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AN INTERPOLATION BY SUCCESSIVE DERIVATIVES
AT A FINITE SET

SOON-YEONG CHUNG

For an n-times differentiate function f(x) whose derivatives f^\xj) at x = Xj,
j = 0 ,1 , . . . , n are specified, we introduce a sequence of fundamental polynomials
{n(x\xo,xi,... ,£n)}^L0 to interpolate f(x) with a remainder as

V^ fU)(x)
f{x) = 2_^ q 7 r { x \ x O , X l , . . . ,Xj) + R n ( x \ X 0 , X i , . . . , X n ) .

3=0

The remainder Rn(x\x0,xi,... ,xn) is given in an integral form and La-
grange's form.

In addition, by introducing orthogonality of Sobolev type we verify the
best optimality of the approximations and interpret the fundamental polynomi-
als {n(x | xo,x\,... )2;n)}^L0

 as a kind of Sobolev orthogonal polynomial.

1. INTRODUCTION

Consider a function f(x), whose values are specified at the points x = XQ , x\, X2,
. . . , xn. Lagrange's interpolation formula gives a polynomial of degree n whose values
are the same as f(x) at x = Xj, j = 0 ,1 ,2 , . . . , n and which approximates f(x) with
a remainder. More generally, Newton's interpolation formula also gives a polynomial
with the same properties. In fact, Newton's method still works for the case where all
the points XQ , x\, X2, • • • , xn are equal. In that case the interpolation polynomials are
reduced to Taylor polynomials. Also, Chebyshev interpolation is the case where the
points XQ , Xi . . . , xn are zeros of the Chebyshev polynomial.

On the other hand, for a differentiable function f(x) the Hermite interpolation
gives polynomials H(x) that satisfies not only H(x) = f(x) but also H'(x) = f'(x) at
the points x — XQ , x\, X2, • • • , xn. Such a polynomial H(x) is also basically a variant
of the Lagrange interpolation polynomial. Besides, there are several interpolation poly-
nomials introduced by Everett, Bessel, Stirling, Aitken and others, which are essentially
equivalent to the Lagrange interpolation polynomial that uses the same tabular points,
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although the representations are different (see [1]). Thus, it will be quite interesting
to find a new scheme to interpolate an n times differentiable function whose successi-
tive derivatives f^{xj) at x = Xj, j = 0,1, 2 , . . . , n, are known. To the best of the
author's knowledge such a scheme has not appeared in the literature.

The purpose of this paper is to introduce a sequence of fundamental polynomials
{TT(X\XO,XI, ... ,xn)}n_0 which can be used to interpolate a function such that f^(xj)

at x = Xj , j = 0,1,2,... , n are known.

In Section 2 we show that every polynomial P{x) whose derivatives P^(XJ) at
x = Xj , j = 0,1,2,... ,n, are given can be written as

p(') = E
pU)(x.)

T
J-

j=o J

In Section 3 it is shown that every function f(x) whose derivatives f^(xj) at
x = Xj, j = 0,1,2,... ,n, are known can be approximated with a remainder as

f(x) = 2 ^ T^1—K{X\XO,XI,... ,XJ) + Rn(x\xo,xu... ,xn),
3=0

which is reduced to Taylor's formula whenever all the points x0 , x\, ... , xn are equal.
The remainder will be expressed in an integral form or Lagrange form and estimated
properly. In particular, it is shown that every entire function can be written as an
infinite series of this type.

In the last section we discuss an orthogonal property of the fundamental polyno-
mials {n(x | XQ , x\, . . . , xn)}n_Q. In fact, the best optimality of the approximation is
verified and the fundamental polynomials are interpreted as a kind of Sobolev orthog-
onal polynomial.

2. INTERPOLATION POLYNOMIALS

Throughout this paper all polynomials are assumed to be real polynomials in one
variable.

It is well known that if P(x0), P{x\), . . . , P{xn) are known the polynomial P{x)

of degree n is uniquely determined by the Lagrange interpolation polynomial. In
another direction, if P^(a), k = 0 ,1 ,2 , . . . ,n, are known the polynomial P{x) is
uniquely determined by Taylor's polynomial (or Newton's interpolation polynomial).

