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Motivated by applications to multi-antenna wireless networks, we propose a distributed
and asynchronous algorithm for stochastic semidefinite programming. This algorithm is a
stochastic approximation of a continuous-time matrix exponential scheme which is further
regularized by the addition of an entropy-like term to the problem’s objective function.
We show that the resulting algorithm converges almost surely to an ε-approximation of
the optimal solution requiring only an unbiased estimate of the gradient of the prob-
lem’s stochastic objective. When applied to throughput maximization in wireless systems,
the proposed algorithm retains its convergence properties under a wide array of mobil-
ity impediments such as user update asynchronicities, random delays and/or ergodically
changing channels. Our theoretical analysis is complemented by extensive numerical simu-
lations, which illustrate the robustness and scalability of the proposed method in realistic
network conditions.

1. INTRODUCTION

Semidefinite programming (i.e., the minimization of a convex function over a convex subset
of the cone of positive-semidefinite matrices) comprises a rich class of convex optimiza-
tion problems that is both relatively tractable (interior-point methods can often be used
with polynomial worst-case complexity [26]) and also very powerful (many optimization
problems in engineering and combinatorial optimization can be recast as semidefinite pro-
grams [9]). Especially in an engineering context, many applications involve a certain degree
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of randomness (either in the objective function itself or in the feedback provided to the
optimizer) [15,41] so many standard semidefinite optimization algorithms cannot be applied
“off the shelf”. For instance, minimum volume convering problems (where quadratic func-
tions are expressed as semidefinite constraints) have been a very active research topic for the
last fifty years [38]. In wireless telecommunications, transmission ranges of mobile devices
have also been modeled as Euclidean balls with random parameters, hence expressible
via semidefinite constraints with stochastic perturbations; as a result, route discovery in
mobile ad-hoc networks is typically addressed using stochastic semidefinite programming
approaches [43]. In view of the above, we focus in this paper on stochastic semidefinite
programming, a subclass of semidefinite programs where the objective function is given in
the form of an expectation with possibly unknown randomness.

In this framework, there are two main algorithmic approaches. In the “offline” approach,
it is assumed that the optimizing agent (or agents in the case of multi-agent optimization)
knows the expectation of his objective function in some semi-explicit form (possibly quite
complicated) and tries to optimize it by calling an appropriate semidefinite optimization
algorithm. On the other hand, in the “online” approach to optimization, the functional
form of the objective function (and any inherent randomness) is unknown and the agent
seeks to optimize his objective based on indirect (and possibly imperfect) performance
indicators. The former approach is usually employed in large-scale industrial optimization
problems where the collection of data is not costly, but their processing is. Instead, the
latter approach applies to distributed optimization problems in complex systems (such as
networks) where the optimizing agents are not capable of collecting a lot of data, but the
agents have the computing power to handle the data they do collect.

Motivated by applications to wireless networks, our paper adopts the second approach
with the aim of proposing a fully distributed algorithm for stochastic multi-agent semidef-
inite optimization problems that (a) requires minimal (and possibly imperfect) gradient
information; and (b) is fully parallelizable and does not require any coordination between
the optimizing agents. This algorithm is obtained as a variable step-size stochastic approx-
imation [7,8] of a continuous-time matrix exponential learning scheme which has important
ties to the mirror descent machinery of [17,25,27]. In contrast to mirror descent methods
however, we establish the convergence of the algorithm’s last iterate and not only the con-
vergence of its empirical time-average, properly weighed by the step-size sequence employed.
In applications to wireless mobile systems, this is crucial because it implies the convergence
of the network to a stable, optimum state in a strong sense instead of a weaker, average
sense.

To complement our abstract theoretical analysis (Sections 2 and 3), we also present a
concrete application to multi-antenna wireless mobile networks with ergodically changing
channel conditions. As explained in Section 4, this case fits squarely within the core frame-
work of Section 2: First, this is due to the problem’s inherently distributed aspect (since
it is often impossible—or impractical—to coordinate and/or synchronize the mobile users’
updates). Second, it is due to the lack of full system information at the user end and the
fact that users do not necessarily know the stochastic law of their channels.

The users’ objective in this setting is to maximize their information transmission rate by
optimizing the covariance matrix of their input signal distribution. Two cases are considered.
First, we consider the case where the users have perfect feedback from the receiver but their
channels evolve following a stationary, ergodic process (the fast-fading regime) [15]. In this
case, the users’ transmission rate is the stochastic average of their achievable rate over all
channel realizations and the problem boils down to a multi-agent stochastic semidefinite
program. The second case concerns static channel conditions (i.e., the wireless medium is
assumed to evolve at a much slower rate than the transmitters’ update time-scale). In this
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case, a major challenge arises if the users only have access to imperfect receiver feedback
and channel state information; thus, even though the underlying problem is deterministic,
stochasticity arises from the noise in the users’ measurements and observations. A partial
description of our method applied to this “imperfect information” case was presented at
our earlier conference paper [12].

In either case, we show how the proposed algorithmic scheme can be implemented in
both synchronous and asynchronous ways. Additionally, we provide a procedure to compute
an unbiased estimator of the gradient of the transmission rate for each transmitter via
receiver-transmitter reciprocity. Finally, we also provide a suite of numerical simulations to
illustrate the robustness of our algorithm and to compare it to more traditional water-filling
techniques (which it outperforms).

2. PROBLEM FORMULATION AND PRELIMINARIES

As we mentioned in the introduction, our main goal is to provide an efficient and robust solu-
tion method for semidefinite optimization problems where the objective function depends
on a controlled matrix variable X and a random variable ω (that cannot be controlled
by the optimizer). More precisely, we consider problems where, through repeated iterations,
the optimizing agent (or agent for short) seeks to converge to a value of X that opti-
mizes the expected value of the objective function with respect to ω (i.e., that solves the
agent’s stochastic optimization problem “on average”). Obviously, if the agent’s “mean”
objective function can be calculated explicitly, the above boils down to a deterministic
problem; however, a major challenge occurs if this expectation cannot be calculated—or,
worse, if the distribution of ω is not even known to begin with.

The above problem will comprise the core of our considerations and we will formalize it
in the following section; a variant formulation for multi-agent environments is then provided
in Section 2.2. From a mathematical point of view, both models are essentially equivalent
but, from a practical standpoint, they describe problems of a very different nature.

2.1. The Core Problem

Let HM = {X ∈ C
M×M : X = X†} denote the space of M ×M Hermitian matrices and

let X = {X � 0 : tr(X) = 1} denote the spectrahedron of positive-semidefinite matrices
with unit trace. In what follows, we will focus on the stochastic semidefinite optimization
problem (SSP):

minimize E[f(X;ω)],

subject to X ∈ X ,
(SSP)

where ω is an abstract random variable taking values in some probability space Ω, the
expectation E[· ] is taken with respect to the law of ω, and f : X × Ω→ R is a smooth
random function which is convex with respect to X ∈ X for all ω ∈ Ω.

