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ISHIKAWA'S ITERATIONS OF REAL LIPSCHITZ FUNCTIONS

LEI DENG AND X I E PING DING

In this paper, we consider Ishikawa's iteration scheme to compute fixed points of
real Lipschitz functions. Two general convergence theorems are obtained. Our
results generalise the result of Hillam.

1. INTRODUCTION

Bailey [1] gave a proof of Krasnoselski's Theorem [4] restricted to the real line. In
[2], using the fact that the real line is totally ordered, Hillam established the following
more general result.

THEOREM A. Let f: [a, b] —* [a, 6] be a function that satisfies a Lipschitz con-

dition with constant L. Let X\ in [a, b] be arbitrary and define xn+\ — (1 — A)xn +
A/(xn) where A = (1 + L)~ . If {xn} denotes the resulting sequence, then {xn}

converges monotonically to a point z in [a, b] where f(z) = z.

In this paper, using a somewhat more sophisticated argument, we consider a Lips-
chitz function / which maps the closed interval [a, 6] into itself, and under very general
conditions, prove that Ishikawa's iteraiton scheme [3] always converges to a fixed point
of / . These results improve and generalise Theorem A.

2. PRELIMINARIES

Recall that / : [a, 6] —• [a, 6] is £-Lipschitz if there exists a constant L ^ 0 such
that \f{x) — f(y)\ ^ L \x — y\ for all x, y £ [a, b}. Clearly, each L-Lipschitz function
is continuous.

LEMMA 1 . [5, Theorem 1], Let f be a continuous self-mapping of [a, b]. If the

iteration scheme { s n } converges to z, then z is a fixed point of f, where {xn} is

defined by

xi € [a, b], xn+i = anf(yn) + (1 - an)a;n,

V « = 0 » / ( * » ) + ( l - & . ) * » , n ^ l

a n } , {@n} satisfy

(i) 0^an, ) 9 n < l for all n,
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oo

(ii) 53 an diverges, and
n=l

(iii) hm (3n = 0.
n—»oo

LEMMA 2 . [5, Theorem 10]. Let f: [a, b] -» [a, b] be a L-Lipschitz {unction. Let
{an}, {/3n} satisfy

(i) 0 < a n , 0n^l for all n,
(ii) lim supan > 0, and

n—*oo

(iii) lim sup/?n < L-1.
n-»oo

If the sequence {xn} defined by (1) converges to z, then z is a fixed point of f.

PROOF: Prom the triangle inequality it follows that

«n \z - f(z)\ < an \z - xn\ + an \xn - f(yn)\ + an \f{yn) - f{z)\

< an \z - xn\ + \xn+i - xn\ + anL \yn - z\

< an \z - xn\ + \xn+1 - xn\ + anpnL \f(xn) - z\

+ an{l-pn)L\xn-z\.

It follows that lim s u p a n ( l — L hm sup/?n) \z — f{z)\ < 0. Since lim
n—»oo \ n—»oo / n—>oo

s u p a n ( 1 — L lim sup/?n ) > 0, then \z — f(z)\ = 0. Hence f(z) = z. U
\ n-too /

LEMMA 3 . Let f: [a, b] —* [a, b] be a L-Lipschitz function. The sequence {xn}

is given by (1) with 0 ^ a n , /3n ^ 1 for all n. If there is a fixed point z of f in the

interval between xn and xn+i, and ~(n = a n [ l + L + L(L — l)/?n] — 1, then

(2) |«n+l - A ^ 7 n \xn - Z\ .

PROOF: If xn ^ z ^ x n + i , we have

xn+1 -z = an(f(yn) - f(z)) + (1 - an)(xn - z)

< anL \yn - z\ + (1 - an)(xn - z)

^ anL[\ + (L- l)/3n](z - xn) + (oB - \){z - xn)

= 7n |*n - A •

If xn ^ z ^ Xn+i) by a similar argument, we have z — xn+i ^ j n \xn — z\. Hence
(2) holds. The proof is complete. D

LEMMA 4 . Let f: [a, b] -> [a, b] be a L-Lipschitz function. Suppose that the

sequence {xn} is given by (1) with 0 < a n < 1, 0 ^ /?„ < (1 + L)~l and xn ^ x n + 1
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for all n. Then xn, x n + i , x n + 2 is monotone (that is, xn < z n +i < xn+2 or xn >
x n + i > xn+2 ) if and only if f{xn) — xn and / ( x n + 1 ) — x n + i have the same signs.

PROOF: We first state some properties which will be useful in later developments.
If f{xn)>xn, then

(3) /(»») > »„ > xn;

if f(xn) < xn, then

(4) /(»„) <yn^xn.