In this section we introduce a heuristic method to find a polynomial P(x) of degree
n whenever pW(xk), k = 0 ,1 ,2 , . . . , n , are specified.
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First, we develope a sequence of fundamental polynomials. For a nonnegative

integer n and a finite number of points x0 , x i , . . . , xn on the real line R we denote

by TT(X I xo , x\, . . . , xn) the polynomial P(x) of degree n with the specified values

and

P( n ) (x) =n\ , x € R .

Here, the points i o , i i , . . . , i n need not be distinct.

LEMMA 2 . 1 . For an integer n > 1 the polynomial TT(X | X0, XI, . . . , xn) can be

uniquely expressed as an iterated integral

(2.1) 7 r ( x | x o , x i , . . . , x n ) = / / . . . / n\dtndtn-i...dti.
Jx0 Jx! Jxn_x

PROOF: Since

rt

Tr^(t | x 0 , X ! , . . . , xn) = / 7r( f c + 1>(s \xo,x1,...,xn)ds
Jxk

for k = 0 , 1 , . . . , n — 1 we have

n ( x \ x o , x i , . . . , x n ) = / T T ' ( £ I \ X O , X I , . . . ,xn) dtx

JXQ

rx rtX
= 1 1 Tr"(t2\x0, Xi, ... ,xn)dt2dti

Jx0 Jxi

= I f1 ••• fn 1 T T ^ ^ I x o . X i , . . . ,Xn)dtndtn-1...dti
Jx0 Jxi Jxn-i

= f r •• I" X n\dtndtn^1...dt1.
Jx0 Jxx Jxn_j. r

E X A M P L E .

(i) TT(X I xo) = 1 and ix{x \ x0 , x{) = fxg dt = x - x 0 .

(ii) TT(X I xo, x j , x 2 ) = /x"o / j j 2! dt2 dtx = (x - Xi)2 - (x0 - x x ) 2 .

(iii) TT(X I xo, X!, x 2 , x 3 ) = / ; o / j ; /x'2
2 3! dt3 dt2 dh

- ( x - x2f - (x0 - x2)3 - 3(xx - x2)2(x - x0).

(iv) 7r(x|xo,Xi,X2,x3,x4) = (x
4 - xg)-4x3(x

3 - xg)-6x2(x2 - 2x3)(x
2 -

- 2(2xf - 6x3Xi - 6xix2 + 12xix2x3)(x - x0).
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The polynomials 7r(x | X0, XI , ... , xn) can be written by means of a determinant.
If we define a double sequence by

N(m,n)

7m,n = } J

j=0

mini ,m+n-2j
(rn-j)l{n-j)\j\2}

where N(m, n) — min (m, n) for nonnegative integers m and n then in view of the
theory of Sobolev orthogonal polynomials (see [2]) we have

TT(Z I XQ, XI, • • • , xn) — det

7o,o 7o,i

7i,o 7i,i

7n-l,0 7n-l
1 X

7o,n

7i,n

Of course this result can be verified, a posteriori, by a direct calculation of the
determinant.

REMARK 2.2. (i) In the above it is not necessary that the points XQ , x\,... , xn are
distinct. In particular, if XQ = X\ = ... = xn — a then it is easy to see that

TT(X I a, a, . . . , a) = (x — a)n.

(ii) From (2.1) we obtain

n'{x | x0, xi,... , xn) = mr(x | xu x2, • • • ,xn),

and

TT"(X I x0, xi,... , xn) - n(n - l)7r(a; | x2, x3,... , xn).

In general, we have, for k — 0 , 1 , . . . , n

(2.2) 7r(fc)(x | x0) x i , . . . , xn) = ' - T r . n ( x I x k , x k + i , ••• , x n ) .
[ n — K)\

(iii) From (2.2) we also have

fx

TT(X I x o , X \ , . . . , xn) = n I TT(£I I X I , X2 , . . . , x n ) d t i
•/XQ

= n(n — 1) / / 7r(i2 | ̂ 2 , X3 , . . . , x n ) dt2 dti
JXQ JX\

n! fx ftl Z"**-1
= 7 T T T / / • • / 7 r ( ' f c \ x k , X k + i , ••• , x n ) d t k d t k - i - . . <

( n - k)\ Jxo JXl J X k i
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for k = 0 , 1 , . . . ,n.

