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Abstract

We define an equivalence relation on the class of torsion-free abelian groups under which two
groups are equivalent if every pure subgroup of one has a non-zero image in the other, and each
has a non-zero image in every torsion-free factor of the other.

We study the closure properties of the equivalence classes, and the structural properties of the
class of all equivalence classes. Finally we identify a class of groups which satisfy Krull-Schmidt
and Jordan-Holder properties with respect to the equivalence.

1991 Mathematics subject classification (Amer. Math. Soc.) 20 K 15.

1. Introduction

Torsion-free abelian groups are notoriously difficult to classify, even up to
quasi-isomorphism. In this paper we define an equivalence relation coarser
than quasi-isomorphism on the class of all torsion-free abelian groups. We
show that the equivalence classes form a structure for which the fundamen-
tal classification theorems of algebra are meaningful and frequently true. For
example, Kaplansky's Test Problems have a positive solution for all equiva-
lence classes, and the Krull-Schmidt and Jordan-Holder Theorems hold for
the equivalence classes of finite rank torsion-free abelian groups having no
proper nilpotent endomorphisms.
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Let 9s denote the class of all torsion-free abelian groups, hereafter simply
called "groups". For any A e ? , define the left annihilator of A by A =
{ 7 e ? : Hom(7, A) = 0} and the right annihilator of A by AL = {X e
W : Hom(A ,X) = 0}.

Define relations <, , <r and < on W by A <, B if LA Dx B, A <r B
if A± D B±, and <c = <; n <r. These relations are clearly quasi-orders,
and so induce equivalence relations ~ , , ~ r and « on W by A ~, 5 if
^ <7 5 <, ^ , A ~r B if A <r B <r A, and « = ~, n ~ f . That is, for
^ , B e ? , ^ ss B if and only if " ^ = LB and ^ = BL .

The notion of annihilators dates back to [ 1 ]; they have been used repeatedly
in the study of torsion theories. The relations <r and ~r were defined, and
the classification program initiated, in [4]. The dual relations <l and ~ ;

were defined in [5]. In the latter, Wickless studied especially the finite rank
groups and showed that each such group A has a pure subgroup A}, called
the left core of A, minimal with respect to A ~t Al; and a factor group
Ar = A/K, called the right core of A, such that K is maximal with respect
to A ~r A/K .

The left core is defined as follows. If £?(A) has no non-zero nilpotent
endomorphisms, let Al = A. Otherwise there exists 0 = f2 / / e £"(A).
In this case let Al = k e r / and note that ^ t is a proper pure subgroup of
A. Now consider ^(A{) and repeat this process to obtain, after a finite
number of steps, a pure subgroup Al of A such that ^(A^ has no non-zero
nilpotent endomorphisms. It is not hard to check that A ~ ; Al ~ ; • • • ~ ; At.

To define the right core, we define a sequence A' of successive factor
groups by A0 = A and for i > 0, Ai+l = ^ ' / ( I m / ) , , where 0 = f /
/ € &{A'), and ( Im/ ) t denotes the pure subgroup of A1 generated by the
image of / . The group Ar is the first AJ such that ^(Aj) has no non-zero
nilpotent endomorphisms.

In [5] it is shown that the left and right cores are unique up to quasi-
isomorphism and determine the ~7 and ~r classes of A, in the sense that
A ~7 B if and only if Al is quasi-isomorphic to Bt, and similarly for the
right. These striking properties led the present authors to believe that a special
role would be played by the « classes of finite rank groups whose left and
right cores are quasi-isomorphic. We call these "groups of core type"; they
are investigated in Section 4.

The notation used is mostly standard. If 38 is a family of groups, ®3§
means the direct sum of the members of &. We assume familiarity with
the usual 'quasi'-concepts for finite rank groups. We denote quasi-equality
and quasi-isomorphism by = and ^ and the quasi-endomorphism ring of
G by Qg(G).
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2. Basic properties of the « relation

Let j / be the class of ^-equivalence classes [A] for A in %, and let -<
be the order induced on j / by < .

