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Abstract. In classical number theory, one has the famous theorem of Kummer–Sinnott giving the
index of the cyclotomic units in the total unit group. Using the division values of sgn-normalized rank
one Drinfeld modules, we construct the group of extended cyclotomic units for an abelian extension
of a global function field and calculate its index in the whole unit group. The result could be regarded
as an analogue and a generalization of Kummer–Sinnott’s.
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0. Introduction

In the classical theory of numbers, one has the famous index-class number formula
of Kummer–Sinnott [12], which says that in a cyclotomic number field the index
of the cyclotomic units in the total unit group is equal to the class number of its
maximal real subfield, up to a trivial factor. Galovich and Rosen [2] proved an
analogue of this result for the rational function field over a finite field. In this paper,
we extend this theory to an arbitrary global function field over a finite field. Our
method is a generalization of that in [12] or [2]. The new ingredient is that the base
field has non-trivial class group. Now we state our results more precisely.

Let k be the function field of a projective smooth curve over the finite field
Fq with q elements. Let 1 be a closed point in the curve with degree 1 and let
k1 be the completion of k at 1. Let A be the Dedekind subring of k consisting
of those functions having no pole other than 1 and let H1 be the Hilbert class
field of (k;1). For a ring R, let R� denote the group of invertible elements.
We fix, once for all, a sign function sgn: k�1 ! F �q (Def. 4.1, [7]). For a proper
ideal m of A , we denote K = Km to be the ‘cyclotomic’ extension of the triple
(k;1; sgn) with conductor m, which arises in the theory of Drinfield modules,
and we set H = Hm to be the maximal real subfield of K such that 1 splits
completely, which is the ray class field of (k;1) modulo m (Sect. 16, [8]). Let
G1 = Gal(H1=k) ' Pic(A ). Let N = Nm denote the subgroup of G1 generated
by the Artin symbols �p = (p;H1=k) for all primes p jm, and let e = [G1:N ] be
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50 LINSHENG YIN

the index. Let C = Cm denote the cyclotomic unit group of K (Def. 1.1). We first
obtain the rank of C .

THEOREM A. rankC = [H: k]� e.

This theorem answers a conjecture by D. Goss (2.7 Conjecture, [3]). Shu also
proved the theorem in the case when the conductor m is a prime by a different
method ([11], Thm. 5.2). Thus C does not have the maximal rank in the whole unit
group of K unless m satisfies Nm = G1. The reason is a shortage of unramified
units in C . We extendC in a natural way to get the extended groupC of cyclotomic
units with the maximal rank (Def. 1.6). We have C = C if Nm = G1. Our next
theorem gives the index of C. For any finite extension E=k, we denote by OE

the integral closure of A in E, O�
E the unit group of OE , h(OE) the ideal class

number of E, h(E) the divisor class number of E and R(E) the regulator of E.
We abbreviate h = h(A ) = h(k). Let s be the number of distinct prime divisors
of m.

THEOREM B. If s > 3, we assume (h; q � 1) = 1. Then

[O�
K :C] = (q � 1)ah(OH );

where a = 0 if s = 1 and a = e(2s�2 � 1)� (s� 2) if s > 1.

We conjecture that the restrictive hypothesis in Theorem B is unnecessary (see
Sect. 6 for detail). When k = Fq (T ) and 1 = 1=T , then e = h = 1. The theorem
gives Galovich and Rosen’s formula (Thm., [2]). We mention that the elliptic units
defined by Oukhaba (Def. 3.9, [9]) and by Hayes (Def. 1.3, [6]) are essentially our
extended cyclotomic units. One part of Oukhaba’s results (the part two in (Thm. 1,
[9])) is a special case of s = 1 in our Theorem B. Shu studied the cyclotomic units
in the case when the conductor m is a prime ideal. She extendedC in another way,
and got an index formula which also includes the class number of a subfield ofH1

(Main Thm. 2, [11]). In this paper, we also give a new method to compute an index
appearing in the calculation of [O�

K :C], which is much simpler than Galovich and
Rosen’s and Sinnott’s when applying it to their cases.

1. Cyclotomic units and class number formula

In this section, we give the definitions of cyclotomic units and unramified elliptic
units and recall their basic properties. We also recall the relation of them with the
values for Artin L-function at zero. The main references for this section are Hayes’
(Sect. 1, [6]), [7] and (Sect. 16, [8]) except for the definition of the extended group
of cyclotomic units.

The notations are as above. A rank one Drinfeld A -module � (of generic charac-
teristic) is called sgn-normalized if �x has all of its coefficients inH1 for all x 2 A

and the coefficient of the highest order term of �x is equal to sgn(x). There is a
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unique sgn-normalized rank one Drinfeld A -module in each isomorphism class of
rank one A -modules (Thm. 2.3, [8]). Let X denote the set of these normalized A -
modules. Let
 be the completion of an algebraic closure of k1. For � 2 X , let��

m

be the set of m-torsion points in 
 associated to �, i.e., ��
m
= f� 2 
 j �x(�) = 0,

x 2 mg, which is isomorphic to A =m as an A -submodule via � of 
 (Sect. 16, [8]).
Let �m =

S
�2X ��

m
. Then K = H1(�

�
m
) = H1(�m) is abelian over k and is

called the cyclotomic extension of k with conductor m.

