2b2 − c2) (a2b2 + c2)2
= H2(e3, e5).

Let us consider the following g-orthonormal basis of m

E1 =
1
μ

e1, Ei =
1
a

ei, i = 2, 3,

Ej = − c

a
√

a2b2 − c2
ej−2 +

a√
a2b2 − c2

ej , j = 4, 5.

Then, using formula (3.2) and its polarization, and observing that

[e2, e3]m =
1
4

e1, [e4, e5]m = −1
4

e1, [ei, ej ]m = [ei, ej ] otherwise,

we obtain the following expressions for the (possibly) non-zero components of the
Ricci tensor

Ricg(e1, e1) =
2c2
(
64c2 − 64a2b2 − μ4

)
+ μ4(a4 + b4)

32 (a2b2 − c2)2
,

Ricg(e2, e2) =
64a2c2 + μ2

(
16a2b2 − b2μ2 − 16c2

)
32μ2 (a2b2 − c2)

= Ricg(e3, e3),

Ricg(e4, e4) =
64b2c2 + μ2

(
16a2b2 − a2μ2 − 16c2

)
32μ2 (a2b2 − c2)

= Ricg(e5, e5),

Ricg(e2, e4) = c
64a2b2 − μ4

32μ2 (a2b2 − c2)
= Ricg(e3, e5).

We now look for invariant metrics g and harmonic 3-forms H for which Ricg = 1
4H2.

A computation using the above expressions of the components of Ricg and H2 shows
that we need to find points in the open subset

A :=
{
(μ, a, b, c, h1) ∈ R

5 | μ > 0, a > 0, b > 0, a2b2 − c2 > 0, h1 �= 0
} ⊂ R

5,
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where all of the following polynomials vanish

p1 =
(
a4 + b4 − 2c2

) [
μ4
(
a2b2 + c2

)− 16h2
1

(
a2b2 − c2

)]− 128 c2
(
a4b4 − c4

)
,

p2 =
(
a2b2 + c2

)2 [
16μ2

(
a2b2 − c2

)
+ 64a2c2 − b2μ4

]
− 16h2

1

[
a4b6 + c2

(
a6 + a2b4 − 2a2c2 − b2c2

)]
,

p3 =
(
a2b2 + c2

)2 [
16μ2

(
a2b2 − c2

)
+ 64b2c2 − a2μ4

]
− 16h2

1

[
a6b4 + c2

(
b6 + a4b2 − 2b2c2 − a2c2

)]
,

p4 = c
[(

a2b2 + c2
)2 (

64a2b2 − μ4
)− 16h2

1

(
a2b2

(
a2 + b2

)2 − (a2b2 + c2
)2)]

.

Clearly, the polynomial p4 vanishes if c = 0. When this happens, the remaining
polynomials simplify considerably, and they vanish simultaneously if and only if

μ = 2
√

2 t, a = b = t, h1 = ±2t2,

for some t > 0. Therefore, when c = 0, we obtain an invariant BRF pair (go, Ho) ∈
B(M1,1)G that is unique up to scaling and up to a sign in the definition of Ho,
namely

go = 8 e1 � e1 +
(
e2 � e2 + e3 � e3

)
+
(
e4 � e4 + e5 � e5

)
, Ho = 2e123 + 2e145.

To prove the last assertion, we first consider the set

P :=
{
(g,H) ∈ S2(m)k1,1 × Λ3(m)k1,1 | g > 0, dH = 0, δgH = 0

}
,

and we recall that every invariant metric is uniquely determined by the string
(μ, a, b, c, s) as in (3.4). We then consider the subset

P ′ := {(g,H) ∈ P| g(e2, e5) = 0} .

Every point (g, H) ∈ P ′ is uniquely determined by a string (μ, a, b, c, h1) ∈ A ⊂
R

5, where (μ, a, b, c) determines g as in (3.4) and h1 determines H as in (3.5). The
set B(M1,1)G ∩ P ′ can be identified with the zero set in A of the map

F : A → R
4, F (μ, a, b, c, h1) = (p1, p2, p3, p4).