PROPOSITION 2.1. (sf , -<) is a complete upper semi-lattice, where for all
families @ from &, sup{L4]: A e

PROOF. We have a poset by definition, and it is routine to check that for
all C in 3S, C «: © ^ and that if there exists D eW such that for all
C e J 1 , C < D, then @3§ < D.

PROPOSITION 2.2. Let A >—> B —» C be a short exact sequence in W.
Then B «.A®C, and B « A e C if and only if A <r B and C <, B.

PROOF. The definitions of < ; and <r imply that B < A © C and that
A <, B and C <r B . Hence A <r B if and only if A < B, while C <t B
if and only if C < B . The rest follows from Proposition 2.1.

PROPOSITION 2.3. For all A €%', [A] is closed under isomorphism, arbi-
trary direct sums, extensions and subgroups of bounded index.

PROOF. [A] is obviously closed under isomorphism. l e t 38 be a subset of
[A]. Clearly A < ®3S and by Proposition 2.1, ®3§ <c A . By Proposition
2.2, [A] is closed under extensions. Let A > B > nA for some n > 0 . It is
easy to check that LA = X 5 and Ax = Bx .

We shall see in Section 4 that in the finite rank case this result is best
possible in the sense that if i?(A) has no zero divisors, then the «-class [A]
is precisely the closure of {A} under the four operations of Proposition 2.3.
The next Proposition shows that the relation sa satisfies Kaplansky's Test
Problems [3, Chapter 6].

PROPOSITION 2.4. (I) Let A, B, C and D e f with A K, B © C and
B»A®D. Then A&B.

(2) Let A and B e ? with A®AKB@B. Then A&B.
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PROOF. Both parts follow immediately from Proposition 2.1.

3. Intrinsic criteria for A « B

In order to apply the definition of « , it is essential to be able to recognize
when the group structures of A and B imply Am B.

PROPOSITION 3.1.

(1) A <t B if and only if for all non-zero pure subgroups C of A,

(2) A <r B if and only if for all torsion-free factor groups D of A,
Horn (B,D)^0.

PROOF. The proof is a routine argument from the definitions of the rela-
tions <, and < r .

r

DEFINITION 3.2. (1) For any A and B in W, define a smooth decreas-
ing chain of pure subgroups of A by A°[B] = A; Al[B] = n{ker / : / e
Hom(A,B)}; Au+l[B] = [AV[B])l[B]; if v is a limit ordinal, AV[B] =
n^A^B]. At each ordinal v, either Av+l[B] < AV[B] or AV+X[B] =
AV\B\. Hence the chain eventually stabilizes.

The left 5-length of A is X = X(A[B]) = mi{v : AV[B] = Av+i[B]} . The
5-radical of A is A[B] = AX[B].

(2) For any A and B in &, define a smooth increasing chain of pure
subgroups of A by A°(B) — 0; Al(B) = (tr^A)), (i.e. the pure subgroup
of A generated by all homomorphic images of B in A ); Au+ (B)/A"(B) =
(A/A"{B))l(B); if v is a limit ordinal, AV(B) = U^A^B). As before, the
chain stabilizes.

The right 5-length of A is p = p(A(B)) = inf{i/ : Av+l{B) = A"(B)}.
The 5-socle of A is A(B) = AP(B).

PROPOSITION 3.3.

(1) For all A and B e<&, A <, B if and only if A[B] = 0.
(2) For all A and B €&, A <r B if and only if A(B) = A.

PROOF. TO simplify notation, put X = X(A[B]) and p = p{A{B)).
(1) (=•) For all v , if A"[B] / 0, then by Proposition 3.1(1), AV+X[B] is

a proper subgroup of AV[B]. Hence Ak[B] = 0.
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(<=) L e t l e ? with Hom(X, B) = 0 , and let / G Hom(X, ^ ) . Then
for all ordinals v, Xf G Av+X [B]; otherwise there is a g G Hom(/4"[2?], 5)
with 0^fog£Hom(X,B). Hence AT/ e A[B] = 0, so X e XA.