DEFINITION 1.1. LetP = Pm be the subgroup ofK� generated by��
m
= �m�f0g

and by F �q . Let C = Cm = P \O�
K . Call an element in P (resp. in C) a cyclotomic

number (resp. a cyclotomic unit) of K .

Let G = Gal(K=k). Since X is stable under the natural G-action, P and C are
G-modules. Let �(m) 2 
 be an invariant associated to the ideal m, which is char-
acterized by the condition that the lattice (A -submodule of 
) �(m)m corresponds
to some � 2 X . Thus �(m) is determined up to multiplication by F �q . However,
by Hayes’ technique (Sect. 1, [6]) the ratio �(a)=�(b) for any fractional ideals a

and b is determined uniquely, and by (P1, [6]) it is in H1. Let em(x) be the
exponential function associated to the lattice m. We have (Eqs. 5.4 and 5.5, [7]),
��
m
= �(m)em(A ) and �m = �(m)em(1) is a generator of��

m
. For a proper ideal f of

A , we set �f = �(f)ef(1) and Kf = H1(�f). Notice that Gal(Kf=H1) ' (A =f)� .
We regard Gal(Kf=k) as a quotient of G for f jm. By (Thm. 16.2, [8]), the G-
conjugates of �f contain all generators of ��

f
for any � 2 X . Let e denote the unit

ideal. Thus we get

LEMMA 1.2. As a G-module, P is generated by F �q and by �f with f jm, f 6= e.

Hayes studied the properties of the cyclotomic numbers and the invariants �(m). In
the following lemma, (1)–(2) are from (Thm. 4.17, [7]) and (3)–(4) from (Sect. 1
and Eq. 2.3, [6]).

LEMMA 1.3. Let � be a generator of ��
m

for � 2 X and let p be a prime ideal
of A .

(1) Assume m has at least two distinct prime divisors. Then � is a unit.

(2) Assume m = p
n. Let [p] be the product in OK of the prime ideals dividing p.

Then [p] = �OK .

(3) NKp=H1(�p) = �(A )=�(p), and it generates the ideal pOH1 in OH1 .

(4) Let a, b be fractional ideals of A . The Galois action is

(�(A )=�(a))�b = �(b�1)=�(ab�1);

where �b = (b;H1=k) is the Artin symbol.

We now recall the unramified elliptic units introduced by D. Hayes [6].
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DEFINITION 1.4. Let Qm be the G1-submodule of H1 generated by �(A )=�(p)
with primes p jm and let Em = Qm \ O�

H1
. Call an element in Qm (resp. in Em)

an elliptic number (resp. an elliptic unit) of level m.

We remark that the definition of Qm above is slightly different from Hayes’
QNm

(Def. 1.3, [6]), but Em is the same as his ENm
. An element z 2 k1 is called

positive if sgn z = 1 and z 2Hm is called totally positive if z� is positive for
any �2G+ = Gal(Hm=k). By (Prop. 2.3, [6]), NK=H(P )(� Qm) consists of
totally positive elements. Let M denote the set of positive elements in k. In Hayes’
definition, the group of elliptic numbers of any level contains M as a subgroup. In
our case, we have

LEMMA 1.5. Qm \ k = fx 2M j ordp(x) = 0 for p - mg.
Proof. By Lemma 1.3(3), one sees the ‘�’ in the lemma. Now we show

the ‘�’. Using the Galois action (Lemma 1.3(4)), we see that �(a)=�(b)2Qm

if ab
�1 = �pijm

p
ei
i by induction on

P
i jeij. Thus by (Eq. 1.6, [6]), we have

x = �(A )=�(xA )2Qm if x2M and if ordp(x) = 0 for p - m. This completes the
proof. 2

When m satisfies Nm = G1, we see that MQm is independent of such m by
Lemma 1.5. Let Q = MQm and E = Q \ O�

H1
in this case. By (Prop. 3.7, [6]),

each elliptic unit is a q � 1st power in H1. We denote the group of q � 1st roots
of the elements in Em by Em, and write E = E1=(q�1).

Let J = Gal(K=H) ' F �q , which is both the decomposition group and the
inertia subgroup at 1. Let s(J) = ��2J�. Since J � Gal(Kp=H1), we have, by
Lemma 1.3(3),

Qm � P
s(J)
m

and Em � Cm: (1.1)

The second is deduced from the first and the fact F �q P
s(J)
m = F �q P

q�1
m

(see (Eq. 4.13,
[7])). In Section 3 we will show thatEm is the intersection ofE andCm (Prop. 4.4).