Notice that F (xo) = 0, where xo = (2
√

2, 1, 1, 0, 2) ∈ A corresponds to the
BRF pair (go, Ho), and that F (γ(t)) = 0 ∈ R

4 for every t ∈ R
+, where γ(t) =

(2
√

2t, t, t, 0, 2t2) is the curve through xo corresponding to (t2go, t2Ho). If we
now compute the differential of F at xo, we obtain

F∗xo
=

⎛
⎜⎜⎝

128
√

2 0 0 0 −128
0 256 0 0 −64
0 0 256 0 −64
0 0 0 −192 0

⎞
⎟⎟⎠ ,

and since rank(F∗xo
) = 4, we see that there exists a neighbourhood U ′ of (go, Ho) in

P ′ so that U ′ ∩ B(M1,1)G coincides with the set
{
(t2go, t2Ho) | t ∈ (1 − ε, 1 + ε′)

}
,

for suitable ε, ε′ > 0.
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We now use the G-equivariant diffeomorphisms τu, u ∈ U, to transform every
element of B(M1,1)G ∩ P into an element of B(M1,1)G ∩ P ′ via τ∗

u . Note that
for every u ∈ U we have (τ∗

ugo, τ∗
uHo) = (go, Ho), since c = s = 0. Moreover, we

can easily see that there exists a neighbourhood U of (go, Ho) in P so that
τ∗
u(U) ⊆ U ′. Therefore, if (g, H) ∈ B(M1,1)G ∩ U , then we can find u ∈ U so that

τ∗
u(g, H) ∈ B(M1,1)G ∩ U ′. Hence, τ∗

u(g, H) = (t2go, t2Ho), for some t > 0, and we
have (g, H) = τ∗

u−1(t2go, t2Ho) = (t2go, t2Ho). �

Remark 3.4. The Bismut Ricci flat, non-flat manifolds constructed in the previous
theorem provide counterexamples to a generalized Alekseevsky–Kimelfeld theorem
[4] for the Bismut connection. This question was raised in [15], cf. Question 3.58.
Furthermore, using similar computations, it is not difficult to obtain examples of
Bismut connections on Mp,q that are Ricci flat and non-flat and whose invariant
torsion form H is not closed. Finally, we also remark here that the Riemannian
manifolds (Mp,q, go) are not Einstein.

Remark 3.5. In the proof, we have noticed that the BRF pairs (g, H) are unique
(up to multiples) when p �= q. When p = q = 1, we have given the full description
of all possible invariant metrics and relative harmonic 3-forms. Unfortunately, the
complexity of the computations prevented us from finding other solutions.

Remark 3.6. We remark that the 3-form H we have constructed in the Rieman-
nian spaces (Mp,q, g) is harmonic but never parallel with respect to the Bismut
connection. Indeed, if it were, then we would have dH = 2σH = 0, where σH is
the fundamental 4-form σH = 1

2

∑5
i=1 ıvi

H ∧ ıvi
H and {vi} is a local orthonormal

frame (see e.g. [12]). By [2, Thm. 4.1], we would then have that Mp,q is a compact
simple Lie group, a contradiction.

3.1. The Kobayashi’s construction

The manifolds Mp,q naturally appear as principal S1-bundles over SU(2)2/T
2 ∼=

S2 × S2. In this section, we briefly review a useful construction, due to Kobayashi
[17], which allows to obtain new geometric structures on principal S1-bundles over
some base manifold B. This might lead to a generalization of our examples.

