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Abstract. In classical number theory, one has the famous theorem of Kummer—Sinnott giving the
index of the cyclotomic unitsin thetotal unit group. Using the division values of sgn-normalized rank
one Drinfeld modules, we construct the group of extended cyclotomic units for an abelian extension
of agloba function field and calculate itsindex in the whole unit group. The result could be regarded
as an analogue and a generalization of Kummer—Sinnott’s.
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0. Introduction

Inthe classical theory of numbers, one has the famous index-class number formula
of Kummer—Sinnott [12], which says that in a cyclotomic number field the index
of the cyclotomic units in the total unit group is equal to the class number of its
maximal real subfield, up to a trivial factor. Galovich and Rosen [2] proved an
analogue of thisresult for therational function field over afinitefield. In this paper,
we extend this theory to an arbitrary global function field over a finite field. Our
method is ageneralization of that in [12] or [2]. The new ingredient isthat the base
field has non-trivial class group. Now we state our results more precisely.

Let £ be the function field of a projective smooth curve over the finite field
F, with ¢ elements. Let co be a closed point in the curve with degree 1 and let
k~ bethe completion of & at co. Let A be the Dedekind subring of & consisting
of those functions having no pole other than oo and let H,, be the Hilbert class
field of (k,o00). For aring R, let R* denote the group of invertible elements.
We fix, once for al, a sign function sgn: k3, — F; (Def.4.1,[7]). For a proper
ideal m of A, we denote K = K, to be the ‘cyclotomic’ extension of the triple
(k, 00, sgn) with conductor m, which arises in the theory of Drinfield modules,
and we set H = H,, to be the maximal real subfield of K such that co splits
completely, which is the ray class field of (k,o0) modulo m (Sect. 16, [8]). Let
G1 = Gal(H /k) ~ Pic(A). Let N = N,, denote the subgroup of G'; generated
by the Artin symbols 7, = (p, Hs/k) for @l primesp |m, and let e = [G1: N] be
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theindex. Let C' = C,, denote the cyclotomic unit group of K (Def. 1.1). We first
obtain therank of C.

THEOREM A. rank C = [H: k] — e.

This theorem answers a conjecture by D. Goss (2.7 Conjecture, [3]). Shu also
proved the theorem in the case when the conductor m is a prime by a different
method ([11], Thm. 5.2). Thus C does not have the maximal rank in the whole unit
group of K unless m satisfies N,, = G1. The reason is a shortage of unramified
unitsin C'. We extend C' in anatural way to get the extended group C of cyclotomic
units with the maximal rank (Def. 1.6). We have C = C if N,, = G1. Our next
theorem gives the index of C. For any finite extension E/k, we denote by Oy
the integral closure of A in E, O3, the unit group of Og, h(Og) the ideal class
number of E, h(E) the divisor class number of E and R(E) the regulator of E.
We abbreviate h = h(A) = h(k). Let s be the number of distinct prime divisors
of m.

THEOREM B. If s > 3, weassume (h,q — 1) = 1. Then

[Ok:C] = (¢ —1)*h(On),

wherea = 0if s = landa = e(2°2 - 1) — (s — 2) if s > L.

We conjecture that the restrictive hypothesis in TheoremB is unnecessary (see
Sect. 6 for detail). When k = F, (T') and oo = 1/T, thene = h = 1. The theorem
gives Galovich and Rosen’sformula (Thm., [2]). We mention that the elliptic units
defined by Oukhaba (Def. 3.9, [9]) and by Hayes (Def. 1.3, [6]) are essentially our
extended cyclotomic units. One part of Oukhaba's results (the part two in (Thm. 1,
[9])) isaspecial caseof s = 1in our TheoremB. Shu studied the cyclotomic units
in the case when the conductor m is aprime ideal. She extended C in another way,
and got an index formulawhich also includes the class number of asubfield of H,,
(Main Thm. 2, [11]). In this paper, we a so give anew method to compute an index
appearing in the calculation of [O%;: C], which is much simpler than Galovich and
Rosen’s and Sinnott’s when applying it to their cases.

1. Cyclotomic unitsand classnumber formula

In this section, we give the definitions of cyclotomic units and unramified elliptic
units and recall their basic properties. We also recall the relation of them with the
valuesfor Artin L-function at zero. The main referencesfor this section are Hayes'
(Sect. 1, [6]), [7] and (Sect. 16, [8]) except for the definition of the extended group
of cyclotomic units.

