ANNIHILATOR EQUIVALENCE OF TORSION-FREE ABELIAN GROUPS

P. SCHULTZ, C. VINSONHALER and W. J. WICKLESS

(Received 1 March 1990)

Communicated by R. Lidl

Abstract

We define an equivalence relation on the class of torsion-free abelian groups under which two groups are equivalent if every pure subgroup of one has a non-zero image in the other, and each has a non-zero image in every torsion-free factor of the other.

We study the closure properties of the equivalence classes, and the structural properties of the class of all equivalence classes. Finally we identify a class of groups which satisfy Krull-Schmidt and Jordan-Hölder properties with respect to the equivalence.

1991 Mathematics subject classification (Amer. Math. Soc.) 20 K 15.

1. Introduction

Torsion-free abelian groups are notoriously difficult to classify, even up to quasi-isomorphism. In this paper we define an equivalence relation coarser than quasi-isomorphism on the class of all torsion-free abelian groups. We show that the equivalence classes form a structure for which the fundamental classification theorems of algebra are meaningful and frequently true. For example, Kaplansky's Test Problems have a positive solution for all equivalence classes, and the Krull-Schmidt and Jordan-Hölder Theorems hold for the equivalence classes of finite rank torsion-free abelian groups having no proper nilpotent endomorphisms.

^{© 1992} Australian Mathematical Society 0263-6115/92 \$A2.00 + 0.00

[2]

Let \mathscr{C} denote the class of all torsion-free abelian groups, hereafter simply called "groups". For any $A \in \mathscr{C}$, define the left annihilator of A by ${}^{\perp}A = \{Y \in \mathscr{C} : \operatorname{Hom}(Y, A) = 0\}$ and the **right annihilator** of A by $A^{\perp} = \{X \in \mathscr{C} : \operatorname{Hom}(A, X) = 0\}$.

Define relations $<_l$, $<_r$ and \ll on \mathscr{C} by $A <_l B$ if ${}^{\perp}A \supseteq^{\perp} B$, $A <_r B$ if $A^{\perp} \supseteq B^{\perp}$, and $\ll = <_l \cap <_r$. These relations are clearly quasi-orders, and so induce equivalence relations \sim_l , \sim_r and \approx on \mathscr{C} by $A \sim_l B$ if $A <_l B <_l A$, $A \sim_r B$ if $A <_r B <_r A$, and $\approx = \sim_l \cap \sim_r$. That is, for $A, B \in \mathscr{C}, A \approx B$ if and only if ${}^{\perp}A = {}^{\perp}B$ and $A^{\perp} = B^{\perp}$.

The notion of annihilators dates back to [1]; they have been used repeatedly in the study of torsion theories. The relations $<_r$ and \sim_r were defined, and the classification program initiated, in [4]. The dual relations $<_l$ and \sim_l were defined in [5]. In the latter, Wickless studied especially the finite rank groups and showed that each such group A has a pure subgroup A_l , called the **left core** of A, minimal with respect to $A \sim_l A_l$; and a factor group $A_r = A/K$, called the **right core** of A, such that K is maximal with respect to $A \sim_r A/K$.

The left core is defined as follows. If $\mathscr{E}(A)$ has no non-zero nilpotent endomorphisms, let $A_l = A$. Otherwise there exists $0 = f^2 \neq f \in \mathscr{E}(A)$. In this case let $A_1 = \ker f$ and note that A_1 is a proper pure subgroup of A. Now consider $\mathscr{E}(A_1)$ and repeat this process to obtain, after a finite number of steps, a pure subgroup A_l of A such that $\mathscr{E}(A_l)$ has no non-zero nilpotent endomorphisms. It is not hard to check that $A \sim_l A_1 \sim_l \cdots \sim_l A_l$.