Importantly, the simple formulation (SSP) above accounts for a fairly wide class of
stochastic optimization problems over compact spectrahedra (the semidefinite equivalent of
polytopes, either real or complex). In fact, as long as the feasible region X ′ of a semidefi-
nite program is a spectrahedron that is invariant under unitary transformations of the form
X �→ UXU† for all unitary matrices U (recall here that a complex matrix U is unitary if
and only if UU† = U†U = I. For the real case, invariance need only hold over all orthogonal
matrices O such that OO� = O�O = I), optimizing a convex function over X ′ boils down
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to optimizing a convex function over X (at the cost of increasing the problem’s dimen-
sionality) [29]. As such, (SSP) can be seen as a canonical form for stochastic optimization
problems over compact, unitary-invariant spectrahedra.

In the above framework, the mean objective function

F (X) = E[f(X;ω)] (2.1)

is itself convex over X . For simplicity, we will also assume that F is finite and smooth
over X . In this way, we obtain the (convex) semidefinite optimization problem

minimize F (X),

subject to X ∈ X ,
(SP)

which could be solved by standard convex programming methods, provided that F is known
to the optimizer. As such, the main difficulty in solving (SSP)/(SP) is precisely that the
law of ω may not be known, in which case the functional form of F is also unknown. To
circumvent this difficulty, standard results in convex analysis [37] show that the gradient
matrix

V(X) = ∇XF (X) (2.2)

of the mean objective function F may be calculated by interchanging differentiation with
expectation, that is,

∇XF (X) = E[∇Xf(X;ω)], for all X ∈ X . (2.3)

Thus, following the stochastic approximation approach of [9,25,27], we will focus on solv-
ing (SSP) based only on random (sample-dependent) estimates of the stochastic gradient
matrices ∇Xf(X;ω) (for posterity, we note here that ∇Xf(X;ω) is Hermitian (on account
of the fact that f is real)).

To make this precise, let X(1),X(2), . . . , be a (possibly random) sequence of play by
the optimizing agent—that is, at stage n, the agent chooses X(n) and incurs an expected
cost of F (X(n)). Then, at each stage n = 1, 2, . . . , we will assume that the agent has access
to a random matrix V̂(n) which satisfies the statistical unbiasedness hypothesis:

Assumption 1: V̂(n) is a uniformly bounded random variable such that

E
[
V̂(n) | Fn

]
= V(X(n)) for all n = 1, 2, . . . , (A1)

where Fn denotes the filtration induced by the history process X(n).

The statistical hypothesis above allow us to account for a very wide range of estimation
oracles: in particular, we will not be assuming independent and identically distributed (i.i.d)
observations (a feature which is crucial in the context of wireless networks where observa-
tions are typically correlated with the state of the system). Instead, we will only assume
there is an oracle mechanism that returns a Fn-measurable estimate V̂(n) of V(X(n)) once
the agent plays X(n); the construction of such an oracle for specific applications will be
detailed in Section 4.

Remark 2.1: An important special case of the problem (SSP) is when the expectation in
(2.1) is deterministic, that is, f(· , ω) = f(· , ω′) for almost every ω, ω′ ∈ Ω. In that case,
Assumption (A1) accounts for problems where the optimizer is called to solve a determinis-
tic semidefinite program with imperfect gradient feedback and stochasticity stems from the
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random noise perturbing the agent’s observations. More generally, depending on the struc-
ture of the probability space Ω, the randomness in the stochastic optimization problem
(SSP) and the randomness in the gradient observations V̂(n) could be completely decou-
pled; the only assumption that we will make regarding these different degrees of randomness
is (A1).

2.2. Multi-Agent Optimization and Game Theory

In multi-agent environments, we assume that there are multiple optimizing agents
k = 1, . . . ,K, each one controlling an individual control variable Xk that impacts the agents’
global objective f in a different way. Specifically, this amounts to the following multi-agent
version of (SSP):

minimize E [f(X1, . . . ,XK ;ω)] ,

subject to Xk ∈ X k,
(2.4)

where X k = {Xk ∈ C
Mk×Mk : Xk � 0, tr(Xk) = 1} denotes the feasible region of agent k

and f :
∏

k X k × Ω→ R satisfies the same convexity and smoothness assumptions as before.
In this setting, if there is no central controller to coordinate the agents’ actions and

provide global feedback, it will be assumed that agents can only access an estimate V̂k of
their individual gradient matrices

Vk(X) = ∇Xk
F (X), (2.5)

where X = (X1, . . . ,XK) denotes the agents’ aggregate action profile and F (X) =
E[f(X;ω)]. Thus, mutatis mutandis, we will assume that Assumption (A1) applies to each
agent separately, and we will seek to provide a distributed optimization algorithm that solves
(2.4) under these assumptions.

As a further extension of the above framework, we will also consider the case
where each agent seeks to minimize unilaterally an individual objective function fk (i.e.,
there is no global objective). This situation is known as a game in normal form (or,
more simply, a game) and the solution concept that we will focus on is that of Nash
equilibrium [14,23,24,30]. Formally, we will say that an action profile X∗ = (X∗

1, . . . ,X
∗
K)

is a Nash equilibrium of the game induced by the mean individual objective functions
Fk(X) = E[fk(X;ω)] when

Fk(X∗) ≤ Fk(Xk;X∗
−k) for all Xk ∈ X k, k = 1, . . . ,K, (NE)

with (Xk;X∗
−k) denoting the tuple (X∗

1, . . . ,Xk, . . . ,X∗
K). Put differently, Nash equilibria

are simply action profiles which are unilaterally stable in that no agent has any incentive to
deviate from them.

The connection between game theory and distributed optimization is recovered in the
class of potential games [23], that is, games where the players’ mean objective functions
are aligned along a common potential function F . More precisely, following Monderer and
Shapley [23], we will say that F is a potential function for a game with mean objectives Fk

when
Fk(Xk;X−k)− Fk(X′

k;X−k) = F (Xk;X−k)− Fk(X′
k;X−k) (2.6)

for all actions Xk,X′
k ∈ X k of agent k, and for all action profiles X−k ∈ X−k ≡

∏
� �=k X �

of k’s opponents. As can be easily seen, if a game admits a potential function, its Nash equi-
libria necessarily coincide with the critical points of its potential function [23]. Thus, if the
game’s potential F is convex over X ≡∏k X k, it follows that the equilibrium problem (NE)
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Algorithm 1. Algorithmic implementation of (DXL).

Parameters: discount parameter τ > 0; decreasing step-size sequence γn.
Initialize: n← 0; Y← 0; X← exp(Y)/tr[exp(Y)];
Repeat

for each agent k ∈ K do simultaneously

get gradient estimate V̂;

update score matrix: Y← Y− γn

(
V̂ + τY

)
;

update primal variable: X← exp(Y)
/
tr[exp(Y)];

n← n + 1;

until termination criterion is reached.

can be reduced to the distributed optimization problem (2.4) (conversely, every distributed
optimization problem can be seen as a potential game by setting fk = f for all k). We will
use this observation freely throughout our paper—and, especially, in Section 4.

3. ALGORITHMS AND RESULTS

3.1. Single-Agent Optimization Analysis

The main algorithmic scheme that we will use to solve (SSP)/(SP) will be based on the
following discounted exponential learning (DXL) recursion:

Y(n + 1) = Y(n)− γn

(
V̂(n) + τY(n)

)
,

X(n + 1) =
exp(Y(n + 1))

tr[exp(Y(n + 1))]
,

(DXL)

where

(1) Y(n) is an auxiliary scoring matrix which aggregates gradient information.