The notations are as above. A rank one Drinfeld A-module p (of generic charac-
teristic) iscalled sgn-normalizedif p,, hasall of its coefficientsin H,, foral z € A
and the coefficient of the highest order term of p, is equal to sgn(z). Thereis a
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unique sgn-normalized rank one Drinfeld A-module in each isomorphism class of
rank one A-modules (Thm. 2.3, [8]). Let X denote the set of these normalized A-
modules. Let ©2 be the completion of an algebraic closureof k. For p € X, let A?,
be the set of m-torsion pointsin €2 associated to p, i.e., A% = {a € Q| py(a) =0,
x € m}, whichisisomorphicto A/m asan A-submodule via p of 2 (Sect. 16, [8]).
Let Am = Upex AL Then K = Hy(Af) = Hw(Ay) is abelian over k and is
called the cyclotomic extension of k& with conductor m.

DEFINITION 1.1.Let P = P,, bethesubgroup of K* generatedby A, = A,,—{0}
andby F,;.Let C = C,, = PNO}. Cal anelementin P (resp. in C) acyclotomic
number (resp. a cyclotomic unit) of K.

Let G = Gal(K/k). Since X is stable under the natural G-action, P and C' are
G-modules. Let (m) € Q be an invariant associated to the ideal m, which is char-
acterized by the condition that the lattice (A-submodule of Q) &(m)m corresponds
to some p € X. Thus {(m) is determined up to multiplication by F, . However,
by Hayes technique (Sect. 1, [6]) the ratio £(a)/£(b) for any fractional ideals a
and b is determined uniquely, and by (P31, [6]) it isin H.,. Let e, (z) be the
exponential function associated to the lattice m. We have (Egs. 5.4 and 5.5, [7]),
AP = ¢(m)en(A) and X, = &(m)en (1) isagenerator of AP . For aproper ideal f of
A, weset \; = £(f)es(1) and K; = Hoo(A;). Notice that Gal (K;/Hx) =~ (A/f)*.
We regard Gal(K;/k) as a quotient of G for §|m. By (Thm.16.2, [8]), the G-
conjugates of \; contain all generators of Af for any p € X. Let e denote the unit
ideal. Thus we get

LEMMA 1.2. Asa G-module, P is generated by F; and by s with f [ m,  # e.

Hayes studied the properties of the cyclotomic numbersand theinvariants&(m). In
the following lemma, (1)—<(2) are from (Thm.4.17, [7]) and (3)—(4) from (Sect. 1
and Eq. 2.3, [6]).

LEMMA 1.3. Let A be a generator of A? for p € X and let p be a prime ideal
of A.

(1) Assumem has at least two distinct prime divisors. Then A isa unit.

(2) Assumem = p™. Let [p] be the product in O of the prime ideals dividing p.
Then [p] = \Ok-.

(3) Nk, /i (M) = &(A)/&(p), and it generatestheideal pOy, in O, .

(4) Let a, b befractional ideals of A . The Galoisactionis

(E(A)/€(a)™ = €(61) /&(ab™Y),

where 7, = (b, Hoo/k) isthe Artin symbol.
We now recall the unramified elliptic unitsintroduced by D. Hayes[6].
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DEFINITION 1.4. Let @, be the G1-submodule of H,, generated by £(A)/&(p)
with primesp|mandlet E,, = Q,, N Oy - Cal an element in Q., (resp. in E,)
an elliptic number (resp. an dlliptic unit) of level m.

We remark that the definition of (., aboveis dightly different from Hayes
Qn,, (Def.1.3,[6]), but E,, isthesame as his Ey,,. An element z € k, is called
positive if sgnz = 1 and z € H,, is caled totally positive if 27 is positive for
any o€ Gt = Gal(Hy/k). By (Prop.2.3, [6]), Nk/u(P)(D Qn) consists of
totally positive elements. Let M denote the set of positive elementsin k. In Hayes
definition, the group of elliptic numbers of any level contains M as a subgroup. In
our case, we have

LEMMA 15. Q. Nk ={z € M|ord,(z) =0 for p t m}.