To define the right core, we define a sequence A^i of successive factor groups by $A^0 = A$ and for $i \ge 0$, $A^{i+1} = A^i / \langle \operatorname{Im} f \rangle_*$, where $0 = f^2 \ne f \in \mathscr{E}(A^i)$, and $\langle \operatorname{Im} f \rangle_*$ denotes the pure subgroup of A^i generated by the image of f. The group A_r is the first A^j such that $\mathscr{E}(A^j)$ has no non-zero nilpotent endomorphisms.

In [5] it is shown that the left and right cores are unique up to quasiisomorphism and determine the \sim_l and \sim_r classes of A, in the sense that $A \sim_l B$ if and only if A_l is quasi-isomorphic to B_l , and similarly for the right. These striking properties led the present authors to believe that a special rôle would be played by the \approx classes of finite rank groups whose left and right cores are quasi-isomorphic. We call these "groups of core type"; they are investigated in Section 4.

The notation used is mostly standard. If \mathscr{B} is a family of groups, $\oplus \mathscr{B}$ means the direct sum of the members of \mathscr{B} . We assume familiarity with the usual 'quasi'-concepts for finite rank groups. We denote quasi-equality and quasi-isomorphism by \doteq and \doteq and the quasi-endomorphism ring of G by $\mathbb{QE}(G)$.

2. Basic properties of the \approx relation

Let \mathscr{A} be the class of \approx -equivalence classes [A] for A in \mathscr{C} , and let \prec be the order induced on \mathscr{A} by \ll .

PROPOSITION 2.1. $\langle \mathscr{A}, \prec \rangle$ is a complete upper semi-lattice, where for all families \mathscr{B} from \mathscr{C} , sup{ $[A] : A \in \mathscr{B}$ } = $[\oplus \mathscr{B}]$.

PROOF. We have a poset by definition, and it is routine to check that for all C in \mathscr{B} , $C \ll \oplus \mathscr{B}$ and that if there exists $D \in \mathscr{C}$ such that for all $C \in \mathscr{B}$, $C \ll D$, then $\oplus \mathscr{B} \ll D$.

PROPOSITION 2.2. Let $A \longrightarrow B \longrightarrow C$ be a short exact sequence in \mathscr{C} . Then $B \ll A \oplus C$, and $B \approx A \oplus C$ if and only if $A <_{,} B$ and $C <_{,} B$.

PROOF. The definitions of $<_l$ and $<_r$ imply that $B \ll A \oplus C$ and that $A <_l B$ and $C <_r B$. Hence $A <_r B$ if and only if $A \ll B$, while $C <_l B$ if and only if $C \ll B$. The rest follows from Proposition 2.1.

PROPOSITION 2.3. For all $A \in \mathcal{C}$, [A] is closed under isomorphism, arbitrary direct sums, extensions and subgroups of bounded index.

PROOF. [A] is obviously closed under isomorphism. Let \mathscr{B} be a subset of [A]. Clearly $A \ll \oplus \mathscr{B}$ and by Proposition 2.1, $\oplus \mathscr{B} \ll A$. By Proposition 2.2, [A] is closed under extensions. Let $A \ge B \ge nA$ for some n > 0. It is easy to check that ${}^{\perp}A = {}^{\perp}B$ and $A^{\perp} = B^{\perp}$.

We shall see in Section 4 that in the finite rank case this result is best possible in the sense that if $\mathscr{E}(A)$ has no zero divisors, then the \approx -class [A] is precisely the closure of $\{A\}$ under the four operations of Proposition 2.3. The next Proposition shows that the relation \approx satisfies Kaplansky's Test Problems [3, Chapter 6].

PROPOSITION 2.4. (1) Let A, B, C and $D \in \mathscr{C}$ with $A \approx B \oplus C$ and $B \approx A \oplus D$. Then $A \approx B$. (2) Let A and $B \in \mathscr{C}$ with $A \oplus A \approx B \oplus B$. Then $A \approx B$. **PROOF.** Both parts follow immediately from Proposition 2.1.

3. Intrinsic criteria for $A \approx B$

In order to apply the definition of \approx , it is essential to be able to recognize when the group structures of A and B imply $A \approx B$.

PROPOSITION 3.1.