Given a compact manifold B, it is well known that there is a one-to-one cor-
respondence between principal S1-bundles π : P → B and elements in H2(B, Z).
Given a closed 2-form α with [α] ∈ H2(B, Z), there exists a principal S1-bundle
π : P → B and a connection form γ so that dγ = π∗α. If B is equipped with a
Riemannian metric go, we can construct a Riemannian metric g on P by setting
g := c2γ � γ + π∗go, for some c > 0. Following [17], we compute the Ricci curvature
as follows: if X, Y are horizontal tangent vectors and v is a unit vertical tangent
vector, we have

Ricg(X,Y ) = Ricgo
(π∗X,π∗Y ) − 2c2α̂(π∗X,π∗Y ),

Ricg(X, v) = c δgo
α(π∗X),

Ricg(v, v) = c2 ||α||2,
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where for every 2-form ω on B we define ω̂ ∈ S2(T ∗B) as ω̂(Z, W ) = go(ıZω, ıW ω),
for every tangent vector fields Z, W ∈ Γ(TB), and we let ||ω||2 = go(ω̂, ω̂).

We now prove a result that might be useful to construct new examples of BRF
pairs on suitable manifolds. In particular, this result allows to reduce the problem
of finding harmonic 3-forms on a certain manifold to a problem on the existence of
suitable harmonic 2-forms on a lower dimensional manifold.

Proposition 3.7. Given a compact Riemannian manifold (B, go) and a non-zero
harmonic 2-form α with [α] ∈ H2(B, Z), the associated principal S1-bundle P over
B admits a BRF pair (g, H) if there exist a harmonic form β ∈ Ω2(B) and positive
numbers λ, μ ∈ R

+ so that the following conditions are fulfilled:

(a) α ∧ β = 0;

(b) ||β||2 = λ||α||2 at every point of B;

(c) the Ricci tensor Ricgo
satisfies the equation

Ricgo
= 2λμα̂ + μβ̂.

Proof. We consider the metric g = c2γ � γ + π∗go with c2 = λμ. We then define a
3-form H ∈ Ω3(P ) as

H := h γ ∧ π∗β,

for some h ∈ R. Searching for conditions implying that (g, H) is a BRF pair, we see
that H is closed if and only if α ∧ β = 0 and β is closed, while it is coclosed if and
only if d(π∗(∗go

β)) = 0, i.e., β is coclosed. Therefore, H is g-harmonic if and only
if β is go-harmonic and condition (a) holds. Looking now at the expression of the
Ricci tensor of g, we see that α being harmonic implies that Ricg(V, Z) vanishes
whenever V is vertical and Z is horizontal. As we easily check, H2(Z, V ) = 0 as
well. Thus, we only need to verify the following

Ricgo
(X,Y ) = 2c2α̂(X,Y ) +

1
4
H2(X,Y ) = 2λμα̂(X,Y ) +

1
4
H2(X,Y ), (3.6)

c2||α||2 =
1
4
||ıvH||2, (3.7)

where X, Y are vector fields on B and v is a unit vertical field on P . Now, using
(b), we have

||ıvH||2 = h2(γ(v))2||β||2 =
h2

c2
||β||2 = λ

h2

c2
||α||2.

Hence, equation (3.7) reads

λ2μ2 = c4 =
1
4
λh2,

whence

h2 = 4λμ2. (3.8)
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As for equation (3.6), we see that H2(X, Y ) = h2

c2 β̂(X, Y ) so that (3.6) reads

Ricgo
= 2λμα̂ +

h2

4c2
β̂.

This coincides with the expression of the Ricci tensor as in (c) when we use c2 = λμ
and the expression (3.8) for the constant h. �

Remark 3.8. Our examples on the manifolds Mp,q can be seen as special cases of
the above construction.

4. The asymptotic behaviour of the solution to the GRF on Mp,q

In this last section, we consider the homogeneous space Mp,q = G/Kp,q, p �= q, with
the BRF pair (go, Ho) determined in the proof of theorem 3.3, and we study the
behaviour of the homogeneous generalized Ricci flow (1.2) on Mp.q. We have the
following.

Theorem 4.1. Let (gt, Ht) be the invariant solution to the generalized Ricci flow on
Mp,q, p �= q, starting at an invariant pair (g, H) with dH = 0 at t = to. Then, Ht =
λHo, for some λ ∈ R

+, the solution (gt, Ht) exists for all t � to and it converges
to the BRF pair (λgo, λHo) as t → +∞.