Proof. By Lemmal.3(3), one sees the ‘C’ in the lemma. Now we show
the ‘D’. Using the Galois action (Lemmal.3(4)), we see that &(a)/&(b) € Qn
if ab=1 = IT,,|mp;" by induction on 3, |e;|. Thus by (Eq.1.6, [6]), we have
z=&(A)/E(zA) € Qu if z € M andif ord, () = Oforp ¢ m. This completes the
proof. O

When m satisfies N,, = G, we see that M@, is independent of such m by
Lemmalsb. Let Q = MQ, and E = @ N OF_ inthis case. By (Prop. 3.7, [6]),
each dliptic unitisa g — 1st power in H,. We denote the group of ¢ — 1st roots
of theelementsin E,, by E,,, andwrite E = EY (-1,

Let J = Gal(K/H) =~ F;, which is both the decomposition group and the
inertia subgroup at co. Let s(J) = ¥,¢0. Since J C Gal(K,/H), we have, by
Lemmal.3(3),

QuC P2Y) and E, C C,. (1.1)

Thesecondisdeduced fromthefirst and thefact PS(J) =F, P31 (see(Eq. 4.13,
[7]))- In Section 3wewill show that £, istheintersection of E and C,, (Prop. 4.4).

The Theorem A (we will show it in the next section) impliesthat the cyclotomic
unit group C' does not have the maximal rank in O} unless N,, = G'1. Proposi-
tion4.4 below shows that C' does not contain enough unramified units. To get a
unit subgroup with the maximal rank in O%, we naturally extend C' by adding all
unramified elliptic units.

DEFINITION 1.6. Let C = C - E. Call C the extended group of cyclotomic units
of K.

We will seethat C' does have the maximal rank in O%; next section (Prop. 2.1).

In the rest of this section, we recall the relation of the cyclotomic numbers
with the values for Artin L-function at zero. Let x be a character of G with
values in non-zero complex numbers C*. If x(J) = 1, it induces a character of
GT = Ga(H/k) ~ G/J,andwecal it rea. Let f, bethe conductor of y, which
isanideal of A. Note f,, = ¢ meansthat x induces a character of 1. We always
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denote by  its induced character. For a character x of G and an ideal a of A, we
define x(a) € C asfollows. If (a,f,) = ¢, let o, be the Artin k-automorphism of
Kj, = Hy(Ay,) corresponding to a and let x(a) = x(04). If (a,,) # ¢, we put
x(a) =0.

From now on, we supposethat y isanon-trivial real character of G. Let Li(s, x)
bethe Artin L-function associated to x, which is defined asthe Euler products over
the places of the field & where  is unramified. We have the well-known analytic
class number formula

I 0y =24 (12)

x#1,red h

Let L, (s, x) betheincomplete L-function of x relative to the prime divisors of m
(Eq. 1.1, [7]). Leta = o) = —A¢-1 ¢ H*. Hayes proved that, the last equality
in[7],

Lm(OaX) = m Z X(O’)UOO(OAG)

= ——= > x(0)vss(A}), (13)

where v, is the extention to €2 of the normalized valuation of k., at co. By the
definitions we have the following formula which will be useful later

Lw(0,x) = [T(X = x(p)) - L (0, x)- (14)
plm

2. Theranks

In this section, we compute the ranks of C' and C by using the logarithm map
introduced below.

Let G' denote the character group of G, and let C[G] be the group ring of G
over the complex number field C. A character y € G inducesaring homomorphism
C[G] — C in an obvious way. We denote it by the same symbol. Moreover these
charactersinduce a natural isomorphism C[G] ~ O aC

The logarithm map in function field case was first introduced by Galovich and
Rosen [2] and was used by Hayes in [6]. It is an important device to study the
cyclotomic units. We start this section by recalling its definition.

Let Q[G] be the group ring of G over rational numbers Q. The logarithm map
I: K* — Q[G] is defined for z € K* by

l(z) = Z Voo (27)o L.

e
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Clearly I is G-linear and kerl N Of; = F;. We set [* = (1 — e1)l, where ey =
(1/|G|) 3 yeq; ot istheidempotent associated to the trivial character of G. Now
we can show TheoremA.

The Proof of Theorem A. Let m = p{*...p<* be the prime factorization and
takeprimeidea R; of K lying aboveyp; for 1 < i < s. By Lemmal.3(1)—(2), there
exists an exact sequence

0-C—P-%57°=0,

where v is the valuation map in K, i.e., v(z) = (vg,(2),...,vx,(z)) for z € P.
Again by Lemmal.3(1)—(2), the action of G on P/C istrivia. We see that Q ®
I(C) ~ QQI*(P). Thusrank C = dim¢ Cl*(P). Since CI*(P) is an idea of
C[G], we get

rank C = #{x € G| x # 1, x(I(P)) # O},

where # denotesthe cardinality of aset. Sincel(z) = [(z?) = ol(z) forz € P and
o € J, when y isnot real, we have x(I(P)) = 0. Now supposethat y isreal. Let
beadivisor of m and f # e. If §, | §, by (1.3) and (1.4), we have

x(1(Ay)) = a;Ls(0,%) = a; [[(1 = X(p)) - Lr(0,X) (21
plf

wherey istheinverseof x, anda; = (¢ —1)®(m)/® () # 0. Here () = #(A/f)*
denotes the Euler ®-function.