(2) V̂(n) is a random matrix variable satisfying the unbiasedness assumption (A1).
(3) γn, n = 1, 2, . . . , is a non-increasing step-size sequence (specific assumptions for γn

will be discussed below).
(4) τ > 0 is a (small) discount parameter which acts as a failsafe against the iterates

Y(n) getting out of bounds.

Intuitively, (DXL) acts as a “regularized” stochastic gradient descent process: if we
ignore the parameter τ for the moment, each iteration of (DXL) simply aggregates the
received gradient information (in the update of Y) and then “projects” back to the primal
variable X to receive a new gradient and continue the process. The reason that the expo-
nentiation step acts as a “projection” operator is that it aligns the eigenvalues of X with
those of Y, so, in a certain sense, X is an “exponential projection” of Y to X .

The role of the discount parameter τ in (DXL) (and the reason for calling it a “discount”
in the first place) is more subtle. To understand it, note first that the recursive step of (DXL)

https://doi.org/10.1017/S0269964816000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000127


STOCHASTIC SEMIDEFINITE PROGRAMMING VIA STOCHASTIC APPROXIMATION 437

can be rewritten in aggregate form as:

Y(n + 1) = e−Tn,1Y(1)−
n∑

m=1

e−Tn,m+1γmV̂(m), (3.1)

where, assuming that γn is small enough, we have set:

Tn,m =
n∑

j=m

log(1− τγj). (3.2)

By expanding the logarithm to leading order in (3.2), this last sum is asymptotically equal
to −τtn,m where

tn,m =
n∑

j=m

γj . (3.3)

Accordingly, to leading order, (3.1) can be rewritten for large n (and small γn) as:

Y(n + 1) ≈ rtn,1Y(1)−
n∑

m=1

rtn,m+1γmV̂(m), (3.4)

with tn,m given by (3.3) and r = exp(−τ).
Of course, the above derivation is approximate in nature but it highlights the discount

role of τ . For a constant step-size sequence γn = γ, we have tn,m = γ · (n−m), so the
exponential sum in (3.4) means that (DXL) assigns (exponentially) more weight to recent
observations rather than older ones. In a sense, this discounting counters the use of a
vanishing γn. A decreasing step-size implies that more recent gradient observations enter
the algorithm with a decreasing weight; by contrast, the use of a positive discount parameter
τ > 0 tempers this (somewhat counter-intuitive) behavior by increasing the relative weight
of more recent gradient observations. Moreover, from a calculational standpoint, the use
of a positive discount parameter τ has the added benefit that the auxiliary score matrices
Y(n) cannot grow too large. If the step-size sequence γn is chosen in a way such that the
geometric series

∑n
m=1 τmrtn,m+1 remains summable (we will elaborate more on the choice of

γn below), then Y(n) will be uniformly bounded on account of (3.4) and Assumption (A1).
Of course, in so doing, the discount parameter τ also introduces a systematic determin-

istic bias to the gradient observations V̂(n), that is, a perturbation that persists even in the
noiseless regime where V̂(n) is actually deterministic. Indeed, if (DXL) is run with perfect
gradient observations V̂(n) = V(X(n)), then any fixed point X∗ of (DXL) will satisfy:

τY∗ = V(X∗),

X∗ =
exp(Y∗)

tr[exp(Y∗)]
.

(3.5)

Setting V∗ = V(X∗) for convenience and solving (3.5) for X∗ then gives:

V∗ + τ log X∗ = −τ log tr [exp(−V∗/τ)] I, (3.6)

or, after a slight rearrangement:

V∗ + τ (log X∗ + I) = −κI, (3.7)

for κ = τ (1 + log(tr[exp(−V∗/τ)])). Importantly, the right-hand side (RHS) of (3.7) can
be written more simply as V∗ + τ(log X∗ + I) = ∇Fτ (X∗) where the perturbed objective
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function Fτ : X → R is defined as:

Fτ (X) = F (X) + h(X), (3.8)

with
h(X) = tr[X log X] (3.9)

denoting the so-called von Neumann (or quantum) entropy of X [40] (that the gradient of Fτ

is ∇Fτ (X) = V(X) + τ(log X + I) follows from standard arguments in matrix calculus—see
for example, [13, Appendix D]). Thus, given that X∗ must satisfy the trace constraint
tr(X∗) = 1, it follows that any fixed point X∗ of (DXL) will be a solution of the perturbed
optimization problem:

minimize F (X) + τtr[X log X],

subject to X ∈ X .
(SPτ)

Obviously, the solution set of (SPτ ) is asymptotically close to that of the unperturbed
problem (SP) in the limit τ → 0 (where the entropic perturbation term h(X) vanishes):
more precisely, if X∗

τ is a solution of (SPτ ), there exists a solution X∗ of (SP) such that the
distance between X∗

τ and X∗ vanishes as τ → 0. That said, an important difference between
(SP) and (SPτ ) is that the latter is strictly convex (because h is). As a result, (SPτ ) admits
a unique solution, even when the solution set of (SP) is a non-singleton convex set.

With all this in mind, we are in a position to state our main result for (DXL):

Theorem 3.1: Assume that (DXL) is run with gradient observations satisfying (A1) and
with a variable step-size sequence γn such that

∑∞
n=1 γ2

n <
∑∞

n=1 γn =∞. Then, the iterates
X(n) of (DXL) converge almost surely to a solution of the perturbed optimization problem
(SPτ ); in particular, X(n) converges (a.s.) within ε(τ) of a solution of the stochastic problem
(SSP) and the error ε(τ) vanishes in the limit τ → 0.

Theorem 3.1 will be our main result for (DXL) so, before proving it, some remarks are
in order:

Remark 3.1: The statement of Theorem 3.1 suggests that the discount parameter τ should
be taken as small as possible in order to ensure the algorithm’s convergence to a state
X∗

τ ∈ X that is as close as possible to the solution set of (SSP). On the other hand, very
small τ > 0 could mean that the iterates Y(n) of (DXL) could grow quite large, potentially
exceeding the numerical capacity of the optimizing’s agent calculating device—recall the
discussion surrounding (3.4). As a result, the discount parameter τ > 0 essentially reflects
the algorithm’s accuracy versus memory trade-off: lower values of τ > 0 lead to better
solutions of (SSP), but at the expense of higher memory requirements and more processing
power. Ultimately, the choice of τ relies on the technical specifications of the optimization
problem to be solved so the “optimal” choice of τ can only be made on a case-by-case basis.

Remark 3.2: In a similar vein to the above remark, Assumption 1 can actually be relaxed
to account for gradient observations that are only bounded in mean square (instead of
being bounded almost surely). In this context however, a given observation V̂ of V could
exceed the storage/processing capacity of the agent’s optimizing device, thus introducing
additional arithmetic stability errors to running (DXL). Such issues lie beyond the scope
of the current work so we opted to work with the almost sure boundedness assumption for
simplicity.
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Remark 3.3: We should also note here that the “�2 − �1” summability condition
∑∞

n=1 γ2
n <∑∞

n=1 γn =∞ can also be relaxed in the context of Assumption 1. Specifically, Theorem
3.1 remains true even with significantly more aggressive step-size sequences of the form
γn = n−a for some arbitrarily small a > 0. The reason for stating (and proving) Theorem 3.1
in the “�2 − �1” framework was only done for simplicity; in practice, the use of a (nearly)
constant step-size greatly accelerates the algorithm, a fact that we explore in Section 4.