(2) (=>) Since Hom(5, A/A"(B)) = 0, Hom(^, A/AP(B)) = 0, so

()
(<=) Let X G r with Hom(5, 7) = 0 . Clearly Hom(^°(5), Y) = 0 ; as-

sume Hom(y4"(fl), 7) = 0 for all fi< v . Let / € Hom(Av(B), Y). Then,
for all /*< i/, / induces / G Homy4I/(5)/^"(B), Y). If a G ̂ ( 5 ) with
af^O, note that a e A"+l{B)\A'i(B) for some /x+ 1 < v . Then 0 ^ «(a +
A*(B)) = *g for some neZ, b e B and g G Hom(5, ^ + 1 ( 5 ) M " ( 5 ) ) . It
follows that 0 / g o / G Hom(B, 7 ) , a contradiction, so Hom{Al/(B), Y) =
0.

Hence YLom(Ap(B), 7) = Hom(^, Y) = 0, so 7 E / .

4. Groups of core type

In this section we consider only groups of finite rank. Recall from the
introduction the definitions of left and right core.

DEFINITION 4.1. A group A has core type if A^Ar.
A family of groups 38 = {<7,, . . . Gr} for some positive integer r is called

a core system if each £?(G,) has no zero-divisors and each Hom(Gl, G.) = 0
if i?j.

Note that a finite rank group has a division ring as quasi-endomorphism
ring if and only if its endomorphism ring has no zero-divisors, [2, Vol II, p.
149].

PROPOSITION 4.2. A group A has core type if and only if A « ®3§ for
some core system 38. In this case, the groups in 38 are unique up to quasi-
isomorphism.

PROOF. Suppose A is a group of core type and let G = Ax. Then A~{G
and A ~ r s Ar G, so A ~ r G as well. Thus A & G. Since G is a finite
rank group with no nilpotent endomorphisms, G has a quasi-decomposition
G= ©l6[1 . Gi where for each / G [1, r], Q^(G;) is a division ring and
Hom(G(.,' Gj) = 0 for i^j. Take .SP = {G,.: i € [1, r]} .

Conversely, if A is a finite rank group with A a G = ®3S for some core
system 38, then Al ~t A ~j G and Ar ~ r 4̂ ~ r G. Now ^ , ^ r and G
have no non-zero nilpotent endomorphisms so by [5, Theorems 12 and 13,
and Lemma 18], Al ^ G "k Ar, and hence A is of core type.
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For uniqueness, suppose AK G' — @38' for some other core system 38'.
Then, as above, At s G', so G s G'. Since each group in a core system
is strongly indecomposable, the result follows from the uniqueness of quasi-
decompositions.

COROLLARY 4.3. If A has core type and A & B, then B has core type.

We now use these results to prove a Krull-Schmidt Theorem for groups
of core type, up to equivalence. First we need notions of indecomposability
and uniqueness with respect to » . A naive approach is not sufficient, since
for any group A, A w A © A .

DEFINITION 4.4. A group G is ^-indecomposable if whenever A is a non-
zero pure subgroup of G with G « A © G/A , then A — G.

The w-indecomposables are easily characterized.

PROPOSITION 4.5. G is ^.-indecomposable if and only if £?(G) has no
zero-divisors.

PROOF. (=$-) Let G= ©J6[i m] Ai be a quasi-decomposition of G into
strongly indecomposable quasi-summands. Then by Proposition 2.3, G «
®/e[i mAi so w = 1 and G is strongly indecomposable. Thus if %(G)
has zero divisors, it has non-zero nil radical [2, Vol. II, p. 149] and hence
contains a non-zero / with f2 = 0. Let A — {Gf)t, a proper pure subgroup
of G. Then A < k e r / , so / induces a homomorphism of G/A into A
whose image is full in A. Hence G/A <( A <t G and A <r G/A <r G, so
by Proposition 2.2, G w i $ G/A, a contradiction.