The Theorem A (we will show it in the next section) implies that the cyclotomic
unit group C does not have the maximal rank in O�

K unless Nm = G1. Proposi-
tion 4.4 below shows that C does not contain enough unramified units. To get a
unit subgroup with the maximal rank in O�

K , we naturally extend C by adding all
unramified elliptic units.

DEFINITION 1.6. Let C = C � E. Call C the extended group of cyclotomic units
of K .

We will see that C does have the maximal rank in O�
K next section (Prop. 2.1).

In the rest of this section, we recall the relation of the cyclotomic numbers
with the values for Artin L-function at zero. Let � be a character of G with
values in non-zero complex numbers C � . If �(J) = 1, it induces a character of
G+ = Gal(H=k) ' G=J , and we call it real. Let f� be the conductor of �, which
is an ideal of A . Note f� = e means that � induces a character of G1. We always
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denote by � its induced character. For a character � of G and an ideal a of A , we
define �(a)2 C as follows. If (a; f�) = e, let �a be the Artin k-automorphism of
Kf� = H1(�f�) corresponding to a and let �(a) = �(�a). If (a; f�) 6= e, we put
�(a) = 0.

From now on, we suppose that� is a non-trivial real character ofG. LetLk(s; �)
be the Artin L-function associated to �, which is defined as the Euler products over
the places of the field k where � is unramified. We have the well-known analytic
class number formulaY

�6=1;real

Lk(0; �) =
h(H)

h
: (1.2)

Let Lm(s; �) be the incomplete L-function of � relative to the prime divisors of m

(Eq. 1.1, [7]). Let � = �
s(J)
m = ��q�1

m
2 H�. Hayes proved that, the last equality

in [7],

Lm(0; �) =
1

q � 1

X
�2G+

�(�)v1(�
�)

=
1

q � 1

X
�2G

�(�)v1(�
�
m
); (1.3)

where v1 is the extention to 
 of the normalized valuation of k1 at 1. By the
definitions we have the following formula which will be useful later

Lm(0; �) =
Y
pjm

(1 � �(p)) � Lk(0; �): (1.4)

2. The ranks

In this section, we compute the ranks of C and C by using the logarithm map
introduced below.

Let bG denote the character group of G, and let C [G] be the group ring of G
over the complex number field C . A character�2 bG induces a ring homomorphism
C [G] ! C in an obvious way. We denote it by the same symbol. Moreover these
characters induce a natural isomorphism C [G] ' �

�2bGC .
The logarithm map in function field case was first introduced by Galovich and

Rosen [2] and was used by Hayes in [6]. It is an important device to study the
cyclotomic units. We start this section by recalling its definition.

Let Q[G] be the group ring of G over rational numbers Q. The logarithm map
l:K�!Q[G] is defined for x2K� by

l(x) =
X
�2G

v1(x
�)��1

:
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Clearly l is G-linear and ker l \ O�
K = F �q . We set l� = (1 � e1)l, where e1 =

(1=jGj)
P

�2G �
�1 is the idempotent associated to the trivial character of G. Now

we can show Theorem A.

The Proof of Theorem A. Let m = p
e1
1 : : : pess be the prime factorization and

take prime ideal<i of K lying above pi for 1 6 i 6 s. By Lemma 1.3(1)–(2), there
exists an exact sequence

0 ! C ! P
v
�! Zs! 0;

where v is the valuation map in K , i.e., v(x) = (v<1(x); : : : ; v<s(x)) for x2P .
Again by Lemma 1.3(1)–(2), the action of G on P=C is trivial. We see that Q 

l(C) ' Q 
 l�(P ). Thus rankC = dim C C l

�(P ). Since C l�(P ) is an ideal of
C [G], we get

rankC = #f�2 bG j� 6= 1; �(l(P )) 6= 0g;

where # denotes the cardinality of a set. Since l(x) = l(x�) = �l(x) for x2P and
�2J , when � is not real, we have �(l(P )) = 0. Now suppose that � is real. Let f
be a divisor of m and f 6= e. If f� j f, by (1.3) and (1.4), we have

�(l(�f)) = afLf(0; �) = af

Y
pjf

(1� �(p)) � Lk(0; �) (2.1)

where � is the inverse of �, and af = (q�1)�(m)=�(f) 6= 0. Here�(f) = #(A =f)�

denotes the Euler �-function.
Hence if � is ramified, the �(l(�f)) 6= 0 for f = f�. If � is unramified, then

�(l(�f)) 6= 0 is equivalent to �(p) 6= 1 for all p j f. Thus f� 6= 1; �(l(P )) 6= 0g =dG+ � ( dG1=N ), which implies the theorem. 2

Next we consider the rank of C.