(iv) If we p u t x — m i n (x , xo,x\,... , xn) a n d x = m a x (x, xo,xi,... , xn) t h e n we

have

7 r ( x | x o , x i , . . . , x n ) | < / I . . . I n\dtndtn^i...dti = (x-x)n.
Jx Jx Jx

Now we give a representation of a polynomial P{x) whose fc-th derivatives at x^
k = 0 , 1 , . . . , n, are specified. This result will be used to interpolate functions which
are sufficiently differentiate.

THEOREM 2 . 3 . Let XQ, x\,... , and xn be points on the real line IR and let

P(x) be a polynomial of degree n such that the values P(k\xk), k = 0,1,2,... ,n, are

specified. Then the polynomial can be uniquely represented as

(2.3)
fc=0

PROOF: The uniqueness is easy.

Now we use mathematical induction. If n = 1 then

P{x) = P'(x!)(x - x0) + P(x0) = P'ix^nix | x0 , n ) + F(xo)7r(x | x0).

Thus (2.3) holds for n = 1. Now we assume that (2.3) is true for all the polynomial
of degree n- 1. Let Q(x) be P'{x). Then Q(fc>(xfc+1) = P(fc+1)(a;fc+i) for fc =
0,1,2, . . . , n - l .

Using the induction hypothesis we have

= EE
fc=o

or equivalently,

pl{x) = ^ t _p+i, n{x | I i ) j ; 2 Xk+i)
fc=O
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Then it follows from (iii) in Remark 2.2 that

P(x) = [X P'{t) dt + P(x0)[
x0

k=0

I 7r(
J XQ

,xk+i)dt + P(x0)

^2n—(fc + i)!+ 1 *(x\xo,xi,--- ,xk+i) + P(x0)
k-0 *• ''

2 ^ j ^ j ( a ; | a ; o , a : i , . . . ,xk)
fc=O

This completes the proof. D

In view of (i) of Remark 2.2 we can see that if x0 = x\ = ... = xn = a then (2.3)
is exactly the same as the Taylor polynomial at x = a that is,

fc=O

3. AN INTERPOLATION WITH REMAINDER

In this section we give an interpolation of a differentiable function in terms of a
sequence of the fundamental polynomials introduced in the previous section. Moreover,
using an estimate for the remainder term, analytic functions will be approximated by
these fundamental polynomials.

Now we state the main theorem. (This reduces to Taylor's theorem, if x0 = xi =
... = xn = a.)

THEOREM 3 . 1 . Let f(x) be an (n + 1)-times differentiable function on the in-
terval (a, b) and x0, x\,... ,xn be points in (a, b). Then f(x) can be written as

^ fWfxu)
\6.l) J(X)— y j j-j TT(X \XQ,X\, . . . ,Xk)-\- Itn(X | XOj^lj • • • ixn)

fc=O

where

(3.2) Rn{x\xo,xlt...,xn)= [ f1 ... I" f{n+1)(tn+1)dtn+1dtn...dt1.
JXQ Jx\ Jxn

PROOF: In view of the fundamental theorem of calculus we have
(•Xr

Jxk
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for k = 0 , 1 , 2 , . . . , n .

Then successive substitutions give

XQ K JXl

X ftl

f "
Jx,

px pt\

xi)+l I f"{t2)dt2dti

= f(x0) TT(X I x0) + / ' (x i ) TT(X I x0, xi)

[ L {f"{x2)+Lf'"{t3)}
= / ( x 0 ) TT(X I x0) + f'(xi) TT(X I x0, xi) + 2^2 7r(x|x0, x i , x2)

+
rx rt\ pt2

To complete the proof we use mathematical induction.
We assume that

f{x) = y f { k ) ( ^ ) n { x l X u X ^ X k ) , ̂  l{x\XOtXu...tXn

k=0

where

rx /•*! /"'"-I ( n )