Now, to prove Theorem 3.1, our strategy will be as follows: First, we will show that the
iterates of (DXL) constitute a so-called asymptotic pseudotrajectory (APT) of the mean,
continuous-time dynamics:

Ẏ = −V(X)− τY,

X =
exp(Y)

tr[exp(Y)]
,

(DXLc)

that is, the iterates of (DXL) are asymptotically close to solution segments of (DXLc) of
arbitrary length [7]. We will then show that (DXLc) converges to the (unique) solution of
the perturbed optimization problem (SPτ ); the claim of (3.1) will then follow from standard
results in the theory of stochastic approximation [7].

We begin by showing that the iterates of (DXL) comprise an asymptotic pseudotrajec-
tory of the dynamics (DXLc) in the sense of [7], that is,

lim
t→∞ sup

0≤h≤T

∥∥X̄(t + h)− Φh(X̄(t))
∥∥ = 0 (a.s.), (3.10)

where X̄(t), t ≥ 0 is the linear interpolation of the iterates X(n) of (DXL) while Φt(X)
denotes the flow induced on X by (DXLc)—that is, Φt(X), t ≥ 0, is the solution trajectory
of (DXLc) that starts at X ∈ X . To that end, we will first need the following boundedness
result:

Lemma 3.2: If γn < 1/τ for all sufficiently large n, then the iterates Y(n) of (DXL) under
Assumption 1 are bounded (a.s.).

Proof: First, let V > 0 be such that ‖V̂(n)‖ ≤ V almost surely (that such a V exists is
a consequence of Assumption 1); additionally, let n0 be such that 0 < 1− γnτ ≤ 1 for all
n ≥ n0. Then, for n ≥ n0, the definition (DXL) of Y(n) and the bound ‖V̂(n)‖ < V readily
yield ‖Y(n + 1)‖ ≤ (1− τγn)‖Y(n)‖+ γnV . We are thus reduced to the following cases:

• If τ‖Y(n)‖ ≥ V , then ‖Y(n + 1)‖ ≤ ‖Y(n)‖+ γn(V − τ‖Y(n)‖) ≤ ‖Y(n)‖, so
Y(n) decreases in norm.

• Otherwise, if τ‖Y(n)‖ < V , we will have ‖Y(n + 1)‖ ≤ (1− γnτ)V/τ + γnV = V/τ .

It follows that ‖Y(n + 1)‖ will either decrease or be uniformly bounded by V , so our claim
follows by induction. �

Thanks to this lemma, we readily obtain:

Proposition 3.3: With notation as in Lemma 3.2, the sequence Y(n) comprises an
asymptotic pseudotrajectory of (DXLc).
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Proof: First, taking expectations in the RHS of (DXL) yields:

E[Y(n)− γn(V̂(n) + τY(n)) | Fn] = Y(n)− γn(V(X(n)) + τY(n)), (3.11)

where we used Assumption 1 and the fact that Y(n) and X(n) are fully determined by
Fn. Since Y(n) is bounded (a.s.) by Lemma 3.2, our claim follows from Proposition 4.1
in [7]. �

We now proceed to show that the dynamics (DXLc) converge to the (unique) solution
of the perturbed optimization problem (SPτ ) from any initial condition Y(0). To that end,
we will first need to derive the dynamics of the primal control variable X(t):

Lemma 3.4: Let X(t) be a solution orbit of the continuous-time dynamical system (DXLc).
Then, X(t) satisfies the dynamics:

Ẋ = −
∫ 1

0

X1−sVτ (X)Xs ds + tr[XVτ (X)]X, (3.12)

where
Vτ (X) = V(X) + τ log X. (3.13)

Proof: Let Z(Y) = tr[exp(Y)]. Then, differentiating X(t) with respect to t, we get:

Ẋ =
1
Z(Y)

d

dt
exp(Y)− exp(Y)

Z2(Y)
Ż

=
1
Z(Y)

∫ 1

0

e(1−s)YẎesY ds− 1
Z2(Y)

eYtr[ẎeY]

= −
∫ 1

0

X1−sVτ (X)Xs ds + tr[XVτ (X)]X, (3.14)

where the second equality is an application of Fréchet’s derivative formula for matrix
exponentials [16] and the last one follows by recalling that X = exp(Y)/tr[exp(Y)] so
Ẏ = −V(X)− τ(log X + Z(Y)I) = −Vτ (X)− τZ(Y)I by the definition of the dynamics
(DXLc). �

With this explicit expression for the evolution of X at hand, we are almost in a position
to show that the perturbed objective function Fτ (X) = F (X) + τtr[X log X] of (SPτ ) is a
strict Lyapunov function for the dynamics (3.12). The only other result that we will need
is the following Jensen-like inequality for positive-definite matrices:

Lemma 3.5: Consider Hermitian matrices W,X ∈HM with X  0 and tr(X) = 1. Then,
for all s ∈ [0, 1], we have tr(X1−sWXsW) ≥ tr(XW)2 with equality if and only if W ∝ I.

Proof: Let a = (1− s)/2, b = s/2, and set A = X1/2, B = XaWXb. Then, the
Cauchy–Schwarz inequality for matrices gives tr(AA†) tr(BB†) ≥ |tr(AB†)|2 with equal-
ity iff A ∝ B. On the other hand, we also have tr(AA†) = trX = 1 and tr(BB†) =
tr[XaWXbXbWXa] = tr[X1−sWXsW], leading to the inequality:

1 · tr[X1−sWXsW] ≥
∣∣∣tr[X1/2Xs/2WX(1−s)/2]

∣∣∣2 = |tr(XW)|2 = tr(XW)2, (3.15)

where the last equality follows from the fact that tr(XW) is real (recall that X is positive-
definite while W is Hermitian). This inequality holds as an equality if and only if X1/2 ∝
XaWXb so, with a + b = 1/2, this last condition is equivalent to W ∝ I, as claimed. �
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With all this in hand, we obtain:

Proposition 3.6: Let X(t) be an interior solution orbit of the continuous-time dynamics
(DXLc). Then, d

dtFτ (X(t)) ≤ 0 for all t ≥ 0, with inequality if and only if Vτ (X(t)) ∝
I—that is, at interior stationary points of (3.12).

Proof: By a simple application of the chain rule, we readily get:

Ḟτ = tr[Ẋ∇Fτ (X)] = −tr[Ẋ · (V(X) + τ(log X + I))] = −tr[ẊVτ (X)], (3.16)

where we have used the definition of Vτ and the fact that tr[Ẋ] = 0 (since tr[X(t)] = 1 for
all t ≥ 0). Invoking Lemma 3.4, we then obtain

Ḟτ =
∫ 1

0

tr
[
X1−sVτ (X)XsVτ (X)

]
ds− tr[XVτ (X)]2

=
∫ 1

0

tr
[
X1−sVτ (X)XsVτ (X)

]− tr[XVτ (X)]2 ds, (3.17)

and our assertion follows from Lemma 3.5 above. �

As a corollary of the above, we then get:

Corollary 3.7: For every initial condition Y(0) ∈HM , the dynamics (DXLc) converge
to the unique solution X∗

τ of the perturbed optimization problem (SPτ )

Finally, we have:

Proof of Theorem 3.1: By Proposition 3.3, the iterates of (DXL) form an asymptotic pseu-
dotrajectory of the continuous-time dynamical system (DXLc). Since the objective function
of the perturbed optimization problem (SPτ ) is a strict Lyapunov function for the latter
(Proposition 3.6 coupled with the fact that any solution of (SPτ ) is interior), our claim
follows readily from standard stochastic approximation results [7, Theorem 5.7]. �

From the proof of Theorem 3.1, we can identify two points where the positivity of τ plays
a crucial role. The first is the boundedness of the iterates Y(n) of the algorithm (Lemma 3.2)
which guarantees that (DXL) is a stochastic approximation of the mean dynamics (DXLc).
The second is the fact that the problem (SPτ ) admits a unique, interior solution. In the limit
case τ = 0, it is still possible to show that (DXL) comprises an asymptotic pseudotrajectory
of (DXLc) but the Lyapunov argument of Proposition 3.6 is more subtle. Since we are only
interested in algorithms with finite iterates (for computer arithmetic reasons), we will not
press this issue further, delegating it instead to future work.

