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0. Introduction. The study of bounded distributive lattices endowed with an
additional dual homomorphic operation began with a paper by J. Berman [3].
Subsequently these algebras were called distributive Ockham lattices and an order-
topological duality theory for them was developed by A. Urquhart [12]. In [9], M. S.
Goldberg extended this theory and described the injective algebras in the subvarieties of
the variety 6 of distributive Ockham algebras which are generated by a single subdirectly
irreducible algebra. The aim here is to investigate some elementary properties of injective
algebras in join reducible members of the lattice of subvarieties of K,,A and to give a
complete description of injective algebras in the subvarieties of the Ockham subvariety
defined by the identity x A/2"(X) = X.

1. Preliminaries. A distributive Ockham algebra is an algebra (/4, A, v , / , 0 , 1) of
type (2,2,1,0,0) such that (y4, A, v ,0 , 1) is a bounded distributive lattice and / is a
unary operation defined on A such that, for all x,yeA, f(xAy)=f(x)vf(y),
f(x v_y) =f{x) A/(y), /(0) = 1, / ( I ) = 0; i.e., / is a dual endomorphism of the lattice
(A, A, v, 0,1). The class of all distributive Ockham algebras is a variety henceforth
denoted by 0. Let f\x) = x, f"+\x)=f(f"(x)), for all « > 0 . For n > 1, m > 0 the
subvariety of € defined by the identity f2"+'"(x)=f'"(x) is denoted by K,,m and the
subvariety of 0 defined by the identity f2"(x) A X = x is denoted by Kj;f). For each n > 1,
the proper inclusions K,lMcz K^{)c KnA hold; see [10].

Let K be a class of similar algebras. An algebra / e K is said to be (weak) injective in
K if, for any algebra A e K, any (onto) homomorphism from any subalgebra of A to / can
be extended to a homomorphism from A to /. We say that / is a retract of A e K if there
exist homomorphisms r:A^l and s: I —* A such that r°s = \d,; also / is an absolute
subretract in K if its is a retract of each of its extensions in K. As usual, Si(/C) denotes the
set consisting of precisely one algebra from each of the isomorphism classes of the
subdirectly irreducible (s.i.) algebras in K and H(K) denotes the class of all homomorphic
images of members of K. Let S(K), P(K) and PS(K) be the classes consisting of all
isomorphic copies of subalgebras, direct products and subdirect products of members of
K, respectively. Also let V(K) denote the variety generated by K.

We recall that every retract of injective algebra in K is injective in K ([1]).
Let K be a class of algebras and for each Ae K, let @A(a,b) denote the principal

congruence of A collapsing a pair a,b eA. The trivial and the universal congruences are
denoted by A and V, respectively. A simplicity formula for K is a 3V conjunction of
equations

{ "
o{u,v) = (a*)(V.y)j& Pi(x,y, u,v) = q,(x,y, u, u)

such that, for each Ae K, o(u, v) holds in A<^QA(u, v) e {A, V}.
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B. A. Davey and H. Werner [7, Theorem 1.3], described the injective algebras by
using Boolean powers in those congruence-distributive varieties for which there exists a
simplicity formula for the maximal s.i. algebras.

Since Goldberg [9, p. 200], has shown that there exists a simplicity formula for the
class of all finite subdirectly irreducible algebras in 6, we conclude from Theorem 1.3 that
the injectives in each member V of the lattice of subvarieties of K,, , are completely
determined once the injective s.i. algebras in V are known.

2. Injectives in the subvarieties of KnA. For integers n > m > 0, Snm will denote the
Ockham space (n, ym) consisting of the directly ordered set n = {0,. . . , n — 1} and the
map Ym :n—>n defined by ym{p) =p + 1 whenever 0>p <n - 1, and ym(n - 1) = m. Let
L,, ,„ be the dual algebra of the Ockham space 5,, ,„. In [12, Theorem 13, b] it is shown
that KnA = SP(L2n+\.\) and Knl) = SP(L2,,.o) and in [9, 2.9] it is shown that Lnm is s.i.