Hence if x is ramified, the x(I(\s)) # O for § = f,. If x is unramified, then
x(I(X;)) # Oisequivalentto x(p) # Lforal p|f. Thus{x # 1, x(I(P)) # 0} =
Gt — (GI/\N), which implies the theorem. O

Next we consider the rank of C.

PROPOSITION 2.1. rank C = [H: k] — 1.
Proof. By the proof of TheoremA, it is enough to show that x(1(Q)) # 0 for
real and unramified character x # 1. By Lemmal.3(3), we have

x(LE(A)/E())) = (p)x(L(Ap)) = ap®(p)Ly(0, %)
= ap®(p)(1—X(p))Lx(0,X) (22
for unramified x. From the definition of ), we conclude the proof. O

3. Outline of the proof of Theorem B

In this section, we explain an outline of the proof of Theorem B and calculate two
simple indices appearing in the proof.
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We first fix some notations. For aprimeideal p of A, let T}, be the inertiagroup
of pin G and let F, € G' be any Frobenius automorphism for p, which is the well
defined modulo 7},. For asubset B of G, write s(B) = Y_,cp 0 € R = Z[G], the
groupring of G over rational integerszZ. We set o, = F;ls(Tp) /T, |. One can see
that x(c,) = x(p) for any y € G.

Let I; = Gal(K/Kj) for f|m, § #eand let I, = Gal(K/Hy) ~ (A/m)*. Let
V' bethe R-submodule of Q[G] generated by

a; = s(I) H(l —Ty)

plf

withf|m, j #e. WedsosetU =V + s(I,)Rand U’ = (¢ — 1)V + s(I.)R. Here
U isthe R-module generated by «; with al f| m.

For any R-module T', we denote by Tp the submodule of elements killed by
s(G) and for asubset B of G, denote by T2 the set of elements of T fixed by B.
Itiseasytosee Vo =V,Up =V + s(I,)Roand Uj = (¢ — 1)V + s(I.) Ro.

Letet = (1/(¢—1))s(J).Clearly U, e™V and e™ U arefree abelian subgroups
of QG]. Since x(7,) = Xx(p) for any x € G, using the method in the proof of
TheoremA, one can calculate their ranks. We leave the proof of the following
lemmato the reader.

LEMMA 3.1.
rankU = rank U’ = [K: k],
ranketUp = ranketUj = [H: k] — 1,
ranketV = [H: k] —e.

Let Y = (1— e1)etQ[G]. It is a Q-subspace of Q[G] with dimension r =
[H:k] — 1. A latticein Y is afinitely generated subgroup of Y with the maximal
rank. Let L and L' be two latticesin Y. Sinnott defined the index (L: L) in [12]
and described some basic properties of the index (Lemmas1.1 and 6.1, [12]). We
will freely use these properties.

Obviously et Rg isalatticein Y and by the Dirichlet unit theorem, [(O},) isa
latticein Y. Previouslemmaimpliesthat e™ Up and e U} arelatticesin Y.

Let m" be a proper idea of A coprime to m such that N, = Gi1. By
Lemmal3(3), E = Quw N O} = EnE,. Weput P' = FrP1~1Q, and
C" = P' N O}. Then by (1.1) and Lemma1.3(1-3)

C' =FCT B, =F T "

The proofs of Theorem A and Proposition 2.1 show that [*(P') and [(C') are also
latticesinY". Sinceker N O} = keriNC' = F,;, we have, by the equality above,

[0%:C] = (¢ =1 "[0k:C'T = (¢ — 1) "[(Ok):1(C")]
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= (g—1)""(I(O%): e Ro) (e Ro: et Up) (e Up: eTU})
x (eTUL 1 (P)(I* (P): 1(C")). (3.
To prove TheoremB, we need to calculate the five indices in the right-hand
of (3.1). In the last three sections, we will prove the following three equalities

respectively. (Notice that we need arestrictive hypothesison the third equality. See
Sect. 6 for detail.)

(e*Uy:1*(P')) = (¢ — 1)"h(H) /A,
(*(P):1(C") = (¢ — ) ~*@(m)h,
(¢ —1)¢/®(m) if s =1,
(g — 1)@ /(m) if s> 1,

(3.19)
(€+R0: €+Uo) = {

and in the rest of this section we compute the indices (1(O3): et Ro) and (e Up:
et UY).