3.2. Distributed Optimization in Asynchronous Multi-Agent Environments

Of course, even though the information requirements of (DXL) are relatively minimal (an
imperfect oracle call to the gradient of the agent’s stochastic objective), it is not clear
whether it can be readily extended to a distributed optimization setting (or a game-theoretic
context) where agents update independently of one another and there is often a delay
between agent updates and observations. To overcome these limitations, we examine here
a fully decentralized variant of (DXL) which addresses the issues above.
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Algorithm 2. Asynchronous implementation of (DXL).

Parameters: discount rate τ > 0; initial step-size γ.

Initialize: n← 1; Y← 0; X← exp(Y)/tr[exp(Y)].
Repeat

At each UpdateEvent

get gradient estimate V̂;

update score matrix: Y← Y− γn

(
V̂ + τY

)
;

update primal variable: X← exp(Y)
/
tr[exp(Y)];

n← n + 1;

until termination criterion is reached.

To make all this precise, we will work with the multi-agent stochastic optimization
problem (2.4) and we will assume that the agents seek to converge to a solution thereof
through repeated play. To that end, let n denote the nth overall update epoch in the
system, let Kn ⊂ K denote the subset of agents who update at this epoch (typically |Kn| = 1
if agents update at random times), and let dk(n) be the number of periods that have elapsed
at period n since the last update of agent k. With all this in mind, we will focus on the
following asynchronous variant of (DXL):

Yk(n + 1) = Yk(n)− γnk
1(k ∈ Kn) · (V̂k(n) + τYk(n)

)
,

Xk(n + 1) =
exp(Yk(n + 1))

tr[exp(Yk(n + 1))]
,

(3.18)

where nk =
∑n

j=1 1(k ∈ Kj) denotes the number of updates performed by agent k up
to epoch n while the (asynchronous) gradient estimate V̂k(n) satisfies the unbiasedness
assumption:

E
[
V̂k(n) | Fn

]
= Vk(X1(n− d1(n)), . . . ,XK(n− dK(n))), (A1′)

where, as before, Vk(X1, . . . ,Xn) = ∇Xk
F (X1, . . . ,XK).

By definition, Yk(n) and Xk(n) are updated at the (n + 1)th update period if and
only if k ∈ Kn, so every agent follows his individual update timer, independently of what
other agents in the system do (for a pseudocode implementation, see Algorithm 2). Remark-
ably, in this completely decentralized context (with out-of-date and/or imperfect gradient
observations), we still get:

Theorem 3.8: Assume that the agents’ delay process dk(n) are bounded (a.s.) and the
set of agents Kn that updates at the nth overall update epoch is a homogeneous recur-
rent Markov chain—that is, all agents update a strictly positive rate. Assume further that
Algorithm 2 is run with step-sizes γn ∝ 1/n and imperfect gradient estimates V̂k(n) sat-
isfying the unbiasedness assumption (A1’). Then, the algorithm’s iterates converge (a.s.)
to the (unique) minimizer of the perturbed objective Fτ (X1, . . . ,XK) = F (X1, . . . ,XK) +
τ
∑K

k=1 tr[Xk log Xk] over X =
∏K

k=1 X k.
In particular, Algorithm 2 converges within ε(τ) of a solution of the distributed

stochastic optimization problem (2.4) and the approximation error ε(τ) vanishes as τ → 0+.
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Proof: Following Theorems 2 and 3 in [8], the asynchronous recursion (3.18) may be seen
as a stochastic approximation of the rate-adjusted dynamics:

Ẏk = −ρk[Vk + τYk], (3.19)

where ρk = limn→∞ nk/n > 0 is the asymptotic update rate of user k (the existence and
positivity of this limit follows from the ergodicity assumption on the set-valued process Kn).
This multiplicative factor does not alter the rest points of the original dynamics (DXLc) and
an easy calculation shows that the perturbed objective function Fτ (X1, . . . ,XK) remains
a strict Lyapunov function for the rate-adjustment dynamics above. The rest of our proof
then follows essentially as that of Theorem 3.1. �

4. APPLICATIONS TO WIRELESS NETWORKS

We now turn to a concrete application of the algorithmic framework presented in the
previous sections to distributed throughput maximization in multi-user wireless systems.

4.1. Problem Formulation

Throughout this section, we will focus on mobile systems where a set K = {1, . . . ,K} of
different transmitters (or users) communicate simultaneously with a single receiver (for
instance, a base station or a wireless terminal). Following recent developments in wireless
communication technology [1–3], we will further assume that each user k ∈ K is using Mk

antennas for transmission (multiplexing) while the receiver is using N antennas for signal
reception and decoding. More precisely, this means that the aggregate signal reaching the
receiver can be described by the standard channel model

y =
K∑

k=1

Hkxk + z (4.1)

where:

1. y ∈ C
N is the aggregate signal reaching the receiver (the channel’s output).

2. xk ∈ C
Mk is the transmitted signal (input) of the kth transmitter (the channel’s

input).
3. Hk ∈ C

N×Mk denotes the transfer matrix between the kth transmitter and the
receiver, representing how the transmit signal is affected by the wireless medium.
To account for channel fading, we will assume in what follows that the users’
channel matrices evolve over time following a bounded stationary process [15] and
we will denote expectations over this distribution by E[· ] (as a special case, in the
static channel regime).

4. z ∈ C
N is the noise in the channel (including thermal, atmospheric and other

peripheral interference effects). Following standard information-theoretic caveats,
we will further assume that z can be modeled as a circularly symmetric, zero-mean
Gaussian vector with unit covariance [11,39,42].