PROPOSITION 2.1. If X e Si{Kn ,) and V = V({X}), then a non-trivial algebra A e V is
s.i. if and only if A e S({X}). In particular, the non-trival s.i. algebras of KnA are, up to
isomorphism, the subalgebras of L2n + i,i-

Proof. We observe that X is finite, [3, Theorem 7]. Using the result in [9, 2.5], we
have Si(V) = HS({X}). Let Z be a homomorphic image of a subalgebra V of X. From
[10, Lemma 3] we have Z = Y/@, for some congruence & e {A, Ker/, V}. Hence Z must
be isomorphic either to Y or/(Y) or the trivial algebra. D

In [9], M. S. Goldberg described the injective algebras in any subvariety of O
generated by a single finite s.i. algebra in 6. That part of his theorem which is of
particular relevance in this note may be stated as in [2, Theorem 3]. Thus we conclude
that, under the conditions of 2.1 the algebra X is injective in V.

The notion of a reflective subcategory of a category can be found in [1, Def. 18.1,
p. 27].

Let 3ifnJ be the equational category whose class of objects is KnA and let %n„ be the
subcategory of 3Vn , whose class of objects is Kn0.

PROPOSITION 2.2. There exists a reflector R: %n , —* 9if,, „ which preserves
monomorphisms.

Proof. For each AeOb%nA, let R{A) =f(A) = {f2"(x) | x e A} and <J>R(A):A^
R(A), x->f2n(x). Obviously, $>R(A) is a Kn ,-morphism. Let h:A^>B be a KnJ-
morphism, where AeOb!Xni and BeObfflni). It is easily seen that there is a unique
XnS,-morphism h = h\R(A):R(A)^>B such that h°<frR(A) = h. By [1, Theorem 2, p. 28],
the assignment A-+R(A) can be extended to a reflector R: jfcn , —> jfcn„ where, for each
h:A->A', R(h) is the only ^,,,,-morphism such that R(h)°<3>R(A) = <&R(A')°h. Now,
suppose that h:A^>A' is a %n rmonomorphism and hence one-one {%n,, is an
equational category) and let a, be R(A) such that R(h)(a) = R(h)(b). Then

R(h)(a) = R(h)(b)&f2"(R(h)(a)) = f2" (R(h)(b)) O R(h)(f2"(a)) = R(h)(f2"(b))

<*f2n{h{a))=f2"{h{b))

&h{f2n{a)) = h{f2"(b))&h(a) = h(b).

Hence a = b and thus R(h) is one-one. •
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By [1, Theorem 6, p. 30] we can deduce the following result.

PROPOSITION 2.3. / / / is injective in Kn0, then I is injective in KnA.

REMARK. For each A e K,,u R(A)=f(A) is a retract of A, since <PK(A) is a
retraction.

Henceforth A",-, i = l , . . . , m , ( m > l ) will denote subdirectly irreducible algebras in
KnA such that, for all i , / e { l , . . . ,m}, i*j, Xi$S({X}); moreover, let Vt = V({Xj})
and V = V({X),. . . , A',,,}) = V, v . . . v Vm. As a consequence of Jonsson's lemma,
namely that Si(V| v . . . v V,,,) = Si(V,) U. . . U Si(Km), we have that a non trivial algebra

m

A e V is s.i. if and only if A e U S({Xj}). Hence, for each l< /< / r c , A", is a maximal
i = i

subdirectly irreducible algebra both in V) and in V.

PROPOSITION 2.4. Assume that A, I e Si(V) are non-trivial algebras. If 1 is injective in
V, then

(i) eitherAeS({I})orf(A)eS({l});
(ii) if Xj is simple, for some / e {1,. . . , m}, then I = A",;

(iii) the number of fixed points of f in A is less than or equal to the number of fixed
points off in I.