By the definition of the regulator, we have R(K) = (et Ro:1(O%)). Let Qo =
[O%: Oj]. Using the argument of (Prop. 1.14, [2]), we seethat Qo = 1if s =1
and Qo = ¢ — 1if s > 1. Moreover by (Prop.1.15, [2]), we have R(K) =
(¢ — 1" /Qo)R(H). Thus

(I(Ok):e" Ro) = 1/R(K) = Qo/(R(H)(q — 1)"). (3.1b)

Tocompute (e Up: eTUY), weneed alemma. Let Jy betheideal of Ry = Z[G4]
generated by {7 — 1|7 € N}. Weidentify Ry withs(I.))Rby 7 +— >, 0.

LEMMA 3.2.
etVNs(l)R=(g— VetV Nns(,)R=Jy.
Proof. Since J N I; = {1} and JI; C I, for §|m, f # ¢, we see
e"VNsI)RD (¢g— VetV Ns(l)R D Jy.
On the other hand,

eTVNs(I)RC Qe Vns(,)R = Qs(I,)VNs(I)R
= QJy NRy = Jy.

The last equality follows from that R1/Jy ~ Z[G1/N] istorsion free. This com-
pletes the proof. O

COROLLARY 3.3.

[etUp: et UY] = (q — 1)1 K¢,
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Proof. By the definitions of U and U’, we have et Uy = etV + ets(1,)Ro
and e"U) = (¢ — 1)e™V + et s(I.)Ro. Hence by Lemma3.2, there exists an
isomorphism

et Up/et Uy~ etV/(qg—LetV.

By Lemma3.1, eV isafree abelian subgroup of Q[G] with rank [H: k] — e. Thus
we get the index. i

By substituting (3.1a-3.1b) and Corollary 3.3 in (3.1), since h(H) =
h(Og)R(H), the Theorem B follows at once.

4. Theimage of cyclotomic numbersby logarithm

In this section, we calculate theindex (et Uy: 1*(P')). To do this, we need compute
the image of cyclotomic numbers under the logarithm. We also obtain the exact
relation between the groups of cyclotomic unitsand the dlliptic unitsin this section.

Let e, = (1/|G|) X e x(0)o ! be the idempotent associated to x in C[G].

We set
w = (q - 1) Z Lk(O7Y)€X'
x#1,rea
Note that w € Q[G].

PROPOSITION 4.1. [*(P) = wV.
Proof. By Lemmal.2, it is enough to show

x(1(A1)) = x(way) = (g — 1) L (0, %) x (), (4.1)

forany 1 # y € G and any f|m, f # ¢. When x isnon-real, we see that both sides
of (4.1) are zeroes. Now supposethat x isreal.

Assumef, t f. SinceGal(K;/k) ~ G/1;, thereexistso € I; suchthat x (o) # 1
and ol(Xs) = I(A]) = I(}\). Hence x(I(};)) = O. If §, |}, we have computed
X((N) in (2.2).

On the other hand, x(7,) = X(p) and x(s(f;)) = >yer, x(0), which equals 0
if f, 1 f and equals (m)/®(j) if §, | f. The equality (4.1) follows at once. O

LEMMA 4.2, I*(Qn) = wln.
Proof. For a prime p of A, we see s(I,)7, = TP_l. By Lemmal.3(3) and
Equation (2.2)

FEB)/EP) =w(d—7,7).

Thisimplies the lemma. i
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Recall that P’ = F; P171Q, = F; P4 Qpw and U’ = (¢— 1)V +5(I.)R. Thus
Proposition4.1 and Lemma4.2 imply
COROLLARY 4.3.1*(P") = wUj.

Now we can calculate the index (e U}: [*(P')). Noting that w € Y, we define a
linear mapping A onY by A(a) = wa fora €Y. Sincel*(P') = wUj = we™UY,
we have A(etUj) = I*(P’). A standard calculation shows that

U P) =dea= T (a-DLe(Ox) = (g - 7",

A h
1£xeGt

Intherest of this section, we study therelation between the cyclotomic unitsand
the unramified elliptic units. Since L(0, x) # 0 for al non-trivial real characters
X, the multiplication by w is an automorphism of e C[G]o. Thus Lemma3.2
givesus

wV Nws(l,)Ro = (¢ — )wV Nws(l,)Ro = wly. (4.2

The following result gives the exact relation between the groups of cyclotomic
units and elliptic units.

PROPOSITION 4.4.
PDNQ=0Q, and CNE=E,.