This multiple-input and multiple-output (MIMO) multiple access channel (MAC) model
has attracted considerable interest in the literature [5,6,11,28,32,35,39,42] and it is well
known that the users’ maximum transmission rate is achieved using random Gaussian codes
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for signal encoding (on the structure of the channel matrices Hk, the channel model (4.1)
actually applies to several telecommunications systems, ranging from digital subscriber line
(DSL) uplink networks with Tœplitz circulant Hk, to code division multiple access (CDMA)
radio networks [36]. For concreteness, we will stick here with the interpretation of the signal
model (4.1) as an ad hoc multi-user MIMO multiple access channel with Hk representing
the channel of each link). Specifically, let

Qk = Ecb[xkx
†
k] (4.2)

denote the covariance matrix of the transmitters’ input signal distribution, with the expecta-
tion Ecb being taken over the user’s input codebooks (importantly, the expectation Ecb[· ] is
not related to the expectation E[· ] taken over the distribution of the users’ channels). Then,
assuming perfect CSI at the receiver, the maximum achievable information transmission rate
of user k will be given by the familiar expression [15,39]:

Rk(Q) = E

[
log det

(
I +

∑
�

H�Q�H
†
�

)
− log detW−k(Q−k)

]
, (4.3)

where Q = (Q1, . . . ,QK) denotes the users’ covariance profile, Q−k is the corresponding
profile for all users except k, the expectation E[· ] is taken over the users’ channel law, and

W−k(Q−k) = I +
∑

� �=k
H�Q�H

†
� (4.4)

denotes the multi-user interference-plus-noise (MUI) of user k (from an information-
theoretic perspective, we are also assuming single user decoding (SUD) and perfect CSI
at the receiver; for a more detailed account, see for example, [32–34,39,42]).

In this context, the users’ objective is to select input signal covariance matrices Qk so as
to maximize their individual information transmission rate Rk(Q) subject to the constraints

tr(Qk) = Pk, (4.5)

where Pk is the transmit power of user k [39,42]. More formally, in the language of
Section 2.2, the above boils down to the rate maximization game:

maximize unilaterally uk(X) for all k ∈ K,

subject to Xk � 0, tr(Xk) = 1,
(RM)

where, for convenience, we have set Xk = Qk/Pk and the users’ utility function uk is simply
defined as:

uk(X1, . . . ,XK) = Rk(P1X1, . . . , PKXK). (4.6)

Clearly, in the presence of fading, the users’ objectives are stochastic in nature because
of the expectation over H in (4.3); otherwise, in the case of static channels, this expectation
is trivial, so (RM) is deterministic. As a result, the game-theoretic problem (RM) can be
seen as a special case of the multi-agent stochastic problem (SSP). Indeed, as was shown
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in [6], the users’ reward functions uk satisfy the potential property [23]:

uk(Xk;X−k)− uk(X′
k;X−k) = −[F (Xk;X−k)− F (X′

k;X−k)
]

(4.7)

where the game’s potential function F is defined as:

F (X) = −E

[
log det

(
I +

∑
k

PkHkXkH
†
k

)]
(4.8)

and the problem’s feasible region is X =
∏

k X k with X k = {Xk ∈HMk
: Xk � 0 and

tr(Xk) = 1} (from an information-theoretic perspective, F simply represents the users’ sum
rate under a centralized successive interference cancellation (SIC) decoding scheme [42]. As
a result, the above rate maximization problem can be seen both as a game (under single user
decoding) or as a distributed, multi-agent optimization problem (under more sophisticated
SIC schemes). For a more detailed discussion, see [6,12,18,19,21] and references therein).

Since the function M �→ log det(I + M) is concave in M over the entire cone of positive-
semidefinite matrices [9], it follows that F is itself convex over X (in fact, if the law of the
users’ channel matrices does not contain any atoms, F is actually strictly convex). Accord-
ingly, the rate maximization game (RM) falls squarely in the framework of Section 2.2: in
realistic network situations, the distribution of the users’ channel matrices is not known
to the users, so the rate functions Rk (or the game’s potential F ) cannot be calculated a
priori. As a result, to reach a Nash equilibrium of (RM), the system’s users cannot rely on
gradient observations of Rk (or F ), but only on stochastic (and possibly imperfect and/or
delayed) information on the quantities inside the expectation of (4.3) and (4.8), themselves
obtained through an interplay between the transmitters and the receiver.

The framework described above naturally calls for a distributed solution method, so
the algorithmic material of Section 3 seems particularly well-suited to the occasion. In the
rest of this section, we will describe the specifics of this application.

4.2. Algorithmic Implementation—Synchronous Updates

The first step required to apply the algorithmic tools of Section 3 is to calculate the
stochastic gradient of the users’ rate functions Rk. To that end, let

rk(X) = log det(I +
∑

�
P�H�X�H

†
�)− log det(I +

∑
� �=k

P�H�X�H
†
�), (4.9)

so uk(X) = E[rk(X)]. Then, some matrix calculus readily yields

∇Xk
rk(X) = H†

kW
−1(X;H)H†

k, (4.10)

where, in a slight abuse of notation,

W(X;H) = I +
∑

�

P�H�X�H
†
� (4.11)

denotes the aggregate signal covariance matrix at the receiver. Thus, if H(n) denotes the
realization of the users’ channel matrices at each update period n = 1, 2, . . . , and X(n)
is their corresponding transmit profile, we will assume that a) Hk(n) is measured at each
transmitter k ∈ K; and b) W(X(n);H(n)) is measured at the receiver and is then broadcast
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to the transmitters. Under these assumptions, each transmitter k ∈ K can recreate their
individual (stochastic) gradient matrices at period n as:

V̂k(n) = H†
k(n)W−1(X(n);H(n))H†

k(n), (4.12)

and, by construction, we will have:

E

[
V̂k(n)

]
= ∇Xk(n)Rk(X(n)), for all k = 1, . . . ,K. (4.13)

With this in mind, Algorithm 1 provides the following rate maximization algorithm
with synchronous updates (SU):

From the point of view of distributed implementation, Algorithm 3 has the following
desirable properties:

(P1) It is distributed : users only update their individual variables using the same
information as in distributed water-filling (namely the broadcast of W−1)
[32–34,42].

(P2) It is stateless: users do not need to know the state of the system (or the existence
of other users).

(P3) It is reinforcing : users tend to increase their individual transmission rates uk.
(P4) It is stable: the matrix exponentials can be calculated in a numerically stable and

efficient manner [22].

Furthermore, since the users’ channels are bounded by necessity, Theorem 3.1 readily yields:

Corollary 4.1: Assume that Algorithm 3 is run with a step-size sequence γn such that∑∞
n=1 γ2

n <
∑∞

n=1 γn =∞. Then, the algorithm’s iterates converge (a.s.) within ε(τ) of a
Nash equilibrium of the rate maximization game (RM) and the approximation error ε(τ)
vanishes as τ → 0+.

4.3. Asynchronous Implementation

Let us now consider a more realistic wireless environment where the transmitters do not
share a common update clock—so synchronous decisions are not possible. In this context,

Algorithm 3. MIMO rate maximization with SU

Parameters: discount parameter τ > 0; decreasing step-size sequence γn.
n← 1;

for each transmitter k ∈ K do simultaneously
initialize Hermitian score matrix Yk ∈HMk

;

Repeat
n← n + 1;

Receiver measures and broadcasts P = W−1;

for each transmitter k ∈ K do simultaneously

Measure channel matrix Hk;

Update score matrix Yk ← Yk + γn

(
HkW

−1H†
k − τYk

)
;

Update covariance matrix Xk ← exp(Yk)
tr[exp(Yk)] .

until termination criterion is reached.
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the synchronous update structure of Algorithm 3 is no longer appropriate, so we will employ
Algorithm 2 (which is fully decentralized) instead.