(<=) Let A be a non-zero pure subgroup of G with G « A © G/.4.
By Proposition 2.2, A <r G and G/A <, G, so Hom(G, ^) ^ 0 and if
G/A / 0, Hom(G/y4, G) ^ 0. Let 0 / / e g'(G) with Gf < A and let
0 ^ g e f (G) with ^ < kerg. Then / o g = 0, a contradiction, so ^ = G.

COROLLARY 4.6. Lef G be a group of core type. Then there exists a core
system 38 such that G a ®&. The groups in 38 are unique up to quasi-
isomorphism and are ^-indecomposable.

PROOF. This follows from Propositions 4.2 and 4.5 and the definitions.

Corollary 4.6 is analogous to the Krull-Schmidt Theorem for finite rank
groups up to quasi-isomorphism. We shall now prove an analogue of the
Jordan-Holder Theorem for finite groups.

DEFINITION 4.7. Let £8 be a core system and let G= © 3S. Let H be
a group. A left G-filtration for H is a descending chain of pure subgroups
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H = Ho > Hx > •• • > Hn = 0 such that for 0 < i < n, HJHi+x is
quasi-isomorphic to a subgroup of some Gj(l) € 38. We say Ri/Hi+X is
quasi-embedded in GJ{i).

A G-filtration for H is a left G-filtration such that each Ht/Hj+l is quasi-
isomorphic to some G;(l ).

Let 38 be a core system and let G= ®3S . In [5] it was shown that for any
group H, H <j G if and only if H has a left G-filtration. The following
lemma establishes an analogous result for the relation < and (/-nitrations.

LEMMA 4.8. Let G±®38 for some core system 38 . Let 0 ^ H be a group
with H « G. Then H has a G-filtration.

PROOF. Let 38 = {G,. . . Gm} . Since H <, G, H has a left G-filtration
H = HQ > Hx > • • • > Hn = 0 with quasi-embeddings Q( : HtIHi+l —> Gj(l)

for 0 < i < n where Gj{i) e ^ .
The proof of the lemma is by induction on the rank r of H. If r = 1

then n — 1 and H = HQ is quasi-embedded in some Gj e 38. More-
over since H <r G, Hom(G, H) / 0 so some Hom(Gfc, H) ^ 0. Since
Hom(Gfc, G7) = 0 for k / ; , it follows that k = j and Hom(G;. ,H)^0.

Let 0 ^ / e Hom(GJ, H) and let 6 be a quasi-embedding of H into G7.
Then 0 ^ fd e Ql?(G;), a division algebra. Thus fd is a quasi-invertible
endomorphism of G; whose image is quasi-equal to Gj. Hence rank Gj = 1
and H = G , so our result holds for r = 1.

Now assume the result holds for all groups of rank smaller than r. Since
Hom(G,, G) # 0 and G <, # , Hom(G1, H) / 0. Let 0 ? p : G, -» / / .
Choose i so that GXP < Hi, but G,/? ^ / / | + 1 . Let 5 be the composite map

G, - ^ //,. _ » HJHM -% <7A0 •
Since S ^0, j(i) = 1 and <5 is invertible in Qg'(G1). Thus /? is monic

and // ; = G,y?e// ( + 1. Note that GXP = Gx is quasi-pure in H since // ; is
pure in H.

Let # be the purification of GXP in H. For J < / let Ht = //(/A:
and for t > i + 1 let //, = (Ht ® K)/K. Then it is easy to check that
R = RQ> Rx> ••• > Rt = Ri+X > • • • > Rn = 0 is a left G-filtration of
R = H/K. It follows that R <, G.