Proof. First we show that the second equality follows from thefirst: Letuw € C'N
E.Wehaveu’!) = u4=1e P5()) 0 Q = Q.. Thusu € E,,. By (1.1), the second
one follows. Now we show the first one. By Proposition2.1 and Lemmaz2.2, the
Equation (4.2) aboveimplies

F(PTHNINQ) = (P)NINQ) = 1 (Qn)-

Thus for any =z € P*) N Q, there exists y € Q,, such that I*(z) = I*(y). By
considering zy 1, it is reduced to the following

LEMMA 4.5.
ker1* N P*Y) = kN Q.

Proof. Let z ckeri* N P5(Y). Then for o € G, (0 — 1)I*(z) = I(z° 1) = 0.
Hence z° ! is a positive root of 1 and is 1. Therefore « € k* and further by
Lemmal.5, we have z € Q,, N k. The other inclusion is obvious. O

5. Theindex [I*(P'):1(C")]

In this section, we compute the index [I*(P’): I(C")]. Our method is much simpler
than Galovich and Rosen’s (Props. 4.1-4.7, [2]) and Sinnott’s (Lemmas4.1-4.3,
[12]) when applied to their cases.
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PROPOSITION 5.1. Let s be the number of distinct prime divisors of m. Then
[ (P"):UC)] = (g — 1) *@(m)h.
Proof. From the commutative diagram
o P

G

1*(P')

we obtain an exact sequence

0—F, —kerl*NP' — P'/C"—1"(P)/I(C") = 0.
Regard (keri* N P') /F; asasubgroup of P'/C". Then

[1*(P"):1(C"] = [P'/C": (kerl* N P’)/F;]. (5.2)
For 1 < i < s+ t, we take gp; to be a prime idealsin H, lying above p; and
take R; to beaprimeided in K lying above p;. Let 'y = 'y, = Z*T and let

€K/He L Ho — L'k bethe map multiplying the ith component by the ramification
index eg, /., for 1 <i < s + t. Definetwo valuation maps vy and vy, by

Write n = mm’ for simplicity. Let m = pf*...p% and m’ = pi3i ... pst.

v (z) = (o, (2), - o, (7)) a0 v () = (0p,(Y), -5 V9., (1))

for z € P! and y € Q,,. We have the following commutative diagram

ker* N P'/F; — P'/C" —5— Tk

i €K/ Hoo
Qn Nk Qn/En oo I‘Hoo

where isinduced by the inclusion. In fact by Lemma4.5 it is an isomorphism. By
Lemma1.3(1-3), there exist two exact sequences

0—C' =P s Ty,

0 Ep — Qp —2=+ Iy —0,

and Imuvy = (¢ — 1)Z* @ z'. Thus

Qn/ETLZFHoo and [FK:“T]UK]:(Q—].)S.
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By (Thm.4.17, [7]), the ramification index ey, /,, = ®(p;’) for 1 < i < s and
e, /p; = 1fors +1<i < s+t Wehave

P (e )} = 100 = ol
By Equation (5.1) and the diagram (5.2), we have
[1*(P'):((C")] = (¢ — 1) *®(m)[Qu/En: Qu N K.
Finally we need to compute [@Q,,/E,: Q. N k]. We will show
(Qn/Ew)/Qn Nk = G
By (Prop. 1.7, [6]) recall that M isthe set of positive elementsin &
G1~ MQ./ME,.

SinceQ, "M =Q, Nk,

MQH/MEH = Q“/EU(QU m M) = (QH/EU)/QH m k'

This completes the proof of the proposition. O

6. Theindex (€+R01 €+U0)

Inthissection, wecalculatetheindex (e Ro: e Up). Wefollow Sinnott’sarguments
closely except for some modifications. First, we check that U has a nice property
likein[2] and [12].

PROPOSITION 6.1. Let U, be the R-module generated in QG] by s(7},) and
1-5,.Then

U=1]]U,.

plm
The proof isalmost identical to that of (Prop. 5.1, [12]) with only one exception

that I, = II,,, T, inour case. Let m = p3*---p* andlet S = {1,...,s}. For any
subset I of S, let

U =[]0 and T, =]]71,.
el 1€l
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We put Uy = R, T, = {1} for the empty set ¢ by convention. Let I' = S — I.
ForO<r <s,weputl, ={i|1<i<r}andwriteU, = U;, andT, =T, for
simplicity. For ¢ > 0, let

T
AL = HY(J,U"™)

be the tth cohomology of .J-module UTT " induced by the G-action. They are
G-modules. The proofs of the following two results are the same as those of
(Lemmas5.3 and 5.4, [12]) respectively. For convenience of the reader, we also
copy the arguments of Sinnott’s here.