To that end, assume that each transmitter is equipped with an individual timer τk whose
ticks indicate the update events of user k. More precisely, we assume here that τk : N→ R+

is an increasing (and possibly random) sequence such that τk(n) marks the instance at
which the kth user updates his covariance matrix Xk for the nth time—so Xk does not
change between τk(n) and τk(n + 1). Similarly, we assume that the receiver is equipped
with a timer τ0(n) that triggers the measurements of

W(t) ≡W(X(t);H(t)) = I +
∑

�
P�H�(t)X�(t)H

†
�(t). (4.14)

Thus, at every tick of τk, user k measures Hk and updates Xk while, at every tick of τ0,
the receiver measures and broadcasts W. This asynchronous operating mode fits naturally
within the framework of Algorithm 2, leading in turn to the following implementation of
Algorithm 3 with asynchronous updates (AU):

Algorithm 4 is run independently by each transmitter—though, of course, if all transmit-
ters share a common timer, Algorithm 4 reduces to the synchronous context of Algorithm 3.
Moreover, provided that all individual timers τk have positive finite rate (i.e., lim τk(n)/n
exists and is finite), it is easy to see that the update sequence generated by Algorithm 4
satisfies the assumptions of Theorem 3.8. Indeed, the set-valued process Kn used in (3.18)
to indicate the set of transmitters updating their covariance matrices at the nth overall
update event may be obtained from the users’ individual timers τk as follows: First, let
K(t) = {k ∈ K : τk(n) = t for some n ∈ N} denote the set of players updating at time t and
let n(t) = card{s ≤ t : K(s) �= ∅} be the total number of update epochs up to time t. Then,
Kn = K(inf{t : n(t) ≥ n}) and nk(n) =

∑n
r=1 1(k ∈ Kr), so the limit lim τk(n)/n exists and

is finite if and only if the limit limnk(n)/n exists and is positive. With all this in mind, we
readily obtain:

Corollary 4.2: The iterates of Algorithm 4 converge (a.s.) within ε(τ) of a Nash equilib-
rium of the rate maximization game (RM) and the approximation error ε(τ) vanishes as
τ → 0+.

Algorithm 4. MIMO rate maximization with AU

Parameters: discount parameter τ > 0;

n← 1;

Initialize Hermitian score matrix Y.

Repeat
At each UpdateEvent

n← n + 1;

Measure channel matrix H;

Recall latest broadcast of W;

Update score matrix Y← Y + 1
n

(
HW−1H† − τY

)
;

Update covariance matrix X← exp(Y)
tr[exp(Y)] .

until termination criterion is reached.
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4.4. Learning with Imperfect Information

As a final application of the algorithmic framework of Section 3 to the problem at hand, we
turn to the case where the users’ channel matrices Hk are static but channel and interference
measurements are subject to observation noise and measurement errors. In this case, the
rate maximization game (RM) becomes deterministic but the system is still subject to
stochasticity originating from noise and uncertainty in the users’ measurements.

In the perfect information case, the (deterministic) semidefinite problem (RM) may
be solved by water-filling techniques [11], properly adapted to multi-user environments
[31,32,42]. Such methods can be either iterative (with users updating their covariance

matrices one after the other, in a round-robin fashion) [42] or simultaneous (with users
updating all at once) [31]. The benefit of the former (iterative) scheme is that its convergence
is guaranteed [42]; however, the algorithm’s convergence rate is inversely proportional to
the number of users in the system (making such methods unsuitable for large networks). On
the other hand, simultaneous water-filling methods are faster [31], but their convergence is
conditional on certain “mild interference” conditions which fail to hold even in very simple
2× 2 systems [20]. Making matters worse, water-filling methods rely on perfect channel
state information at the transmitter (CSIT) and perfect measurements of the output signal
covariance matrix W at the receiver; when it is impossible (or impractical) to obtain such
noiseless measurements, it is not known whether water-filling methods converge.

In light of the above, our goal here will be to provide a viable alternative to water-filling
based on (DXL). To that end, we will focus on two sources of measurement noise:

(1) The (static) transfer matrices Hk can only be measured at the transmitter up to
some random observational error.

(2) The receiver can only estimate the covariance W of the aggregate received signal y
via random sampling (assumed to occur between the updates of the transmitters).

Even though these two randomness sources are independent of one another, the gradient
matrices Vk = HkW−1H†

k of (4.12) depend nonlinearly on Hk and W, so care must be
taken to construct an unbiased estimator of Vk from noisy estimates of Hk and W.

We first consider the random perturbations induced on the estimation of W−1 by signal
sampling at the receiver end. On that account, recall that W is simply the covariance matrix
of the aggregate received signal y ∈ C

N :

E[yy†] = E
[
zz†
]
+
∑

k
HkE

[
xkx

†
k

]
H†

k = I +
∑

k
HkQkH

†
k = W. (4.15)

As a result, an unbiased estimate for the covariance W of y may be obtained from
a systematically unbiased sample y1, . . . ,yS of y by means of the classical estimator
Ŵ = S−1

∑S
s=1 ysy

†
s. Since Ecb[y] = 0, we do not need to include an S/(S − 1) bias cor-

rection factor in the estimate of W. Also, in a slight abuse of notation, the measurement
expectations here are taken with respect to the law of x, y, and z.

On the other hand, given that Ŵ
−1

is a biased estimator of W−1 (and hence introduces
a systematic error to the measurement process) [4], we cannot use this classical covariance
estimate for the received signal precision (inverse covariance) matrix W−1. Instead, follow-
ing [4], an unbiased estimate of the precision matrix P = W−1 of y is given by the corrected
expression:

P̂ =
S −N − 1

S
Ŵ

−1
, (4.16)
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where Ŵ = S−1
∑S

s=1 ysy
†
s as before. Thus, to obtain W−1, the receiver only needs to take

S > N + 1 independent measurements of y and then broadcast the unbiased estimate P̂ of
W−1 to the network’s users.

Similarly, in the absence of perfect channel state information at the transmitter, the
users must obtain an unbiased estimate of the unilateral gradient matrices Vk = H†

kW
−1Hk

from the broadcasted value of W and imperfect measurements of their channel matrices
Hk. However, an added complication here is that the estimated matrix V̂k must be itself
Hermitian—Qk need not be positive-definite and the DXL scheme may fail to be well-posed.
To accommodate this requirement, if each transmitter takes S > 1 independent measure-
ments Ĥk,1, . . . , Ĥk,S of their individual channel matrix Hk, such an estimator is given by
the expression:

V̂k =
1

S(S − 1)

∑
s �=s′ Ĥ

†
k,sP̂Ĥk,s′ , (4.17)

where P̂ is the broadcast estimate (4.16) of W−1. Indeed, given that the sample
measurements Hk,s are assumed stochastically independent, we will have:

E[V̂k] =
1

S(S − 1)

∑
s �=s′

E
[
H†

k,sP̂Hk,s′
]

=
1

S(S − 1)

∑
s �=s′

E[Ĥ
†
k,s]E[P̂]E[Ĥk,s]

= H†
kW

−1Hk, (4.18)

where we have used the independence of the samples to decorrelate the expectations in the
second equality, and we relied on the unbiasedness of P̂ and Ĥk for the last one. Thus, with
E[V̂k] = Vk, our construction of an unbiased estimator for Vk is complete.