PROPOSITION 2.1. rankC = [H: k]� 1.
Proof. By the proof of Theorem A, it is enough to show that �(l(Q)) 6= 0 for

real and unramified character � 6= 1. By Lemma 1.3(3), we have

�(l(�(A )=�(p))) = �(p)�(l(�p)) = ap�(p)Lp(0; �)

= ap�(p)(1� �(p))Lk(0; �) (2.2)

for unramified �. From the definition of Q, we conclude the proof. 2

3. Outline of the proof of Theorem B

In this section, we explain an outline of the proof of Theorem B and calculate two
simple indices appearing in the proof.
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We first fix some notations. For a prime ideal p of A , let Tp be the inertia group
of p in G and let Fp 2G be any Frobenius automorphism for p, which is the well
defined modulo Tp. For a subset B of G, write s(B) =

P
�2B �2R = Z[G], the

group ring of G over rational integers Z. We set �p = F�1
p
s(Tp)=jTpj. One can see

that �(�p) = �(p) for any �2 bG.
Let If = Gal(K=Kf) for f jm, f 6= e and let Ie = Gal(K=H1) ' (A =m)� . Let

V be the R-submodule of Q[G] generated by

�f = s(If)
Y
pjf

(1� �p)

with f jm, f 6= e. We also set U = V + s(Ie)R and U 0 = (q � 1)V + s(Ie)R. Here
U is the R-module generated by �f with all f jm.

For any R-module T , we denote by T0 the submodule of elements killed by
s(G) and for a subset B of G, denote by TB the set of elements of T fixed by B.
It is easy to see V0 = V , U0 = V + s(Ie)R0 and U 0

0 = (q � 1)V + s(Ie)R0.
Let e+ = (1=(q�1))s(J). ClearlyU , e+V and e+U are free abelian subgroups

of Q[G]. Since �(�p) = �(p) for any �2 bG, using the method in the proof of
Theorem A, one can calculate their ranks. We leave the proof of the following
lemma to the reader.

LEMMA 3.1.

rankU = rankU 0 = [K: k];

rank e+U0 = rank e+U 0
0 = [H: k]� 1;

rank e+V = [H: k]� e:

Let Y = (1 � e1)e
+Q[G]. It is a Q -subspace of Q[G] with dimension r =

[H: k] � 1. A lattice in Y is a finitely generated subgroup of Y with the maximal
rank. Let L and L0 be two lattices in Y . Sinnott defined the index (L:L0) in [12]
and described some basic properties of the index (Lemmas 1.1 and 6.1, [12]). We
will freely use these properties.

Obviously e+R0 is a lattice in Y and by the Dirichlet unit theorem, l(O�
K) is a

lattice in Y . Previous lemma implies that e+U0 and e+U 0
0 are lattices in Y .

Let m
0 be a proper ideal of A coprime to m such that Nmm0 = G1. By

Lemma 1.3(3), E = Qmm0 \ O�
H1

= EmEm0 . We put P 0 = F �q P
q�1Qm0 and

C 0 = P 0 \O�
K . Then by (1.1) and Lemma 1.3(1–3)

C
0 = F �q C

q�1
Em0 = F �q C

q�1
:

The proofs of Theorem A and Proposition 2.1 show that l�(P 0) and l(C 0) are also
lattices in Y . Since ker l\O�

K = ker l\C 0 = F �q , we have, by the equality above,

[O�
K :C] = (q � 1)�r[O�

K :C 0] = (q � 1)�r[l(O�
K): l(C

0)]
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= (q � 1)�r(l(O�
K): e

+
R0)(e

+
R0: e+U0)(e

+
U0: e+U 0

0)

�(e+U 0
0: l�(P 0))(l�(P 0): l(C 0)): (3.1)

To prove Theorem B, we need to calculate the five indices in the right-hand
of (3.1). In the last three sections, we will prove the following three equalities
respectively. (Notice that we need a restrictive hypothesis on the third equality. See
Sect. 6 for detail.)

(e+U 0
0: l�(P 0)) = (q � 1)rh(H)=h;

(l�(P 0): l(C 0)) = (q � 1)�s�(m)h;

(e+R0: e+U0) =

(
(q � 1)e=�(m) if s = 1;

(q � 1)e2s�2
=�(m) if s > 1;

(3.1a)

and in the rest of this section we compute the indices (l(O�
K): e

+R0) and (e+U0:
e+U 0

0).
By the definition of the regulator, we have R(K) = (e+R0: l(O�

K)). Let Q0 =
[O�

K :O�
H ]. Using the argument of (Prop. 1.14, [2]), we see that Q0 = 1 if s = 1

and Q0 = q � 1 if s > 1. Moreover by (Prop. 1.15, [2]), we have R(K) =
((q � 1)r=Q0)R(H). Thus

(l(O�
K): e

+
R0) = 1=R(K) = Q0=(R(H)(q � 1)r): (3.1b)

To compute (e+U0: e+U 0
0), we need a lemma. Let JN be the ideal ofR1 = Z[G1]

generated by f� � 1 j � 2Ng. We identify R1 with s(Ie)R by � 7!
P

� 7!� �.