LEMMA 6.2. I, actstrivially on A% and (¢ — 1) AL = 0.

Proof. Since I, = [[;_, T;, it suffices to show that T; acts trivially on AL for
1<i<s Ifi>r thenT; C Tp and T; acts triviadly on UTT”. Thus T; acts
trivially on AL.

Now supposethat ¢ < . In the following proof, without loss of generality, we
assumes = r. We have

U =U,, U1 = s(T)Up—1+ (1— EpT)Ur—l- (6.1)

Leto €T,.Since (o — 1)s(1,) = 0,weget (c — 1)U, C U,_1. We can then make
a commutative diagram of G-modules

Ur ! Urfl
\ \g (6.2)
Ur,

where f isthe map induced by multiplication by o — 1, and ¢ is the map induced
by multiplication by 1 — 7,,. Since (6 — 1)(1 —5,,) = 0 — 1, go f issimply
the endomorphism of U, induced by multiplication by o — 1. All of them are
G-maps. Taking T}, -invariants in (6.2) and applying H*(.J, ), we get the second
commutative diagram

f* T;‘
Al HY(J,U,)

AL

T

T
However, by (Prop.5.3, [12]), H!(J,U,™;) = 0. Hence g* o f* = 0, i.e,
(0 —1)Al = 0. ThusT, actstrivialy on A’. Theresult follows. O
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Thus AL are G/I, = Gi-modules. The following result is important to the
calculation of AL.

PROPOSITION 6.3. There exists an exact sequence of G-modules
0— AL ,/(1—F, )= AL — (ALT])F —0, (6.3)

where F}, isthe Frobenius associatedto p, in G.

Proof. Since (1 -3, )U,_1 C U,, there existsaG-map ¢: U, _1 — U, induced
by multiplication by 1 — &,,. Let e, = s(T},)/|T,| for prime p and let Y =
(1—ep,)U,—1.Since (1 —e,, )e,, =0, wealsohaveY = (1 —e,, U, by (6.1).
Consider the following diagram

0 Ul Uy 1 Y 0
f g h (6.9)
0 Ul Uy Y 0,

where f and h are the maps induced by g. Since 7,,, = e,,Tijl, h is indeed the
identity map. Notice that for any R-submodule B of Q[G], a € B> if and only
if (1 —e,)a = 0. Thus the two rows in (6.4) are exact sequences of R-modules.
By (Prop. 5.2, [12]), U,_; is free over T;. and hence U;/» = U by (Lemma5.2,
[12]). We see f isthe map induced by multiplication by 1 — F,

Againby (Prop.5.2,[12]), U, isfreeover T, and U, — 1|sfreeoveer .Hence

UTTj (= Ul") and Y arefree over Ty . Thustaking Ty -invariants in (6.4) leaves
the rows exact. We get the second commutative diagram of G-modules, with the

exact rows
0 v gt g
l—F‘,—rll g\ 1\ (6.5)
0 UT; g Yy’ 0.

Now by (Prop.5.3, [12]), H!(J, U 1) = Oforany t > 0. Applying H*(J, ) to
(6.5), we obtain in part the foIIOW| ng commutative diagram of G- modules with
exact rows

H7Y(g, Yy Al 0 HY(J, Y"1 Al

1—F;T1l 1—F;T1l

HHIY ) e ALy —Fe AL e B Y ) e AL

T

1 1
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Using the commutativity of the square on the far left, we see Ima = (1 —
ijl)ALl = ker 8. Similarly using the commuitativity on the far right, we have
keré = Ht(J, Y 1)F" = Im~. Finally the top row then gives an isomorphism
H'(J, Y1) ~ AYL. The result follows at once. 0

We compute AL by inductively using Proposition 6.3. Let GY) =G1/(Tpys- -,
Ty, ), Where(r,,, ..., 7,,) isthesubgroup of G1 generatedby 7,,, ..., 7, . Wehave

PROPOSITION 6.4. If r > 1, weassume (¢ — 1,h) = 1. Thenfor 1 < r < s and
t>0

AL~ (2/(q- DG

Remark. Although we can not determine A} in general case, we can get the
order of A} by takingr = 2in (6.3),i.e.

#AL = (g — 16 (6.6)

It enables us to compute (e* Ro: et Up) when s = 2.