- (1) $A <_{l} B$ if and only if for all non-zero pure subgroups C of A, Hom $(C, B) \neq 0$.
- (2) $A <_r B$ if and only if for all torsion-free factor groups D of A, Hom $(B, D) \neq 0$.

PROOF. The proof is a routine argument from the definitions of the relations $<_l$ and $<_r$.

DEFINITION 3.2. (1) For any A and B in \mathscr{C} , define a smooth decreasing chain of pure subgroups of A by $A^0[B] = A$; $A^1[B] = \cap \{\ker f : f \in$ $\operatorname{Hom}(A, B)\}$; $A^{\nu+1}[B] = (A^{\nu}[B])^1[B]$; if ν is a limit ordinal, $A^{\nu}[B] =$ $\cap_{\mu < \nu} A^{\mu}[B]$. At each ordinal ν , either $A^{\nu+1}[B] < A^{\nu}[B]$ or $A^{\nu+1}[B] =$ $A^{\nu}[B]$. Hence the chain eventually stabilizes.

The left *B*-length of *A* is $\lambda = \lambda(A[B]) = \inf\{\nu : A^{\nu}[B] = A^{\nu+1}[B]\}$. The *B*-radical of *A* is $A[B] = A^{\lambda}[B]$.

(2) For any A and B in \mathscr{C} , define a smooth increasing chain of pure subgroups of A by $A^0(B) = 0$; $A^1(B) = \langle \operatorname{tr}_B(A) \rangle_*$ (i.e. the pure subgroup of A generated by all homomorphic images of B in A); $A^{\nu+1}(B)/A^{\nu}(B) = (A/A^{\nu}(B))^1(B)$; if ν is a limit ordinal, $A^{\nu}(B) = \bigcup_{\mu < \nu} A^{\mu}(B)$. As before, the chain stabilizes.

The right B-length of A is $\rho = \rho(A(B)) = \inf\{\nu : A^{\nu+1}(B) = A^{\nu}(B)\}$. The B-socle of A is $A(B) = A^{\rho}(B)$.

Proposition 3.3.

(1) For all A and $B \in \mathcal{C}$, $A <_l B$ if and only if A[B] = 0.

(2) For all A and $B \in \mathcal{C}$, A < B if and only if A(B) = A.

PROOF. To simplify notation, put $\lambda = \lambda(A[B])$ and $\rho = \rho(A(B))$. (1) (\Rightarrow) For all ν , if $A^{\nu}[B] \neq 0$, then by Proposition 3.1(1), $A^{\nu+1}[B]$ is a proper subgroup of $A^{\nu}[B]$. Hence $A^{\lambda}[B] = 0$. (\Leftarrow) Let $X \in \mathscr{C}$ with Hom(X, B) = 0, and let $f \in \text{Hom}(X, A)$. Then for all ordinals ν , $Xf \in A^{\nu+1}[B]$; otherwise there is a $g \in \text{Hom}(A^{\nu}[B], B)$ with $0 \neq f \circ g \in \text{Hom}(X, B)$. Hence $Xf \in A[B] = 0$, so $X \in {}^{\perp}A$.

(2) (\Rightarrow) Since Hom(B, $A/A^{\rho}(B)$) = 0, Hom(A, $A/A^{\rho}(B)$) = 0, so $A^{\rho}(B) = A$.

(\Leftarrow) Let $Y \in \mathscr{C}$ with Hom(B, Y) = 0. Clearly Hom $(A^0(B), Y) = 0$; assume Hom $(A^{\mu}(B), Y) = 0$ for all $\mu < \nu$. Let $f \in \text{Hom}(A^{\nu}(B), Y)$. Then, for all $\mu < \nu$, f induces $\overline{f} \in \text{Hom}(A^{\nu}(B), Y)$. If $a \in A^{\nu}(B)$ with $af \neq 0$, note that $a \in A^{\mu+1}(B) \setminus A^{\mu}(B)$ for some $\mu+1 \leq \nu$. Then $0 \neq n(a + A^{\mu}(B)) = bg$ for some $n \in \mathbb{Z}$, $b \in B$ and $g \in \text{Hom}(B, A^{\mu+1}(B)/A^{\mu}(B))$. It follows that $0 \neq g \circ \overline{f} \in \text{Hom}(B, Y)$, a contradiction, so $\text{Hom}(A^{\nu}(B), Y) = 0$.