Indeed, if f{xn) > xn, then yn = (3nf(xn) + (1 — /3n)xn ^ xn. If there is a fixed point

z of / in [xn,yn], then

0 < \z - xn\ ^ \yn - xn\ = pn \f(xn) - xn\

^0n\f{xn)-f{z)\+pn\z-xn\

^/3n{L + l)\z-xn\ < \z-xn\

which is a contradiction. Thus there is no fixed point of / in [zn, yn]- It follows from

f(xn) > xn that f(yn) > 2/n- Hence (3) holds. If f(xn) < xn, by a similar argument,

(4) holds.

Now we show that the stated condition is sufficient. Suppose that f(xn) — xn

and / (z n + 1 ) — xn+i have the same signs; then we must have that xn, zn+i i *n+2 is

monotone. If f(xn) > xn and f[xn+1) > xn+i, by (3), we have

and /(yn +i) > yn+i ^ i n+

Hence

xn+i - x n - an(f(yn) - xn) > 0,

l) - *n+l) > 0,

that is, xn < xn+i < xn+2 . If f(xn) < xn and / (z n + i ) < xn+1, by a similar argument,
we have xn > xn+i > xn+2 •

To see that the condition is necessary, without loss of generality, we may assume
that xn < xn+i < Xn+2- Clearly, since xn ^ xn+i for all n, we have f(xn) ^ xn and
f(xn+1) ^ xn+1. If f(xn) < xn and /(a;n+i) > x n + 1 , by (4), f(yn) <yn^xn. Hence
xn+i — xn = ctn(f(yn) — xn) < 0; this contradicts the assumption that xn < ̂ n+i- If
f(xn) > xn and f(xn+i) < xn+\, similar reasoning contradicts the assumption that
zn+i < xn+2- Therefore /(xn) — xn and /(xn_(-i) — xn+i have the same signs. D
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DEFINITION: We say that {xn} switches directions at »n+i if either

%n < Zn+l > Xn+2 Or Xn > Xn+i < Sn+2-

By Lemma 4, we see that a;n+i switches direction if and only if f(xn)—xn and /(xn+i)—
xn+i have opposite signs, where {xn} is defined by (1) with 0 < an ^ 1, 0 ^ /?„ <
(1 + L)~ and xn ^ xn+\ for all n.

LEMMA 5 . Suppose {xn} defined by (1) has successive switches of direction at
xni+1 and xn2+1, and 0 < ctn < 2(l+en)~1[l + L + L{L - I)/?™]"1, 0 < en < 1,
0 ^ /?„ < (1 + i ) " 1 and xn ^ xn+1 for all n. Then

(a) xn lies between x n i and x n i +i for ni + 1 ^ n ^ n.2 + 1;

(b) \xn2 — Xn2+l| ^ (1 — ETU) Î TH — ^nt+ll-

PROOF: We may suppose that xnx < xn i+! > xni+2 an<i xn3 > ^nj+i < *n2+2-
Let m = inf{x : /(x) = x, xni ^ x ^. xn i+i} . By Lemma 3, we have that
\xni+i -m\ ^ 7n i |xni —m\ and m > (l + 7 n J~ (7 n i i n i + x n i + 1 ) . Hence

(5) x n i + 1 - m < 7n i ( l + 7ni) ( x n i + 1 - x n i ) .

Since xn decreases for Hi + 1 ^ n ^ 7i2 + 1, we have that xn j > m. Indeed,
if m > XJIJ , then there exists ni < n' < n-i such that xni > m > xn/+ 1. Lemma 4
imphes that f(xni+i) - x n i + 1 a n d / ( x n j - xn, have opposite signs; / ( v + i J - V + i
and / ( x n i + i ) - x n i + i have same signs. Thus f(xni+1) - xx<+1 and / ( x n i ) - x n i have
opposite signs. Hence / has a fixed point in the interval between xni+i and xni . On
the other hand, by Lemma 3 and xni+i ^ xni, we have

m _ ^ „ / _ _ \—̂ 35 l i i i^ T /1 X / ^~ T#X In -j-1 ^ m \ n /

Hence m > xn/+1 ^ (1 - 7n ;7nJm + 7ni7nixni ^ x n i . The minimality of m implies
that / has no fixed point in the interval between xni+i and xni . This is a contradiction.
Therefore, we have either

(i) x n j + 1 > m > xni or (ii) xn, > m > xn2+i.