Proof. Let B be a two element Boolean algebra. Note that B is a subalgebra both of
A and /. Thus there exist a homomorphism h:A^> I such that h °idB „ = idB /5 where idn ;

and idB A are the inclusion homomorphisms.
(ij By [10, Lemma 3], kerfc e {A, Ker/}. Hence either AeS({I}) or f(A)e
\
(ii) If Xj is simple then Xt=f(Xj). Therefore A", = /, since A", is a maximal

subdirectly irreducible algebra in V.
(iii) This follows immediately from (i). •

COROLLARY 2.5. / / X, and Xj are simple algebras, with i,j e {1 , . . . , m}, i =£;', then
the trivial algebra is the only s. i. algebra in V which is injective in V.

PROPOSITION 2.6. Suppose that L2n,o = A", for some i e {1 , . . . , m}. Up to isomorph-
ism L2n,() is the only non-trivial s.i. algebra in V which is injective in V.

Proof. We recall that Kn0= V({L2n,i)}) and L2n „ is a simple algebra [9, 2.9(i)].
Furthermore if A is a simple algebra in V, then A=f(A) and AeKn(). As L2n,» is
injective in Kn „ we conclude by 2.3 that L2n,() is injective in Knl. Hence L2n,0 is injective
in V. According to 2.4(ii) the proof is complete. •

In [6, Lemma 2.9] it is shown that if / is a s.i. algebra which is weak injective in a
congruence distributive variety generated by a finite set Y of finite algebras then
IeH(Y).

PROPOSITION 2.7. (i) / / / eSi(V) is a non-trivial algebra which is injective in V, then
there exists j e {1,. . . , m) such that either I = Xj or I =f(Xj).

(ii) Xj and f(Xj) are the only non-trivial algebras in Si(Vy) which are injective in Vj.
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Proof. Part (i) follows from [6, Lemma 2.9], [10, Lemma 3] and the fact that every
injective in Vis a weak injective in V. As Xj is injective in Vy,/(A}) is injective in Vh since
f(Xj) is a retract of Xj. •

PROPOSITION 2.8. / / Y is a non-simple algebra such that Y e S({X/}) D S({Xj}), for
some i,je{l,...,m},i-fcj, then Xt and Xj are not injective in V.

Proof. Let Y e5({Ar,-}) r\S({Xj}) and suppose that Y is not simple. Then by [10,
Lemma 3] there exists y\,y2 e Y such that yt i=y2 and/(_>>,) =f(y2). Let {/, k) = {/,/} and
h:Xi—>Xk be a homomorphism. As X, is a maximal subdirectly irreducible algebra and
Xi ^ Xk, we have Ker/i = Ker/and hence /i(y,) = / i ^ ) . Thus the inclusion homomorph-
ism idy,xk'- Y-*Xk cannot be extended to a homomorphism from X, to Xk; hence Xk is
not injective in V. D

3. Injectives in the subvarieties of Kftl). The subdirectly irreducible algebras in K2M

were described by M. Ramalho and M. Sequeira [10]. We adopt their notation for these
algebras, namely {T, B, S, K Ku K2, K3, M, A/,, A, Au A2, A3, A4, A5, C, C,} is a set
of representatives of the isomorphism classes of the s.i. algebras in KfS). Up to
isomorphism the algebras T, B, K, M, A and C are the simple algebras in K2i). We
observe that the algebra C is isomorphic to the algebra L4 (, introduced in section 2. We
have Kf,) = SP({C]}), so that C\ and C are the only non-trivial s.i. algebras in K2S) which
are injective in K2M, according to 2.7(ii).

By 2.6, C is the only non-trivial s.i. algebra in K2{) which is injective in any proper
subvariety of K2S) containing C.

The lattice A (Kf()) of subvarieties of Kf0 was studied by M. Sequeira [11]. The
injective algebras in each subvariety of the variety Mi = V({M,}) were described by R.
Beazer [2].

For each subvariety V of the variety Kfn the set of all non-trivial s.i. algebras in V
which are injective in V is denoted by Inj(Si(V)).

PROPOSITION 3.1. The trivial algebra is the only subdirectly irreducible algebra which is
injective in each of the following subvarieties of Kf0.

(i)MvA, SvMvA, K2 v M v A, K.vMvA, S v K, v M v A, K,vK2v
M v A, K3 v M v A, K2 v K3 v M v A.