Hence $\operatorname{Hom}(A^{\rho}(B), Y) = \operatorname{Hom}(A, Y) = 0$, so $Y \in A^{\perp}$.

4. Groups of core type

In this section we consider only groups of finite rank. Recall from the introduction the definitions of left and right core.

DEFINITION 4.1. A group A has core type if $A_l \cong A_r$.

A family of groups $\mathscr{B} = \{G_1, \ldots, G_r\}$ for some positive integer r is called a core system if each $\mathscr{E}(G_j)$ has no zero-divisors and each $\operatorname{Hom}(G_i, G_j) = 0$ if $i \neq j$.

Note that a finite rank group has a division ring as quasi-endomorphism ring if and only if its endomorphism ring has no zero-divisors, [2, Vol II, p. 149].

PROPOSITION 4.2. A group A has core type if and only if $A \approx \oplus \mathscr{B}$ for some core system \mathscr{B} . In this case, the groups in \mathscr{B} are unique up to quasi-isomorphism.

PROOF. Suppose A is a group of core type and let $G = A_i$. Then $A \sim_i G$ and $A \sim_r \cong A_r$, G, so $A \sim_r G$ as well. Thus $A \approx G$. Since G is a finite rank group with no nilpotent endomorphisms, G has a quasi-decomposition $G \doteq \bigoplus_{i \in [1,r]} G_i$ where for each $i \in [1, r]$, $\mathbb{QE}(G_i)$ is a division ring and $\operatorname{Hom}(G_i, G_i) = 0$ for $i \neq j$. Take $\mathscr{B} = \{G_i : i \in [1, r]\}$.

Conversely, if A is a finite rank group with $A \approx G = \oplus \mathscr{B}$ for some core system \mathscr{B} , then $A_l \sim_l A \sim_l G$ and $A_r \sim_r A \sim_r G$. Now A_l , A_r and G have no non-zero nilpotent endomorphisms so by [5, Theorems 12 and 13, and Lemma 18], $A_l \cong G \cong A_r$, and hence A is of core type.

For uniqueness, suppose $A \approx G' = \oplus \mathscr{B}'$ for some other core system \mathscr{B}' . Then, as above, $A_l \cong G'$, so $G \cong G'$. Since each group in a core system is strongly indecomposable, the result follows from the uniqueness of quasidecompositions.

COROLLARY 4.3. If A has core type and $A \approx B$, then B has core type.

We now use these results to prove a Krull-Schmidt Theorem for groups of core type, up to equivalence. First we need notions of indecomposability and uniqueness with respect to \approx . A naive approach is not sufficient, since for any group A, $A \approx A \oplus A$.

DEFINITION 4.4. A group G is \approx -indecomposable if whenever A is a nonzero pure subgroup of G with $G \approx A \oplus G/A$, then A = G.

The \approx -indecomposables are easily characterized.

PROPOSITION 4.5. G is \approx -indecomposable if and only if $\mathscr{E}(G)$ has no zero-divisors.

PROOF. (\Rightarrow) Let $G \doteq \bigoplus_{i \in [1, m]} A_i$ be a quasi-decomposition of G into strongly indecomposable quasi-summands. Then by Proposition 2.3, $G \approx \bigoplus_{i \in [1, m]} A_i$ so m = 1 and G is strongly indecomposable. Thus if $\mathscr{E}(G)$ has zero divisors, it has non-zero nil radical [2, Vol. II, p. 149] and hence contains a non-zero f with $f^2 = 0$. Let $A = \langle Gf \rangle_*$, a proper pure subgroup of G. Then $A \leq \ker f$, so f induces a homomorphism of G/A into A whose image is full in A. Hence $G/A <_l A <_l G$ and $A <_r G/A <_r G$, so by Proposition 2.2, $G \approx A \oplus G/A$, a contradiction.