JXQ Jxi Jxn_i

By substituting

we obtain

/("+1)(*n+l)<ftn+l| dtndtn^... , dh

11 . . . I'" f(n+1\tn+1)dtn+1dtn...,
1 Jxn

xg Jxi Jxn-\ K Jxn

/ / ( + 1 H d h
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This implies that

Rn-i(x\xo,xi,... ,xn-i) - o^i,... ,xn) + Rn{x\xo,xi,... ,xn)

which completes the proof. D

In (3.1) above it is easy to see from (iv) of Remark 2.2 that the remainder term
Rn(x\x0, xi,... ,xn) can be estimated roughly as

(3.3)

where

and

o,xi,... ,xn)
M(x - x)n

n\

x = m a x { i , i o , n , . . . ,xn},

x = min{a;,a;o,a:i,... ,xn},

M = max {\f(n+1)(t)\ | x < t < x).

Now we give a remainder term in a different form which is similar to Lagrange's
remainder in the Taylor theorem, under some restriction on the points xo , X\, . . . , xn.

THEOREM 3 . 2 . Suppose that the function f(x) is (n + 1)-times differentiable
in (a,b) and the points xo,x\,... ,xn are chosen so that either x ^ x0 ^ £i ^ . . . ^ xn

or x }? Xo ^ x\ ^ . . . ^ xn. Then we have

(3.4) Rn{x\xQ,xi,... ,xn) = n(x\xo,xi,... ,xn,xn)
(n+1)!

for some £ between x and xn. Moreover, in this case we obtain

K\x - xn\
n+1

(3.5) Rn(x\x0,xi,... ,xn)

where K = max{| /(n + 1)( i) | | t varies between x and xn} .

PROOF: If x = x0 then both sides in (3.4) are zero, so we assume x ^ x0. For a
fixed x ^ Xo let M be the unique solution of

, ^ o,xi,... ,xn,xn).

Let

o,xi,... ,xk)+
TL/T

fc=0 V /

n{t\xo,xu... ,xn,xn)- f(t).
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Then we have

(3.6)

and

(3.7) g{n+1){t) = M - / ( n + 1 ) ( t ) , a<t<b.

Also, g(x) = 0 by the choice of M. Since g(xo) = 0, RoUe's theorem implies that
there exists c\ between XQ and x such that g'{c\) = 0. Since g'{x\) = 0 and x\ ^ ci
a second application of Rolle's theorem shows that there exists ci between c\ and zx

such that g"{c2) = 0. This process continues until we obtain Cn+i between c,, and xn

such that g(n+1Hcn+i) = 0. So we have (3.4) from (3.7) with £ = c n + 1 . On the other
hand, the last assertion follows easily from (3.3). This completes the proof. D

It is well known that if / is real analytic on the real line R then for every compact
KofR there exist r > 0 and C> 0 such that

( 0 | ^ ^ , , , ,

Under a slightly stronger condition, analytic functions can be approximated by the
polynomials discussed above as follows:

COROLLARY 3 . 3 . Let f(x) be a real analytic function on the real line satisfying

(3.8) s u p | / < n > ( a : ) | < C r J r i n ! l n = 0 , l , 2 , . . . .
€K

for some H > 0 and let (in)^Lo ^ e a bounded sequence of real numbers.

If H | x — x_ | < 1 then f(x) can be expressed as an infinite series

(3.9) f{x) = Y
n=0 n'

where x — supja;, XQ, X \ , X2, • • • } and x = inf{x, Xo, X\,X2,... } .

PROOF: We have only to show that

lim Rn(x\xo, xi,... , xn) = 0.
n->oo

From (3.2) and the hypothesis (3.8) we have

\ R n ( x \ x 0 , x 1 , . . . , x n ) \ ^ \ [X I' ... [n f l n + V ( t n + l ) d t n + 1 d t n . . . d t 1
I Jx0 JXI Jxn

^ CHn+1(n + 1)! =1 r f ... f 1 dtn+1 din..-
I JXQ Jxi Jxn
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which goes to 0 as n —> oo. U

In the above the condition (3.8) is satisfied for every R > 0 when / is a real
analytic function which extends to an entire holomorphic function. Hence in this case
the above result holds automatically as follows :