(ii) M v Ai, M v A2) M v A3, M v A4, M v A5, M v A 2 v A3, M v A 4 v As, S v
M v Ai, S v M v A2, S v M v A3, S v M v A2 v A3, K2 v M v A,, K 2 v M v A2, K2 v
M v A3, K2 v M v A2 v A3, K, v M v A4, M v A, v A4, M v A2 v A3, M v A2 v A4,
MvAjV A4, M V A J V A J V A4, K3 v M v A,, K j v M v A2, K3 v M v A3, K , v M v
A2 v A3, K2 v K3 v M v A,, K2 v K3 v M v A2, K2 v K3 v M v A3, K2 v K3 v M v A2 v
A3, K 2 v M v A5, K j v M v A4, K 3 v M v A , v A4, K3 v M v A2 v A4, K3 v M v A3 v
A4, K3 v M v A2 v A3 v A4.

(iii) M, v A.

Proof. Part (i) follows from 2.5, since M and A are simple algebras. Let V be one of
the subvarieties listed in (ii). Let /eSi(V) be a non-trivial algebra and suppose that / is
injective in V. From 2.4(ii), we have that / = M and, by 2.4(i), f{Ai) = A is a subalgebra
of M, for each / e {1,2,3,4,5}. Part (iii) follows from 2.4(ii) and 2.4(iii). D
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COROLLARY 3.2. There are no non-trivial s.i. injective algebras in each of the
following subvarieties of KfM: Mt v A,, M, v A2, M| v A3, Mi v A4, M! v A5, M, v
A2 v A3, M, v A, v A4, M, v A2 v A4, M, v A3 v A4, M, v A2 v A3 v A4, M, v A4 v
As

Proof. We consider the subvariety M( v A(. From 2.7(i) we have

Suppose that Ay is injective in Mi v A|. Since A is a retract of y4,, A is injective in
M| v A|. Therefore A is injective in M v Aj5 a contradiction. Similarly M, is not injective
in Mj v A]. Clearly, M and A are not injective in Mi v A] since they are not injective in
M v A. The proof is similar for any of the other varieties. •

We recall from [7, 12.(ii)] the following result.

PROPOSITION 3.3. Let X be a finite set of finite algebras and assume that K = SP(X) is
congruence-distributive. If I e X and every subalgebra of I is either subdirectly irreducible
or weak injective in K, then I is injective in K if and only if I is injective in X.

PROPOSITION 3.4. The algebra A is the only non-trivial s.i. algebra which is injective in
S v A, K2 v A, K, v A, K3 v A, S v K, v A, K, v K2 v A and K2 v K3 v A.

Proof. Let V be one of the subvarieties listed. From 2.4(ii), we know that, if
/ e S\(V) is non-trivial and injective in V, then I = A. According to 3.3 it suffices to show
that A is injective in Si(K). For each X e Si(V) with X =£A, there is exactly one
homomorphism h from X to A, which is defined in the following way: if X e {K, B), h is
the inclusion; if X = S, h(a) = l; if X = K2, h(a) = k and h(b) = \; if X = /C3, h{a) =
h(c) = k, h(b) = 1; if X = Ku h{a) = h{b) = k. Thus it is easily verified that A is injective
in Si(V). D

PROPOSITION 3.5. The algebra A is the only non-trivial s.i. algebra which is injective in
the following subvarieties of KfM:

(i) A2 v A3, A4 v As.
(ii) S v A2 v A3, K2 v A2 v A3, K3 v A2 v A3, K, v K2 v A2 v A3, K 2 v K , v A 2 v

A3.