Clearly R <r H <rG and rank R < rank H so inductively there exists a
filtration of R with each factor quasi-isomorphic to some Gi(j). To complete
the proof we recall that K= G, and construct the obvious G-filtration for
H.

THEOREM 4.9. Let G = ®38 for some core system 38. Let H be a group.
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Then H « G if and only if

(1) there exists a quasi-embedding a : G —> H;
(2) there exists a quasi-epimorphism n : H —> G;
(3) there exists a G-filtration for H.

PROOF. (<*=) Condition (1) implies G <l H, Condition (2) implies G <r

H and Condition (3) implies that H -C G.
(=>) Since H ~ ; G, Hl "k Gt = G, so there is a quasi-embedding of G

in 7/ . Since H ~ r G, Hr^Gr = G, so there is a quasi-epimorphism of i /
onto G.

The third condition follows from Lemma 4.8.

COROLLARY 4.10. Let G be a group for which £?(G) has no zero-divisors.
Then HKG if and only if H has a filtration H = HQ > H{ >•••> Hn = 0
with each HJHM ^ G.

The necessity for the assumption in Corollary 4.10 that 2?{G) have no
zero-divisors is illustrated by the following example.

EXAMPLE. Let A be a rank one group of nil type, and let (7, and G2 be
non-quasi-isomorphic non-splitting extensions of A by A . Then G{ « G 2 «
A but Gj has no G2-nitration.

COROLLARY 4.11. Let G be a group for which %(G) has no zero-divisors.
Then the set of finite rank groups equivalent to G is the closure of {G} under
the operations of quasi-isomorphism and extension.

For the next theorem, recall Definition 3.2 for Hj[G] and Hj(G).

THEOREM 4.12. Let G and H be groups such that %{G) has no zero-

divisors. Then H » G if and only if for all 0<j< l(G[H]), HJ[G]/Hi+1[G]

s ®I(J) G and for all 0<j< p{G{H)), Hj+1 (G) /HJ(G) s ®s(j) G for some

positive integers t(j) and s(j).

PROOF. The sufficiency of the condition follows immediately from Corol-
lary 4.10.

For necessity, suppose ^(G) has no zero-divisors and H is a group with
H w G. Then by Corollary 4.10, H has a filtration H = HQ> H{ > >
Hn = 0 with each HJHi+x ^ G. The proof is by induction on n, and the
result is clearly true if n - 1. Let n > 1 and assume the theorem holds
for all groups having a shorter such filtration. To simplify notation, denote
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UJ[G] by UJ for any group £/ ,andlet ©G denote an arbitrary finite direct
sum of copies of G.

Let X be the left G-length of H so Hx = 0 , and let 0 < i < X be such
that / /„_, < Hl but Hn_x £ Hi+l . Regard HlIHM as a subgroup of
Since

n l i+i < H'/Hi+l < ©G,

choose a projection n onto some copy of G such that WTC ^ 0. Now
#n_i ^ G and the composite map Hn_x ^ H' -> H'/Hl+1 ^ G is non-zero,
so, since Q^(G) is a division algebra, H' =Hni ® X for some group X

containing / / ' + 1 .
For any group V with Hn_x < V < H, let F denote V/Hn_l. Note that

/ / « G by Theorem 4.9, so by the induction assumption, Rj/Hj+l ^ © G
for all j . It now follows by induction on j that for 0 < j < i,

We prove that HJ /Hj+1^ © G by considering three cases. First, let 0 <
j < i. Then

Hj/Hj+l 3 rHJ/~HJTT S HJ/Hj+l s © G.

The first isomorphism follows from the second isomorphism theorem, the
second from the paragraph above, and the quasi-isomorphism follows from
the induction assumption. Thus our theorem holds for all j with 0 < j < i.

Next, let i < j < X. Then j — i + s for some s > 0. For all 5 > 0,

since Hn_y = G. Moreover, for 5 > 0,

Hi+s = {Hl)s = {Hi)s<kXs,

since if'' <k X . Thus for 5 > 0,

®G<kBi+s/Hi+s+i<kXs/Xs+l±Hi+s/Hi+s+l.