LEMMA 3.2.

e
+
V \ s(Ie)R = (q � 1)e+V \ s(Ie)R = JN :

Proof. Since J \ If = f1g and JIf � Ie for f jm, f 6= e, we see

e
+
V \ s(Ie)R � (q � 1)e+V \ s(Ie)R � JN :

On the other hand,

e
+
V \ s(Ie)R � Qe+V \ s(Ie)R = Qs(Ie)V \ s(Ie)R

= QJN \R1 = JN :

The last equality follows from that R1=JN ' Z[G1=N ] is torsion free. This com-
pletes the proof. 2

COROLLARY 3.3.

[e+U0: e+U 0
0] = (q � 1)[H: k]�e

:
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Proof. By the definitions of U and U 0, we have e+U0 = e+V + e+s(Ie)R0
and e+U 0

0 = (q � 1)e+V + e+s(Ie)R0. Hence by Lemma 3.2, there exists an
isomorphism

e
+
U0=e

+
U
0
0 ' e

+
V=(q � 1)e+V:

By Lemma 3.1, e+V is a free abelian subgroup of Q[G] with rank [H: k]� e. Thus
we get the index. 2

By substituting (3.1a–3.1b) and Corollary 3.3 in (3.1), since h(H) =
h(OH)R(H), the Theorem B follows at once.

4. The image of cyclotomic numbers by logarithm

In this section, we calculate the index (e+U 0
0: l�(P 0)). To do this, we need compute

the image of cyclotomic numbers under the logarithm. We also obtain the exact
relation between the groups of cyclotomic units and the elliptic units in this section.

Let e� = (1=jGj)
P

�2G �(�)�
�1 be the idempotent associated to � in C [G].

We set

! = (q � 1)
X

�6=1; real

Lk(0; �)e�:

Note that !2Q[G].

PROPOSITION 4.1. l�(P ) = !V .
Proof. By Lemma 1.2, it is enough to show

�(l(�f)) = �(!�f) = (q � 1)Lk(0; �)�(�f); (4.1)

for any 1 6= �2 bG and any f jm, f 6= e. When � is non-real, we see that both sides
of (4.1) are zeroes. Now suppose that � is real.

Assume f� - f. Since Gal(Kf=k) ' G=If, there exists �2 If such that �(�) 6= 1
and �l(�f) = l(��

f
) = l(�f). Hence �(l(�f)) = 0. If f� j f, we have computed

�(l(�f)) in (2.1).
On the other hand, �(�p) = �(p) and �(s(If)) =

P
�2If �(�), which equals 0

if f� - f and equals �(m)=�(f) if f� j f. The equality (4.1) follows at once. 2

LEMMA 4.2. l�(Qm) = !JN .
Proof. For a prime p of A , we see s(Ie)�p = ��1

p
. By Lemma 1.3(3) and

Equation (2.2)

l
�(�(A )=�(p)) = !(1 � �

�1
p
):

This implies the lemma. 2
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Recall that P 0 = F �q P
q�1Qm0 = F �q P

q�1Qmm0 andU 0 = (q�1)V + s(Ie)R. Thus
Proposition 4.1 and Lemma 4.2 imply

COROLLARY 4.3. l�(P 0) = !U 0
0.

Now we can calculate the index (e+U 0
0: l�(P 0)). Noting that !2Y , we define a

linear mapping A on Y by A(�) = !� for �2Y . Since l�(P 0) = !U 0
0 = !e+U 0

0,
we have A(e+U 0

0) = l�(P 0). A standard calculation shows that

(e+U 0
0: l�(P 0)) = detA =

Y
16=�2cG+

(q � 1)Lk(0; �) = (q � 1)r
h(H)

h
:

In the rest of this section, we study the relation between the cyclotomic units and
the unramified elliptic units. Since L(0; �) 6= 0 for all non-trivial real characters
�, the multiplication by ! is an automorphism of e+C [G]0 . Thus Lemma 3.2
gives us

!V \ !s(Ie)R0 = (q � 1)!V \ !s(Ie)R0 = !JN : (4.2)

The following result gives the exact relation between the groups of cyclotomic
units and elliptic units.

PROPOSITION 4.4.

P
s(J) \Q = Qm and C \E = Em:

Proof. First we show that the second equality follows from the first: Let u2C \
E. We have us(J) = uq�1 2P s(J) \Q = Qm. Thus u2Em. By (1.1), the second
one follows. Now we show the first one. By Proposition 2.1 and Lemma 2.2, the
Equation (4.2) above implies

l
�(P q�1) \ l�(Q) = l

�(P ) \ l�(Q) = l
�(Qm):

Thus for any x2P s(J) \ Q, there exists y2Qm such that l�(x) = l�(y). By
considering xy�1, it is reduced to the following

LEMMA 4.5.

ker l� \ P s(J) = k \Qm:

Proof. Let x2 ker l� \ P s(J). Then for � 2G, (� � 1)l�(x) = l(x��1) = 0.
Hence x��1 is a positive root of 1 and is 1. Therefore x2 k� and further by
Lemma 1.5, we have x2Qm \ k. The other inclusion is obvious. 2

5. The index [l�(P 0): l(C 0)]

In this section, we compute the index [l�(P 0): l(C 0)]. Our method is much simpler
than Galovich and Rosen’s (Props. 4.1–4.7, [2]) and Sinnott’s (Lemmas 4.1–4.3,
[12]) when applied to their cases.
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PROPOSITION 5.1. Let s be the number of distinct prime divisors of m. Then

[l�(P 0): l(C 0)] = (q � 1)�s�(m)h:

Proof. From the commutative diagram

C
0 - P

0

Q
Q
Q
Q
Qs

l
�(P 0)
?

we obtain an exact sequence

0 ! F �q ! ker l� \ P 0 ! P
0
=C

0 ! l
�(P 0)=l(C 0)! 0:

Regard (ker l� \ P 0)=F �q as a subgroup of P 0=C 0. Then

[l�(P 0): l(C 0)] = [P 0=C 0: (ker l� \ P 0)=F �q ]: (5.1)

Write n = mm
0 for simplicity. Let m = p

e1
1 : : : pess and m

0 = p
es+1
s+1 : : : p

es+t
s+t .

For 1 6 i 6 s + t, we take }i to be a prime ideal in H1 lying above pi and
take <i to be a prime ideal in K lying above }i. Let �K = �H1 = Zs+t and let
eK=H1 :�H1!�K be the map multiplying the ith component by the ramification
index e<i=}i for 1 6 i 6 s+ t. Define two valuation maps vK and vH1 by

vK(x) = (v<1(x); : : : ; v<s+t(x)) and vH1(y) = (v}1(y); : : : ; v}s+t(y))

for x2P 0 and y2Qn. We have the following commutative diagram

ker l� \ P 0=F �q - P
0
=C

0 vK - �K

Qn \ k

6
i

- Qn=En

vH1- �H1

eK=H1

6

where i is induced by the inclusion. In fact by Lemma 4.5 it is an isomorphism. By
Lemma 1.3(1–3), there exist two exact sequences

0!C
0!P

0 vK
- �K ;

0!En!Qn
vH1- �H1! 0;

and Im vK = (q � 1)Zs� Zt. Thus

Qn=En ' �H1 and [�K : Im vK ] = (q � 1)s:
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By (Thm. 4.17, [7]), the ramification index e<i=}i = �(peii ) for 1 6 i 6 s and
e<i=}i = 1 for s+ 1 6 i 6 s+ t. We have

[�K : Im(eK=H1)] =
sY
i=1

�(peii ) = �(m):

By Equation (5.1) and the diagram (5.2), we have

[l�(P 0): l(C 0)] = (q � 1)�s�(m)[Qn=En:Qn \ k]:

Finally we need to compute [Qn=En:Qn \ k]. We will show

(Qn=En)=Qn \ k ' G1:

By (Prop. 1.7, [6]) recall that M is the set of positive elements in k

G1 'MQn=MEn:

Since Qn \M = Qn \ k,

MQn=MEn ' Qn=En(Qn \M) ' (Qn=En)=Qn \ k:

This completes the proof of the proposition. 2

6. The index (e+R0: e+U0)

In this section, we calculate the index (e+R0: e+U0). We follow Sinnott’s arguments
closely except for some modifications. First, we check that U has a nice property
like in [2] and [12].

PROPOSITION 6.1. Let Up be the R-module generated in Q[G] by s(Tp) and
1� �p. Then

U =
Y
pjm

Up:

The proof is almost identical to that of (Prop. 5.1, [12]) with only one exception
that Ie = �pjmTp in our case. Let m = p

e1
1 � � � pess and let S = f1; : : : ; sg. For any

subset I of S, let

UI =
Y
i2I

Upi
and TI =

Y
i2I

Tpi :
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We put U� = R, T� = f1g for the empty set � by convention. Let I 0 = S � I .
For 0 6 r 6 s, we put Ir = fi j 1 6 i 6 rg and write Ur = UIr and Tr = Tpr for
simplicity. For t > 0, let

A
t
r = H

t(J; U
TI0r
r )

be the tth cohomology of J-module U
TI0r
r induced by the G-action. They are

G-modules. The proofs of the following two results are the same as those of
(Lemmas 5.3 and 5.4, [12]) respectively. For convenience of the reader, we also
copy the arguments of Sinnott’s here.

LEMMA 6.2. Ie acts trivially on At
r and (q � 1)At

r = 0.
Proof. Since Ie =

Qs
i=1 Ti, it suffices to show that Ti acts trivially on At

r for

1 6 i 6 s. If i > r, then Ti � TI0r and Ti acts trivially on U
TI0r
r . Thus Ti acts

trivially on At
r.