(\Leftarrow) Let A be a non-zero pure subgroup of G with $G \approx A \oplus G/A$. By Proposition 2.2, $A <_r G$ and $G/A <_l G$, so $\text{Hom}(G, A) \neq 0$ and if $G/A \neq 0$, $\text{Hom}(G/A, G) \neq 0$. Let $0 \neq f \in \mathscr{E}(G)$ with $Gf \leq A$ and let $0 \neq g \in \mathscr{E}(G)$ with $A \leq \ker g$. Then $f \circ g = 0$, a contradiction, so A = G.

COROLLARY 4.6. Let G be a group of core type. Then there exists a core system \mathscr{B} such that $G \approx \oplus \mathscr{B}$. The groups in \mathscr{B} are unique up to quasi-isomorphism and are \approx -indecomposable.

PROOF. This follows from Propositions 4.2 and 4.5 and the definitions.

Corollary 4.6 is analogous to the Krull-Schmidt Theorem for finite rank groups up to quasi-isomorphism. We shall now prove an analogue of the Jordan-Hölder Theorem for finite groups.

DEFINITION 4.7. Let \mathscr{B} be a core system and let $G \doteq \oplus \mathscr{B}$. Let H be a group. A left G-filtration for H is a descending chain of pure subgroups

[7]

 $H = H_0 > H_1 > \cdots > H_n = 0$ such that for $0 \le i < n$, H_i/H_{i+1} is quasi-isomorphic to a subgroup of some $G_{j(i)} \in \mathscr{B}$. We say H_i/H_{i+1} is **quasi-embedded** in $G_{i(i)}$.

A G-filtration for \hat{H}' is a left G-filtration such that each H_i/H_{i+1} is quasiisomorphic to some $G_{i(i)}$.

Let \mathscr{B} be a core system and let $G \doteq \oplus \mathscr{B}$. In [5] it was shown that for any group H, $H <_{l} G$ if and only if H has a left G-filtration. The following lemma establishes an analogous result for the relation \ll and G-filtrations.

LEMMA 4.8. Let $G \doteq \oplus \mathscr{B}$ for some core system \mathscr{B} . Let $0 \neq H$ be a group with $H \ll G$. Then H has a G-filtration.

PROOF. Let $\mathscr{B} = \{G_1 \dots G_m\}$. Since $H <_i G$, H has a left G-filtration $H = H_0 > H_1 > \dots > H_n = 0$ with quasi-embeddings $\alpha_i : H_i/H_{i+1} \longrightarrow G_{j(i)}$ for $0 \le i < n$ where $G_{i(i)} \in \mathscr{B}$.

The proof of the lemma is by induction on the rank r of H. If r = 1then n = 1 and $H = H_0$ is quasi-embedded in some $G_j \in \mathscr{B}$. Moreover since $H <_r G$, $\operatorname{Hom}(G, H) \neq 0$ so some $\operatorname{Hom}(G_k, H) \neq 0$. Since $\operatorname{Hom}(G_k, G_j) = 0$ for $k \neq j$, it follows that k = j and $\operatorname{Hom}(G_j, H) \neq 0$.

Let $0 \neq f \in \text{Hom}(G_j, H)$ and let θ be a quasi-embedding of H into G_j . Then $0 \neq f \theta \in \mathbb{QE}(G_j)$, a division algebra. Thus $f \theta$ is a quasi-invertible endomorphism of G_j whose image is quasi-equal to G_j . Hence rank $G_j = 1$ and $H \cong G_j$, so our result holds for r = 1.