We begin showing that the proof of theorem 4.1 reduces to the qualitative study
of a suitable system of ordinary differential equations. Let (gt, Ht) be an invariant
solution to the generalized Ricci flow on Mp,q, p �= q. It follows from the discussion
in the proof of theorem 3.3 that

gt = μ2
t e

1 � e1 + a2
t

(
e2 � e2 + e3 � e3

)
+ b2

t

(
e4 � e4 + e5 � e5

)
,

and

Ht = λtHo = λt

(
q e123 + p e145

)
,

where μt, at, bt, λt are positive real valued functions of t.
The BRF pair (go, Ho) is a fixed point of the generalized Ricci flow, thus the

solution to the flow starting from it corresponds to the constant functions

μo ≡
√

2 (p2 + q2), ao ≡
√

q2

p2 + q2
, bo ≡

√
p2

p2 + q2
, λo ≡ 1.

Now, since Ht is gt-harmonic, from the second equation in (1.2) we obtain

0 = −Δgt
Ht =

∂

∂t
Ht =

d

dt
λtHo,

whence it follows that λt = λ ∈ R
+ is a positive constant and thus Ht = λHo. We

now consider the first equation in (1.2)

∂

∂t
gt = −2Ricgt

+
1
2
H2

t = −2Ricgt
+

1
2
λ2H2

o .

Using again our previous computations, we see that this equation is equivalent to
an autonomous system of ODEs for the functions μt, at, bt. If we let Mt := μ2

t ,
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At := a2
t , Bt := b2

t , then the system is the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
Mt =

(
p2

4 (p2 + q2)2
1

B2
t

+
q2

4 (p2 + q2)2
1

A2
t

)(
4λ2

(
p2 + q2

)2 − M2
t

)
,

d

dt
At =

q2

At
F (Mt) − 1,

d

dt
Bt =

p2

Bt
F (Mt) − 1,

(4.1)

where

F (t) :=
4λ2

(
p2 + q2

)2 + t2

4 (p2 + q2)2 t
,

The fixed point of this system is given by xo,λ := (λμ2
o, λa2

o, λb2
o) and it corresponds

to the invariant metric λgo.
Now, the proof of theorem 4.1 follows from the next result.

Proposition 4.2. The solution (Mt, At, Bt) to the system (4.1) starting at any
given triplet of positive numbers (Mo, Ao, Bo) at t = to exists for all t � to and it
converges to the fixed point xo,λ as t → +∞.

Proof. Let

M := 2λ(p2 + q2),

and let I = [to, T ) be the maximal existence interval for the solution (Mt, At, Bt).
We divide the discussion into various steps. step 1. If Mt assumes the value M
for some t ∈ I, then Mt = M for all t ∈ I, T = +∞ and limt→+∞ At = q2F (M),
limt→+∞ Bt = p2F (M). Indeed, let (At, Bt) be the solution of the system⎧⎪⎪⎨

⎪⎪⎩
d

dt
At =

q2

At
F (M) − 1,

d

dt
Bt =

p2

Bt
F (M) − 1.

(4.2)

with initial conditions (Ato
= Ato

, Bto
= Bto

). Then, (At, Bt, Mt = M) satisfies
the system (4.1) and therefore we have Mt = M for every t ∈ I by uniqueness.
Now, it is clear that q2F (M) and p2F (M) are particular solutions of the first and
second equation of (4.2), respectively. Therefore, either At, Bt are constant, or
their derivatives never vanish. This implies that At and Bt remain bounded from
above and from below by two positive constants. Then, |A′

t| and |B′
t| are uniformly

bounded, and this implies the long time existence and the convergence by standard
arguments.