Now suppose that i 6 r. In the following proof, without loss of generality, we
assume i = r. We have

Ur = UprUr�1 = s(Tr)Ur�1 + (1� �pr)Ur�1: (6.1)

Let � 2Tr. Since (�� 1)s(Tr) = 0, we get (�� 1)Ur � Ur�1. We can then make
a commutative diagram of G-modules

Ur
f
- Ur�1

Q
Q
Q
Q
Qs

(6.2)

Ur ;

?

g

where f is the map induced by multiplication by � � 1, and g is the map induced
by multiplication by 1 � �pr . Since (� � 1)(1 � �pi) = � � 1, g � f is simply
the endomorphism of Ur induced by multiplication by � � 1. All of them are
G-maps. Taking TI0r-invariants in (6.2) and applying Ht(J; ), we get the second
commutative diagram

A
t
r

f�
- H

t(J; U
TI0r
r�1)

Q
Q
Q
Q
Qs

A
t
r :

?

g�

However, by (Prop. 5.3, [12]), Ht(J; U
TI0r
r�1) = 0. Hence g� � f� = 0, i.e.,

(� � 1)At
r = 0. Thus Tr acts trivially on At

r. The result follows. 2
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Thus At
r are G=Ie = G1-modules. The following result is important to the

calculation of At
r.

PROPOSITION 6.3. There exists an exact sequence of G-modules

0!A
t
r�1=(1 � F

�1
pr
)!A

t
r! (At+1

r�1)
Fpr ! 0; (6.3)

where Fpr is the Frobenius associated to pr in G.
Proof. Since (1� �pr)Ur�1 � Ur, there exists a G-map g:Ur�1 !Ur induced

by multiplication by 1 � �pr . Let ep = s(Tp)=jTpj for prime p and let Y =
(1 � epr)Ur�1. Since (1 � epr)epr = 0, we also have Y = (1 � epr)Ur by (6.1).
Consider the following diagram

0 - U
Tr
r�1

- Ur�1 - Y - 0

(6.4)

0 - U
Tr
r

f

?

- Ur

g

?

- Y

h

?

- 0 ;

where f and h are the maps induced by g. Since �pr = eprF
�1
pr

, h is indeed the
identity map. Notice that for any R-submodule B of Q[G], a2BTp if and only
if (1 � ep)a = 0. Thus the two rows in (6.4) are exact sequences of R-modules.
By (Prop. 5.2, [12]), Ur�1 is free over Tr and hence UTr

r = U
Tr
r�1 by (Lemma 5.2,

[12]). We see f is the map induced by multiplication by 1� F�1
pr

.
Again by (Prop. 5.2, [12]),Ur is free overTI0r andUr�1 is free overTI0

r�1
. Hence

U
Tr
r�1 (= UTr

r ) and Y are free over TI0r . Thus taking TI0r-invariants in (6.4) leaves
the rows exact. We get the second commutative diagram of G-modules, with the
exact rows

0 - U
TI0

r�1
r�1

- U
TI0r
r�1

- Y
TI0r - 0

(6.5)

0 - U
TI0

r�1
r�1

1�F�1
pr
?

- U
TI0r
r

g

?

- Y
TI0r

1

?

- 0 :

Now by (Prop. 5.3, [12]), Ht(J; U
TI0r
r�1) = 0 for any t > 0. Applying H�(J; ) to

(6.5), we obtain in part the following commutative diagram of G-modules with
exact rows

H
t�1(J; Y

TI0r ) - A
t
r�1

- 0 - H
t(J; Y

TI0r ) - A
t+1
r�1

- 0

H
t�1(J; Y

TI0r )

1

?

�
- A

t
r�1

1�F�1
pr

?

�
- A

t
r

?



- H

t(J; Y
TI0r )

1

?

�
- A

t+1
r�1 :

1�F�1
pr

?
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Using the commutativity of the square on the far left, we see Im� = (1 �
F�1
pr
)At

r�1 = ker�. Similarly using the commutativity on the far right, we have

ker � = Ht(J; Y
TI0r )F

�1
pr = Im 
. Finally the top row then gives an isomorphism

Ht(J; Y
TI0r ) ' A

t+1
r�1. The result follows at once. 2

We compute At
r by inductively using Proposition 6.3. LetG(r)

1 = G1=h�p1 ; : : : ;

�pri, where h�p1 ; : : : ; �pri is the subgroup ofG1 generated by �p1 ; : : : ; �pr . We have

PROPOSITION 6.4. If r > 1, we assume (q � 1; h) = 1. Then for 1 6 r 6 s and
t > 0

A
t
r ' (Z=(q� 1)[G(r)

1 ])2r�1
:

Remark. Although we can not determine At
2 in general case, we can get the

order of At
2 by taking r = 2 in (6.3), i.e.