This proves the theorem for j such that i < j < X.
Finally,

tt'7//'+1 s (7/n_, © X)l(Hn_x ® X)1 * Hn_x © XIX'

*G®(R'/Ri+l)* ©G.

Thus, HJ[G]/HJ+l[G]^ © G for 0 < j < X. A symmetric argument
establishes the same claim for Hj+l(G)/HJ(G) and the proof is complete.
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COROLLARY 4.13. If^{G) has no zero-divisors, and H&G, then k(H[G])
= p(H(G)).

PROOF. Let k = k(H[G]) and p = p(H(G)). Then

0 = HX[G] < HX~X[G\ <•••< H°[G] = H,

and
0 = H°(G) <Hl(G)<-< HP(G) = H,

where each factor is quasi-isomorphic to a direct sum of copies of G. Since
H/H"~l{G)= e G, it follows that Hl[G] < HP~\G). Suppose we have
shown that Hk[G] < Hp~k(G). Then

Hk[G]/

<Hp~k(G)/H"~k~l(G).

By Theorem 4.12, the last factor is quasi-equal to a direct sum of copies
of G, so Hk+i[G] < Hp~k~\G). By induction, HP[G] < H°{G) = 0, so
k < p • A symmetric argument shows that p < k.

We close by showing that a Jordan-Holder type theorem holds for the
nitrations obtained in Lemma 4.8 and Theorem 4.9. The result may be of
some independent interest.

THEOREM 4.14. Let 38 be a core system, let H be a group, and let H =
H0>Hl>-> Hn+1 = 0 and H = Hl

0>H[>-> H'm+l = 0 be filiations
of H such that Ht/Hi+l^Gm and H'jH'^G^, where i .-> Gj{i} and
i»-+ Gfc(l) are functions from [0, n] and [0, m] into 38. Then n = m and
there is a permutation a of[0,n] such that H^H^^H^/H'^^ for all
ie[0,n].

PROOF. The proof is by induction on rank H, and the result is clear if
rank H = 1. Let rank H = r > 1 and suppose the result holds for all groups
of rank < r. Choose i > 0 minimal such that H' < H, but H'_ •£ Ht,, .
Arguing as in the proof of Lemma 4.8 we find H+H^ © Hi+l. Then

HIH'm>H[lH'm>...>H'm_JH'm

and

H/H'm > HJH'm > ••• > HJH'^H^ > Hi+2 > • • • > / / „ > 0

are nitrations of the group H/H'm with factors in 38. By induction the factor
groups in these new nitrations are quasi-isomorphic after rearrangement. But
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these factor groups coincide with those of the original nitrations except for
the groups H'm and Hi/Hi+l. Since Hi/Hi+l'kH'm , the proof is complete.

References

[1] S.C. Dickson, A Torsion Theory for Abelian Categories, Trans. Amer. Math. Soc. 121
(1966), 223-235.

[2] L. Fuchs, Infinite Abelian Groups, Vol. I and Vol. II, Academic Press, New York, 1970
and 1973.

[3] I. Kaplansky, Infinite Abelian Groups , University of Michigan Press, Ann Arbor, 1954.
[4] P. Schultz, Annihilator Classes of Torsion-free Abelian Groups, in Topics in Algebra,

Lecture Notes in Mathematics 697, Springer-Verlag, Berlin, Heidelberg and New York,
1978.

[5] W. J. Wickless An equivalence relation for torsion-free groups of finite rank, preprint.

The University of Western Australia, University of Connecticut,
Nedlands, Western Australia, 6009 Storrs, Connecticut, 06268
Australia U.S.A.

University of Connecticut,
Storrs, Connecticut, 06268
U.S.A.

https://doi.org/10.1017/S1446788700032900 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032900