By Xxj+i ^ x n j , 0 ^ 7nj < 1 and Lemma 3, in either case, we have

(6) Snj + l > 7nj *ni + (1 — 7«i J771-
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By (6), we have x n i + 1 ^ xn ^ xn7+1 ^ 7 n i x n i + (l-fni)m ^ x n i . The conclusion

(a) holds.

Since x n i + i ^ x n , > (5) and (6) show that

0 < asnj - 1*3+1 < xni+1 - [ynixni + (1 -*/ni)m\

= 7ni(a;n1 + l - X n i ) + ( l - 7 n i ) ( z n i + i - m)

< ( l - e n i ) ( x n i + i - x n i ) .

The conclusion (b) is proved. D

3. MAIN RESULTS

THEOREM 1 . Let f: [a, b] -> [a, b] be a L-Lipschitz function. If 0 < e < 1,
0 ^ ctn < 2(1 + e ) 1 ^ + L + L(L — Y)j3n]~l, and 0 ^ /?„ < (1 + L)'1 for all n, then

the sequence {xn} defined by (1) converges to some point z which lies between xn and
xn+i wienever {xn} switcies directions at xn+i. Moreover, if for all n,

then the convergence is monotone.

PROOF: (1) Suppose that xn ^ xn+i for all n. Clearly, we have an > 0 for all n.
If {xn} switches direction only finitely often then convergence follows since the se-

quence is eventually monotone. Suppose therefore that the sequence switches directions
infinitely often at x n i + i , x n j + i , . . . , xnk+i....

Lemma 5 shows that for nk + 1 ^ n ^ W(t+i) + 1 , xn lies between xnk and xn|t+i
and that

| Z n ( i+ i ) ~ Xn(it+i)+1 ^ (1 ~ e ) |x»*ib "" Znib+1l •

Inductively, we see that |xn — xm\ ^ (1 — e) (b — a) for n and m > n^k+i). So {xn}
is a Cauchy sequence and so has limit z. Moreover, z lies between xn]c and xn i+i .

(2) Suppose xno = xno_)-i for some no. Without loss of generality, we can assume
that {xn} denotes

where xi = x2 = . . . = x n i ,x n j t + i = xnfc+2 = . . . — xn(fc+i), xnt ^
(& = 1, 2, . . . ) . Clearly, {xn} converges if and only if the subsequence {xni} of {xn}
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converges. On the other hand, if {an} and {/?„} of (1) are replaced by {<*nk} and
{Pnk}, respectively, then the sequence of Ishikawa iteration defined by (1) is exactly
the subsequence {xnfc} of {xn}. It follows from (1) that {a!nt} converges. Hence {xn}

converges.

Finally, if 0 ^ an < [1 + L + L(L - l ) / ^ ] " 1 and 0 ^ 0n < (1 + L)'1, then it
follows from Lemma 3 and Lemma 4 that no change of direction is possible. The proof
is complete. D

Note that, to establish convergence, it is only necessary to assume that

lim supa n < 2[1 + L + L(L - 1) Urn sup/3,,]"1,
n—KX> n—>oo

lim sup/3n <(1 + L)~\
n—>oo

By Theorem 1 and Lemma 1, we have now proved:

THEOREM 2 . Let f: [a,b] —> [a, 6] be a L-Lipschitz function. The sequence
oo

{xn} defined by (1) satisfies: (i) 0 ^ a n , /3n ̂  1 for all n, (ii) ^ a n diverges, and
n=l

(iii) lim /3n = 0. Then
n—*oo

(1) if lim supan < 2(1 + L)~l, then {xn} converges to a fixed point of f;
n—>oo

(2) f an ^ [1 + L + L(L — l)/3n]-1 for all n, then {xn} converges monotoni-

caily to a fixed point of f.

REMARK 1. The special case of Theorem 2.2 for j3n — 0 generalises Theorem A. There-

fore Theorem 2 improves and generalises Theorem A.

By Theorem 1 and Lemma 2, we have also proved:

THEOREM 3 . Let f: [a,b] —> [a,b] be a L-Lipschitz function. The sequence

{xn} de£ned by (1) satisfies: (i) 0 ^ an, (3n ^ 1 for all n, (ii) lim supan > 0, and
n—•oo

(Hi) lim sup/3n < (1+ L)'1. Then
n—»oo

(1) if lim supan < 2[1 + L + L{L — 1) lim sup/?,,]"1, tien {xn} converges
n—•(» n—»oo

to a fixed point of f;

(2) if otn ^ [1 + L + L(L — I)/?,,]"1 for all n, then {xn} converges monoton-

ically to a fixed point of f.

REMARK 2. Theorem 3 improves Theorem 2 when lim sup an > 0.
n—>oo
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