#At
2 = (q � 1)2#G(2)

1 : (6.6)

It enables us to compute (e+R0: e+U0) when s = 2.
Proof. Since Ie acts trivially on At

r�1 and s(Ie)Fpr = �pr , we can replace F�1
pr

and Fpr in (6.3) by �pr . Recall R1 = Z[G1] = s(Ie)R. Since RIe = s(Ie)R = R1,
we have

A
1
0 = H

1(J;RIe) = 0;

A
2
0 = H

2(J;RIe) '
R1

(q � 1)R1
'

Z

(q � 1)
[G1]:

Since J is a cyclic group, At
0 = 0 if t is odd, and At

0 ' Z=(q� 1)[G1] if t is even.
Taking r = 1 in (6.3), we get the assertion for r = 1. By the following lemma, the
exact sequence (6.3) splits when (h; q � 1) = 1. Thus the cases of r > 1 come
from the case r = 1 and (6.3) by the inductive arguments. 2

LEMMA 6.5. Let G be a finite abelian group with a subgroup H . Let m be a
positive integer coprime to jGj. Then any exact sequence of Z=m[G]-modules

0! (Z=m[G=H])a
f
�! A

g
�! (Z=m[G=H])b! 0

splits, where a, b are positive integers.
Proof. It suffices to show that H acts trivially on A. Let e1; : : : ; eb be a basis of

Z=m[G=H]b as G-module. Let ee1; : : : ; eeb 2A whose images are e1; : : : ; eb respec-
tively. It is enough to prove that �(eei) = eei for all �2H and all i. Let

�(eei)� eei = fi(�)2 ker g = Im f:
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Since fi(��) = �(fi(�))+ fi(�) = fi(�)+ fi(�), we see fi:H! Im f is a group
homomorphism. For (jGj;m) = 1, fi = 0. 2

The calculation of At
r leans heavily on the splitting of the exact sequence (6.3).

The lemma above shows that (6.3) splits under the hypothesis (q�1; h) = 1. Does
(6.3) split always? This is equivalent to the following problem.

PROBLEM 6.6. Let 1 6 r 6 s. Does Fpi
or �pi act trivially on At

r for 1 6 i 6 r?

If this problem had an affirmative answer, the restrictive hypothesis in Proposi-
tion 6.4 and thus in Theorem B (see below) would be unnecessary.

After the preparation above, we can compute the index (e+R0: e+U0) under the
assumption (h; q�1) = 1 when s > 3. Exactly as in ([12], Sect. 6), one shows that

(R:U) =
sY

r=1

(Ur�1:Ur) = 1:

By ([12], Lemma 6.1) it follows that

1 = (R:U) = (R0:U0)(s(G)R: s(G)U) = �(m)(R0:U0):

The last equality is from s(G)U = jIejs(G)Z. Again by ([12], Lemma 6.1)

1
�(m)

= (R0:U0) = (e+R0: e+U0)(ker(e+)jR0 : ker(e+)jU0):

However

(ker(e+)jR0 : ker(e+)jU0) = (ker(e+)jR: ker(e+)jU )

= (ker(e+)jR: (1 � j)U)((1 � j)U : ker(e+)jU );

where j is a generator of J , and

ker(e+)jU=(1 � j)U ' H
�1(J; U) ' A

1
s:

Thus, by ker(e+)jR = (1� j)R and by Proposition 6.4 (or Eq. (6.6) when s = 2)

(e+R0: e+U0)((1 � j)R: (1 � j)U) = (q � 1)e2s�1
=�(m): (6.7)

To calculate ((1 � j)R: ((1� j)U), note that

((1� j)R: (1� j)U) =
sY

r=1

((1� j)Ur�1: (1� j)Ur)

=
sY

r=1

((1� j)UTr
r�1: (1� j)UTr

r ):
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The second equality is from ([12], Lemma 6.1) and ([12], Eq. 5.2). Thus we are
reduced to compute ((1� j)UTr

r�1: (1� j)UTr
r ). Let

Br�1 = (1� j)UTr
r�1=s(Tr)(1� j)UTr

r�1:

Then

((1� j)UTr
r�1: (1� j)UTr

r ) = jBr�1=(1 � F
�1
pr
)j:

Exactly as in [12], one sees that

Br�1 ' H
1(Tr; U

J
r�1) ' H

1(J; UTr
r�1):

Assume s = 1. Then r = 1 and B0 = 0. Hence

((1� j)R: (1� j)U) = 1:

Suppose that s > 1. If r < s, we must have Br�1 = 0 by (Prop. 5.3, [12]). If
r = s, then Bs�1 ' A1

s�1 ' (Z=(q� 1)[G(s�1)
1 ])2s�2

and

Bs�1=(1� F
�1
ps
) = Bs�1=(1 � �ps) ' (Z=(q� 1)[G(s)

1 ])2s�2
:

Hence

((1� j)R: (1� j)U) = (q � 1)e2s�2
:

It follows from (6.7) that

(e+R0: e+U0) =

(
(q � 1)e=�(m) if s = 1;

(q � 1)e2s�2
=�(m) if s > 1:

Thus we complete the proof of the Theorem B stated in the introduction.
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