Now assume the result holds for all groups of rank smaller than r. Since $\operatorname{Hom}(G_1, G) \neq 0$ and $G <_l H$, $\operatorname{Hom}(G_1, H) \neq 0$. Let $0 \neq \beta : G_1 \to H$. Choose i so that $G_1\beta \leq H_i$, but $G_1\beta \leq H_{i+1}$. Let δ be the composite map $G_1 \xrightarrow{\beta} H_i \longrightarrow H_i/H_{i+1} \xrightarrow{\alpha_i} G_{i(i)}$.

Since $\delta \neq 0$, j(i) = 1 and δ is invertible in $\mathbb{Q}\mathscr{C}(G_1)$. Thus β is monic and $H_i \doteq G_1 \beta \oplus H_{i+1}$. Note that $G_1 \beta \cong G_1$ is quasi-pure in H since H_i is pure in H.

Let K be the purification of $G_1\beta$ in H. For $t \le i$ let $\bar{H}_t = H_t/K$ and for $t \ge i+1$ let $\bar{H}_t = (H_t \oplus K)/K$. Then it is easy to check that $\bar{H} = \bar{H}_0 > \bar{H}_1 > \cdots > \bar{H}_i = \bar{H}_{i+1} > \cdots > \bar{H}_n = 0$ is a left G-filtration of $\bar{H} = H/K$. It follows that $\bar{H} < G$.

Clearly $H <_r G$ and rank H < rank H so inductively there exists a filtration of H with each factor quasi-isomorphic to some $G_{j(i)}$. To complete the proof we recall that $K \doteq G_1$ and construct the obvious G-filtration for H.

THEOREM 4.9. Let $G = \oplus \mathscr{B}$ for some core system \mathscr{B} . Let H be a group.

Then $H \approx G$ if and only if

- (1) there exists a quasi-embedding $\alpha: G \longrightarrow H$;
- (2) there exists a quasi-epimorphism $\pi: H \longrightarrow G$;
- (3) there exists a G-filtration for H.

PROOF. (\Leftarrow) Condition (1) implies $G <_l H$, Condition (2) implies $G <_r H$ and Condition (3) implies that $H \ll G$.

(⇒) Since $H \sim_l G$, $H_l \cong G_l = G$, so there is a quasi-embedding of G in H. Since $H \sim_r G$, $H_r \cong G_r = G$, so there is a quasi-epimorphism of H onto G.

The third condition follows from Lemma 4.8.

COROLLARY 4.10. Let G be a group for which $\mathscr{E}(G)$ has no zero-divisors. Then $H \approx G$ if and only if H has a filtration $H = H_0 > H_1 > \cdots > H_n = 0$ with each $H_i/H_{i+1} \cong G$.

The necessity for the assumption in Corollary 4.10 that $\mathscr{E}(G)$ have no zero-divisors is illustrated by the following example.

EXAMPLE. Let A be a rank one group of nil type, and let G_1 and G_2 be non-quasi-isomorphic non-splitting extensions of A by A. Then $G_1 \approx G_2 \approx A$ but G_1 has no G_2 -filtration.

COROLLARY 4.11. Let G be a group for which $\mathscr{E}(G)$ has no zero-divisors. Then the set of finite rank groups equivalent to G is the closure of $\{G\}$ under the operations of quasi-isomorphism and extension.

For the next theorem, recall Definition 3.2 for $H^{j}[G]$ and $H^{j}(G)$.

THEOREM 4.12. Let G and H be groups such that $\mathscr{E}(G)$ has no zerodivisors. Then $H \approx G$ if and only if for all $0 \leq j < \lambda(G[H])$, $H^{j}[G]/H^{j+1}[G]$ $\doteq \oplus_{t(j)} G$ and for all $0 \leq j < \rho(G(H))$, $H^{j+1}(G)/H^{j}(G) \doteq \oplus_{s(j)} G$ for some positive integers t(j) and s(j).

PROOF. The sufficiency of the condition follows immediately from Corollary 4.10.