From an implementation viewpoint, the above leads to the following distributed oper-
ation protocol. First, with notation as in the previous section, let τ0 denote the receiver’s
measurement timer (so τ0(n) is the nth instance in time at which the receiver measures and
broadcast W−1). Then, at each tick of τ0, the receiver takes a sample of the received signal
y of size S > M + 1 and computes the estimate P̂(τ0(n)) as above. (We implicitly assume
here that this measurement process takes a negligible amount of time. This assumption is
justified by the fact that the characteristic time at which the receiver estimates W for decod-
ing purposes is much shorter than the interval between user updates.) Likewise, if τk is the
update timer of user k (so τk(n) is the nth update time for user k), each transmitter k ∈ K
is assumed to measure his individual channel matrix and calculate his gradient estimate V̂k

using the recipe (4.17) with the latest broadcasted value of P̂ (obviously, if τ0 = τk for all
k ∈ K, the above process boils down to the synchronous regime of Algorithm 3). Theorems
3.1 and 3.8 then yield:

Corollary 4.3: With notation as before, the iterates of Algorithm 4 with imperfect feedback
converge (a.s.) within ε(τ) of a Nash equilibrium of the rate maximization game (RM) with
static channels; moreover, the approximation error ε(τ) vanishes as τ → 0+.

4.5. Numerical Results

To assess the performance of (DXL) applied to realistic network conditions, we simulated
in Figure 1 a multi-user uplink MIMO system consisting of a wireless base receiver with 5
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Figure 1. The effect of the discount parameter τ on the end-state of the DXL algorithm
(Algorithm 3).

antennas and K = 25 transmitters, each with an arbitrary number mk of transmit antennas
picked uniformly between 2 and 6 (for simplicity, throughout our numerical simulations, we
focused on the synchronous updates case (Algorithm 3)). For the static channel case, each
user’s channel matrix Hk was drawn from a complex Gaussian distribution at the outset of
the transmission (but remained static once chosen), and Algorithm 3 was ran with a large
constant step size for different values of the discount parameter τ . The performance of the
algorithm over time was then assessed by plotting the normalized efficiency ratio

eff(n) =
Fmax − Fn

Fmax − Fmin
, (4.19)

where Fn denotes the users’ sum rate at the nth iteration of the algorithm, and Fmax (resp.
Fmin) is the maximum (resp. minimum) value of F over the system’s set X of feasible
covariance matrices. Thus, by definition, an efficiency measure of 1 corresponds to a Nash
equilibrium of the rate maximization game (RM), while an efficiency ratio of 0 means
that the system is very far from equilibrium. The reason for using this efficiency measure
instead of the user’s sum rate F directly, was to eliminate any scaling artifacts arising
for example, from F taking values in a very narrow band close to its maximum value. In
tune with Theorem 3.1, Figure 1 reveals that Algorithm 3 converges within a few iterations
(effectively, within a single iteration for low τ), but the end value of the users’ sum rate
deteriorates for higher values of the discount parameter τ .

In Figure 2, we fix the algorithm’s discount parameter to a low level (τ = 10−3) that
ensures effective convergence to Nash equilibrium, and we investigate the algorithm’s con-
vergence speed as a function of the number of transmitters, using existing water-filling
methods as a benchmark. Specifically, in Figure 2(a), we ran Algorithm 3 for a multi-user
uplink MIMO system with K = 10, 25, 50 and 100 users using a large, constant step size; as
a result of this parameter tuning, Algorithm 3 effectively attains the system’s sum capac-
ity within one or two iterations, even for large numbers of users. Importantly, as can be
seen in Figure 2(b), this represents a marked improvement over water-filling methods, even
in moderately-sized systems with K = 25 users: on the one hand, iterative water-filling
(IWF) [42] is significantly slower than SU (it requires O(K) iterations to achieve the same
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(a) (b)

Figure 2. The convergence speed of DXL with synchronous updatess as a function of the
number of users.

(a) (b)

Figure 3. The robustness of entropy-driven learning in the presence of measurement
errors: in contrast to water-filling methods, the entropy-driven learning attains the channel’s
sum capacity, even in the presence of very high measurement errors.

performance level as the first iteration of Algorithm 3), whereas simultaneous water-filling
(SWF) [31] fails to converge altogether.

The robustness of discounted exponential learning is investigated further in Figure 3
where we simulate an uplink MIMO system consisting of K = 25 transmitters with imperfect
CSI and noisy measurements at the receiver. For simplicity, we modeled these errors as
additive i.i.d. zero-mean Gaussian perturbations to the matrices Vk = HkW−1H†

k that are
used in the update step of SU, and the strength of these perturbations was controlled by the
ratio of the errors’ standard deviation to the matrix norm of Vk (so a relative error level
of η = 100% means that the measurement error has the same magnitude as the measured
variable). We then plotted the efficiency ratio achieved by Algorithm 3 over time for average
error levels of η = 15% and η = 100%; for benchmarking purposes, we then also ran the
iterative and simultaneous water-filling algorithms with the same relative error levels (and
noise realizations). As can be seen in Figure 3, the performance of water-filling methods
remains acceptable at low error levels (attaining 90–95% of the system’s sum capacity), but
when the measurement noise gets higher, water-filling offers no perceptible advantage over
the users’ initial choice of covariance matrices. By contrast, discounted exponential learning
retains its convergence properties even for relative error levels as high as 100%—though, of
course, the algorithm’s convergence speed is negatively impacted.

Finally, to account for changing channel conditions, we also plotted the performance
of Algorithm 3 for non-static channels following the well-known Jakes model of Rayleigh
fading [10]. More precisely, in Figure 4, we consider a MIMO uplink system with 3 receive
antennas and K = 10 users with 2 antennas each, transmitting at a frequency of f = 2GHz
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Figure 4. The performance of entropy-driven learning under changing channel conditions
(following the Jakes model for Rayleigh fading with parameters indicated in the figure
caption).

and with average pedestrian velocities of v = 5km/h (corresponding to a channel coherence
time of 108 ms). We then ran Algorithm 3 with an update period of δ = 3ms, and we plotted
the achieved sum rate F (t) at time t versus the maximum attainable sum rate Fmax(t) given
the channel matrices Hk(t) at time t (and versus the “uniform” sum rate that users could
achieve by spreading their power uniformly over their antennas). As a result of its high
convergence speed, Algorithm 3 tracks the system’s sum capacity remarkably well, despite
the changing channel conditions. Moreover, the sum rate difference between the learned
transmit covariance profile and the uniform one shows that this tracking is not an artifact
of the system’s sum capacity always being within a narrow band of its (evolving) maximum,
but a real consequence of learning.

5. CONCLUSIONS

In this paper, we introduced a class of distributed algorithms based on a regularized variant
of matrix exponential learning for stochastic semidefinite programming with applications
to robust spectrum management in multi-user MIMO systems. This adjustment of classical
exponential learning generates a discrete-time algorithm which tracks the continuous-time
dynamics of adjusted exponential learning and converges arbitrarily close to the system’s
optimum configuration. Thanks to this adjustment term, the algorithm remains robust in the
presence of stochastic perturbations: it converges even when the agents only have imperfect
(or delayed) information at their disposal, or even if they update in a fully asynchronous
manner and independently of one another.

The optimization method of adjusted exponential learning method actually applies to
a wide range of semidefinite problems; we focused here on the MIMO MAC where our
approach dominates classical water filling techniques, both in terms of speed of convergence
and robustness to random perturbations.

In the case of multi-user MIMO systems, it out-performs traditional water-filling meth-
ods, both in terms of robustness to imperfect signal measurements and speed of convergence:
in practice, the algorithm converges within a few iterations, even for large numbers of
antennas.
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