Proof. Part (i) follows from the 2.7(i), 2.8 and the fact that A is injective in A2, A3,
A, and A5. We consider V = S v A 2 v A 3 . From 2.7(i), we have that Inj(Si(K))c
{B,S,A2,A3,A}. By 2.8, A2 and /43 are not injective in V. If B was injective in V, then
A =f(A2) would be a subalgebra of B. Hence B is not injective in V. Similarly, S is not
injective in V. For the other subvarieties, the proof is analogous. •

PROPOSITION 3.6. The non-trivial s.i. algebras which are injective in V are,
respectively,

(i) A, and A if V e {S v A,, K2 v A,, K3 v A,, K2 v K3 v A,},
(ii) A2 and AifVe{Sv A2) K2 v A2, K3 v A2, K2 v K3 v A2},
(iii) Ai and AifVe{Sv A3, K2 v A3, K3 v A3, K2 v K3 v A3},
(iv) A4 and AifVe{Ktv A4, K3 v A4},
(v) A5 and A if V = K2 v As.
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Proof. We shall only prove (i). Similar reasoning can be used in (ii)-(v). That Ax is
injective in each of the subvarieties indicated follows from the facts that A, is injective in
A] and that, for i e {1, 2, 3}, there is exactly one homomorphism h from each X e S(Kt)
to A, and h(X) e S({A}) (defined as in 3.4). Now A is injective since A is a retract of At.
By 2.4(i) we conclude that S and B are not injective in S v A,. The same holds for K and
K2 in K 2 vA, ; also for K and K3 in K , v A , and for K, K2, K3 in K 2 v K 3 v A | .
According to 2.7(i) the proof is complete. •

PROPOSITION 3.7. The non-trivial s.i. algebras which are injective in V are,
respectively,

(i) A4, A i and A if V = A, v A4,
(ii) A4, A2 and A ifV — A2w A4,
(iii) A4, A3 and A ifV = A3v A4.

Proof. We recall that an algebra X e Si(Knl) is injective in V({X}) and that f(X) is
a retract of X. (i) From 2.7(i) we have that Inj(Si(A, v A4) c {A,,A4,A = f(A,) =
f(A4)}. To prove that A, is injective in A, v A4 it suffices to show that any homomorphism
from any subalgebra of A4 to A, can be extended to a homomoprhism from A4 to A{. Up
to isomorphism, the subalgebras of A4 are B, S, K2, K, A, A4. For each Xe
{B, S, K, K2), there is exactly one homomorphism h from X to At (defined in 3.4), thus
the homomorphism Q>:A4—*AX defined by ®{x) =f4(x) extends h. We observe that
<t>(A4) = A and O | / t = id/4. If h:A—*At is a homomorphism than h°<P extends h.
Similarly, we conclude that A4 is injective in Ai v A4. (ii) The injectivity of A2 in A2 v
A4 follows as the injectivity of Ax in A! v A4. To show that A4 is injective in A2 v A4

it suffices to show that, for X e {B, K, KUA,A\}, any homomorphism h :X—*A4 can be
extended to a homomophism h:A2—>A4. If X e{B, K, K,,A} h is defined as in (i). If
h :/4,—M4 then h is defined by h(y) = h(b). (iii) That A3 is injective in A3 v A4 follows
as in (i). To show that A4 is injective in A3 v A4 it suffices to show that, for
X e {B, K, KuA,At}, any homomorphism h.X—*A4, can be extended to a homo-
morphism h:A3-*A4. If X e {B, K, KUA}, h is defined as in (i) and if X = Au h is
defined by h(s) = h(d). •

COROLLARY 3.8. The non-trivial s.i. algebras which are injective in V are
(i) A4, A)andAifV = K3vAtv A4,

(ii) A4, A2 and A if V = K3 v A2 v A4,
(iii) A4, /43 and A if V = K3 v A3 v A4.

Proof, (i) Follows from 3.7(i) and 3.6(i), (iv). Also (ii) follows from 3.7(ii) and
3.6(ii), (iv) while (iii) follows from 3.7(iii) and 3.6(iii), (iv). •

PROPOSITION 3.9. The algebras A4, A are the only non-trivial s.i. algebras which are
injective in A2 v A3 v A4 and K3 v A2 v A3 v A4.

Proof. From 3.7 we have that A2, A3 are not injective. That A4 is injective in
A2 v A3 v A4 and in K3 v A2 v A3 v A4 follows from 3.7(ii), (iii) and 3.8. •
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