Proof. Since I, actstrivially on AL_, and s(I,)F,, = 7,,, we can replace Fp—r1
and F,, in (6.3) by 7,,. Recall Ry = Z[G4] = s(I.)R. Since R!: = s(I,)R = Ry,
we have

Ag = H'(J,R") =0,

R1 - Z
(¢—1DR1  (¢—1)
Since J isacyclic group, A = 0if tisodd, and Ay ~ 7 /(q — 1)[G4] if t iseven.
Taking r = 1in (6.3), we get the assertion for » = 1. By the following lemma, the

exact sequence (6.3) splits when (h,q — 1) = 1. Thus the cases of » > 1 come
from the case r = 1 and (6.3) by the inductive arguments. O

A§ = H?(J,R") ~

[G).

LEMMA 6.5. Let G be a finite abelian group with a subgroup H. Let m be a
positive integer coprime to |G|. Then any exact sequence of Z /m/[G]-modules

0— (z/m|G/H])* L5 A L5 (z/m|G/H])*— 0
splits, where a, b are positive integers.
Proof. It sufficesto show that H actstrivially on A. Letey, ..., ¢, beabasis of
Z/m[G/H’ asG-module. Let &, . .., &, € Awhoseimagesareey, . . . , e, r€Spec-
tively. It is enough to provethat o(¢;) = ¢; foral o € H and al 7. Let

o(&)—¢€ = filo)ekerg =1Imf.
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Since fi(o7) = o(fi(7)) + fi(o) = fi(o)+ fi(T), wesee f;: H— Im f isagroup
homomorphism. For (|G|,m) =1, f; = 0. O

Thecalculation of AL leansheavily on the splitting of the exact sequence (6.3).
Thelemmaabove showsthat (6.3) splits under the hypothesis (¢ — 1, ) = 1. Does
(6.3) split always? Thisis equivalent to the following problem.

PROBLEM 6.6. Let 1 < r < s. Does F,,, or 7,, act trivially on Af for 1 < i < r?

If this problem had an affirmative answer, the restrictive hypothesisin Proposi-
tion 6.4 and thus in Theorem B (see bel ow) would be unnecessary.

After the preparation above, we can compute theindex (e Ro: e Up) under the
assumption (h, ¢ — 1) = 1when s > 3. Exactly asin ([12], Sect. 6), one showsthat

S

(R:U) = [[(Ur—1:U,) = 1.
r=1

By ([12], Lemma6.1) it follows that
1= (R:U) = (Ro:Up)(s(G)R:s(G)U) = ®(m)(Ro: Vo).

Thelast equality isfrom s(G)U = |I.|s(G)Z.Again by ([12], Lemma6.1)

Sy~ (o Uo) = (" Roi e Uo) (er(e™) o’ ker(e®)luy)

However

(ker(e™)[ro: ker(e™)|w) = (ker(e™)|r:ker(e™)[r)

= (ker(e)[r: (1= )U)((1 - j)U:ker(eh)v),

where j is agenerator of J, and

ker(e™)|y/(1— §)U ~ H™Y(J,U) ~ AL,
Thus, by ker(e*)|r = (1 — j)R and by Proposition 6.4 (or Eq. (6.6) when s = 2)

(e Ro: e"Uo) (1 = j)R: (L= j)U) = (¢ — 1) /@ (m). (6.7)
To calculate ((1 — j)R: ((1 — 5)U), note that

S

(1—HR:1-5)U) = [[(QA=§)Ur 12: (1= j)U,)
r=1

_ f[((1 — HU (L= HUF).
r=1
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The second equality is from ([12], Lemma6.1) and ([12], Eq.5.2). Thus we are
reduced to compute ((1 — §)U" (1 — UL ). Let

By = (1= j)U,"/s(T) (1= U, 5.
Then
(L= N)UZ3: (1= §)UT) = |Br-a/ (1= F, Y.
Exactly asin [12], one sees that
B, 1= HNT, U/ ) ~ HY(J, U ).
Assumes = 1. Thenr = 1 and By = 0. Hence
(1-J)R:1-jU)=1
Supposethat s > 1. If » < s, we must have B, 1 = 0 by (Prop. 5.3, [12)]). If
r=sthen B,y ~ A | ~ (z/(q— D)[GY V)2 and
By1/(1-F,") = Bya/(1—7,) = (2/(a = DG
Hence
(L= )R (A= )U) = (4 - ).
It follows from (6.7) that

(¢ = 1)¢/@(m) it s =1,

(e+Roi €+UO) = { (q— 1)625_2/(1)(111) if s>1

Thus we complete the proof of the Theorem B stated in the introduction.
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