For necessity, suppose $\mathscr{E}(G)$ has no zero-divisors and H is a group with $H \approx G$. Then by Corollary 4.10, H has a filtration $H = H_0 > H_1 > \cdots > H_n = 0$ with each $H_i/H_{i+1} \cong G$. The proof is by induction on n, and the result is clearly true if n = 1. Let n > 1 and assume the theorem holds for all groups having a shorter such filtration. To simplify notation, denote

 $U^{j}[G]$ by U^{j} for any group U, and let $\oplus G$ denote an arbitrary finite direct sum of copies of G.

Let λ be the left G-length of H so $H^{\lambda} = 0$, and let $0 \le i < \lambda$ be such that $H_{n-1} \le H^i$ but $H_{n-1} \le H^{i+1}$. Regard H^i/H^{i+1} as a subgroup of $\oplus G$. Since

$$0 \neq W = (H_{n-1} + H^{i+1})/H_{i+1} \leq H^i/H^{i+1} \leq \oplus G,$$

choose a projection π onto some copy of G such that $W\pi \neq 0$. Now $H_{n-1} \cong G$ and the composite map $H_{n-1} \hookrightarrow H^i \to H^i / H^{i+1} \xrightarrow{\pi} G$ is non-zero, so, since $\mathbb{QE}(G)$ is a division algebra, $H^i \doteq H_{n-1} \oplus X$ for some group X containing H^{i+1}

For any group V with $H_{n-1} \leq V \leq H$, let \overline{V} denote V/H_{n-1} . Note that $\hat{H} \approx G$ by Theorem 4.9, so by the induction assumption, $\hat{H}^{j}/\hat{H}^{j+1} \doteq \oplus G$ for all *j*. It now follows by induction on *j* that for $0 \le j \le i$,

$$(\bar{H})^{j} = (H/H_{n-1})^{j}[G] \cong (H^{j}[G])/H_{n-1} = (H^{j}).$$

We prove that $H^{j}/H^{j+1} \cong \oplus G$ by considering three cases. First, let $0 \leq C$ j < i. Then

$$H^{j}/H^{j+1} \cong \overline{H^{j}}/\overline{H^{j+1}} \cong \overline{H}^{j}/\overline{H}^{j+1} \stackrel{.}{\cong} \oplus G.$$

The first isomorphism follows from the second isomorphism theorem, the second from the paragraph above, and the quasi-isomorphism follows from the induction assumption. Thus our theorem holds for all j with $0 \le j < i$.

Next, let $i < j < \lambda$. Then j = i + s for some s > 0. For all s > 0,

$$H^{i+s} = (H^i)^s \cong (H_{n-1} \oplus X)^s = X^s,$$

since $H_{n-1} \doteq G$. Moreover, for $s \ge 0$,

$$\overline{H}^{i+s} = (\overline{H}^i)^s = (\overline{H^i})^s \stackrel{\circ}{\cong} X^s,$$

since $\overline{H^i} \cong X$. Thus for s > 0,

$$\oplus G \cong \overline{H}^{i+s}/\overline{H}^{i+s+1} \cong X^s/X^{s+1} \cong \overline{H}^{i+s}/\overline{H}^{i+s+1}.$$

This proves the theorem for j such that $i < j < \lambda$.

Finally,

$$\begin{aligned} H^{i}/H^{i+1} &\cong (H_{n-1} \oplus X)/(H_{n-1} \oplus X)^{1} \cong H_{n-1} \oplus X/X^{1} \\ &\cong G \oplus (\bar{H}^{i}/\bar{H}^{i+1}) \cong \oplus G. \end{aligned}$$

Thus, $H^{j}[G]/H^{j+1}[G] \doteq \oplus G$ for $0 \le j < \lambda$. A symmetric argument establishes the same claim for $H^{j+1}(G)/H^j(G)$ and the proof is complete.

[10]

COROLLARY 4.13. If $\mathscr{E}(G)$ has no zero-divisors, and $H \approx G$, then $\lambda(H[G]) = \rho(H(G))$.