step 2. Mt is monotone and for every t ∈ I we have either Mt ∈ [Mo, M ] or
Mt ∈ [M, Mo]. In fact, M ′

t never vanishes unless Mt is constant. Therefore, Mt

is increasing (resp. decreasing) if Mo < M (resp. Mo > M). In particular, the limit
limt→T Mt exists.
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step 3. We have T = +∞. Suppose T < +∞. We consider the first equation in (4.1).
First of all, we note that At is bounded on I. Indeed, by step 2, C1 � F (Mt) � C2

on I for some positive constants C1, C2, hence A′
t � q2C2

At
, and thus (A2

t )
′ � q2C2

and At �
√

q2C2t + A2
o � C3 :=

√
q2C2T + A2

o for all t ∈ I. In turn this implies
that A′

t � q2C1
C3

− 1, so that |A′
t| is uniformly bounded. Consequently, the limit

limt→T At exists, call it α � 0. We need to prove that α �= 0. Let us put yt = A2
t ,

so that y′ = −2
√

y + 2q2F (Mt). If α = 0, then limt→T y′(t) = limt→T q2F (Mt) > 0.
This is impossible as it implies that y(t) < 0 in a suitable left neighbourhood of T .
The same argument applies to Bt and our claim follows.

step 4. If there exists a constant K > 0 so that A′
t � −1 + K

At
, then for every ε > 0

there exists some Tε such that

At � K + ε, ∀ t � Tε.

The same statement holds for Bt. As a consequence, the functions At and Bt are
bounded on [to, +∞). If we put y(t) = A2

t as before, then we have y′ � −2
√

y + 2K.
First, we note that the inequality At > K + ε cannot hold on a half-line [t̃, +∞).
Indeed, in that case we would have y′(t) � −2ε, hence for some constant C we
would obtain y(t) � −2εt + C < 0 for sufficiently large t, a contradiction. Thus,
there exists a point t where At � K + ε. We claim that At � K + ε for every t � t.
Indeed, suppose there exists t1 > t with At1 > K + ε and consider t2 ∈ [t, t1] so
that At2 = max[t, t1]

At. If t2 ∈ (t, t1), then 0 = A′
t2 � −1 + K

At2
, so that At2 � K,

a contradiction. Otherwise, t2 = t1 and therefore A′
t1 � 0 implying again At1 � K.

This proves our first claim. By step 2, Mt takes values into an interval [C1, C2] with
C1 > 0 and therefore F (Mt) is bounded above by a constant K. By the previous
arguments, At (and similarly Bt) is bounded on some positive half-line, hence on
[to, +∞).

step 5. We have limt→+∞ Mt = M . Indeed, Mt is monotone and bounded by step
2, hence the limit limt→+∞ Mt = m exists. Suppose that m �= M . By step 4, the
functions At, Bt are bounded, hence by the first equation in (4.1) there is a constant
C so that for sufficiently large t

|M ′
t | � C|M2 − M2

t | � C

2
|M2 − m2| > 0,

contradicting the boundedness of Mt.

step 6. We have limt→+∞ At = q2F (M) and limt→+∞ Bt = p2F (M). We know that
limt→+∞ Mt = M , hence q2F (Mt) → q2F (M) =: φ > 0. This means that for every
ε > 0 there exists Sε > 0 so that φ − ε � q2F (Mt) � φ + ε for all t � Sε. By step 4,
there exists Tε so that for every t � Tε we have At � φ + 2ε. Using similar arguments
as in the proof of step 4, we have another point (say again Tε), so that At � φ − 2ε
for all t � Tε. Our claim for At is then proved, and the same arguments apply
for Bt. �

Remark 4.3. The analogous study of the behaviour of the generalized Ricci flow
on M1,1 is much more involved, due to the presence of off-diagonal terms in the
invariant symmetric tensors.
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1 I. Agricola. The Srńı lectures on non-integrable geometries with torsion. Arch. Math. (Brno)
42 (2006), 5–84.

2 I. Agricola, A. C. Ferreira and T. Friedrich. The classification of naturally reductive
homogeneous spaces in dimensions � 6. Diff. Geom. Appl. 39 (2015), 59–92.

3 H. Azad. On the third Betti number of some compact homogeneous manifolds. Studia Sci.
Math. Hungar. 25 (1990), 1–2.

4 D. V. Alekseevsky and B. N. Kimelfeld. Structure of homogeneous Riemannian spaces with
zero Ricci curvature. Funktional. Anal. i Priložen 9 (1975), 5–11.
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