PROOF. Let
$$\lambda = \lambda(H[G])$$
 and $\rho = \rho(H(G))$. Then

$$0 = H^{\lambda}[G] < H^{\lambda-1}[G] < \dots < H^{0}[G] = H,$$

and

$$0 = H^{0}(G) < H^{1}(G) < \cdots < H^{\rho}(G) = H,$$

where each factor is quasi-isomorphic to a direct sum of copies of G. Since $H/H^{\rho-1}(G) \doteq \oplus G$, it follows that $H^1[G] \leq H^{\rho-1}(G)$. Suppose we have shown that $H^k[G] \leq H^{\rho-k}(G)$. Then

$$H^{k}[G]/\left(H^{k}[G] \cap H^{\rho-k-1}(G)\right) \cong \left(H^{k}[G] + H^{\rho-k-1}(G)\right)/H^{\rho-k-1}(G)$$
$$\leq H^{\rho-k}(G)/H^{\rho-k-1}(G).$$

By Theorem 4.12, the last factor is quasi-equal to a direct sum of copies of G, so $H^{k+1}[G] \leq H^{\rho-k-1}(G)$. By induction, $H^{\rho}[G] \leq H^{0}(G) = 0$, so $\lambda \leq \rho$. A symmetric argument shows that $\rho \leq \lambda$.

We close by showing that a Jordan-Hölder type theorem holds for the filtrations obtained in Lemma 4.8 and Theorem 4.9. The result may be of some independent interest.

THEOREM 4.14. Let \mathscr{B} be a core system, let H be a group, and let $H = H_0 > H_1 > \cdots > H_{n+1} = 0$ and $H = H'_0 > H'_1 > \cdots > H'_{m+1} = 0$ be filtrations of H such that $H_i/H_{i+1} \doteq G_{j(i)}$ and $H'_i/H'_{i+1} \doteq G_{k(i)}$, where $i \mapsto G_{j(i)}$ and $i \mapsto G_{k(i)}$ are functions from [0, n] and [0, m] into \mathscr{B} . Then n = m and there is a permutation σ of [0, n] such that $H_i/H_{i+1} \doteq H'_{\sigma(i)}/H'_{\sigma(i)+1}$ for all $i \in [0, n]$.

PROOF. The proof is by induction on rank H, and the result is clear if rank H = 1. Let rank H = r > 1 and suppose the result holds for all groups of rank < r. Choose $i \ge 0$ minimal such that $H'_m \le H_i$ but $H'_m \le H_{i+1}$. Arguing as in the proof of Lemma 4.8 we find $H_i \doteq H'_m \oplus H_{i+1}$. Then

$$H/H'_m > H'_1/H'_m > \cdots > H'_{m-1}/H'_m$$

and

$$H/H'_m > H_1/H'_m > \cdots > H_i/H'_m \cong H_{i+1} > H_{i+2} > \cdots > H_n > 0$$

are filtrations of the group H/H'_m with factors in \mathscr{B} . By induction the factor groups in these new filtrations are quasi-isomorphic after rearrangement. But

these factor groups coincide with those of the original filtrations except for the groups H'_m and H_i/H_{i+1} . Since $H_i/H_{i+1} \cong H'_m$, the proof is complete.

References

- S.C. Dickson, A Torsion Theory for Abelian Categories, Trans. Amer. Math. Soc. 121 (1966), 223-235.
- [2] L. Fuchs, Infinite Abelian Groups, Vol. I and Vol. II, Academic Press, New York, 1970 and 1973.
- [3] I. Kaplansky, Infinite Abelian Groups, University of Michigan Press, Ann Arbor, 1954.
- [4] P. Schultz, Annihilator Classes of Torsion-free Abelian Groups, in Topics in Algebra, Lecture Notes in Mathematics 697, Springer-Verlag, Berlin, Heidelberg and New York, 1978.
- [5] W. J. Wickless An equivalence relation for torsion-free groups of finite rank, preprint.

The University of Western Australia, Nedlands, Western Australia, 6009 Australia University of Connecticut, Storrs, Connecticut, 06268 U.S.A.

University of Connecticut, Storrs, Connecticut, 06268 U.S.A.