COROLLARY 3 . 4 . Let f(x) be a real analytic function which extends an entire

holomorphic function and let (xn)^_0 be a bounded sequence. Then we have

(3.10) f(x) =
fc=o K-

4. T H E SOBOLEV ORTHOGONALITY

Here we shall discuss some interesting properties of the fundamental polynomials
n(x\xo,xi,... ,xn) from the point of view of orthogonality. Throughout this section
the sequence (£n)^Lo ^s fixed and bounded. By IK(R) we denote the set of all real
analytic functions on R which extend to entire functions on the complex plane. Then
it is well known that / belongs to !K(R) if and only if for every compact subset K C R
and for every h > 0 there exists a constant C such that

(4.1) sup|/(fc>(z)| ^ Chkk\, A; = 0,1,2,. . . .

We define a symmetric bilinear form (•, •) on IK(R) x !K(R) as follows: for each /
and g in JC(R)

lf , f . / ^ ( « j ) g O ) ( » j )

3=0 J-

Then (•, •) gives an inner product on !K(R) and a norm ||-|| given by ( • , • ) ' . The
only nontrivial thing for the bilinear form is the fact that ( / , / ) = | | / | | 2 = 0 implies
/ = 0 . But this follows easily from Corollary 3.4.

We denote nn(x) = 7r(x|xo,a;i,... ,xn) for n ^ 0, for simplicity. Then it is easy
to see that

j=0

since
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This means that the polynomials {7rn(a;)}n_0 are an orthonormal polynomial system
with respect to the (Sobolev) inner product (•,•).

Now we prove the completeness of this orthonormal polynomial system {7rn(:c)}n_0

in M(R).

THEOREM 4 . 1 . The orthonormal family {Mx)}^lo is complete in 5£(R).

PROOF: We have only to show that for every / £ 9£(R) a sequence of polyno-
N

mials J^ {f^Hxj))/ti]-)nj(x) converges to / in the normed topology on !K(E). Prom
j=o N

Corollary 3.4 we have already that J2 (f^(xj))/(j\)iTj(x) converges pointwisely to / .
i=o

Moreover, Theorem 3.1 means that for every integer N > 0

N f(j)( \
f(x) = 5Z r^-TTjix) + RN(x\x0,Xi,... ,xn).

3=0 J'

From these facts we have

R%\XJ Ixo,!^... ,xn) = 0 , j = 0 , l , 2 , . . . ,N

and

Since the sequence (xn)^L0 is bounded it follows that

II / - E ^T^KjW || = \\RN(X\XO,XU ... ,xN)
II j=o h II

7|2 2 ^
j=N+l J' j=N+l

The last inequality follows from (4.1). This implies that

N
|

3=0

converges to 0 as TV -> oo, by taking h so that 0 < h < 1. D

REMARK 4.2. In view of the above theorem we obtain some properties which are fun-
damental in the theory of Hilbert space.

oo

(i) If / € JC(R) has an expression f(x) = ^ CLJTTJ(X) , aj € 1 then we have
3=0
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for j = 0 ,1 ,2 , . . . . and

,2
j=0 •>•

(ii) By Bessel's inequality we can see that for each / 6 5C(R) the polyno-

mial JZ (/^(^jOj/O'O^iC1) gives the best approximation to / in the
j=0

polynomials of degree at most N.

For the inner product (-, •), we call the double sequence denned by (pm,n — {zm , xn)
for m, n = 0 ,1 ,2 , . . . , a moment sequence of the inner product (•, •). Moreover, we say
that the inner product (•, •) is positive definite if

A n = det[4>ij]lj=o > 0

for each n ^ 0.

Using the theory of Sobolev orthogonal polynomials (see [2] for details ) we can

see that

(i) (•, •) is positive definite, since

(4 .2) (7Tn , 7Tm) = <5m,n

for any m,n ^ 0.
(ii) An = 1 for any n > 0.

(iii) The polynomials {7rn(a:)}n_Q a r e the only polynomials satisfying (4.2) up
to nonzero constant multiples.

(iv) The polynomials {Tn(:c)}^=0 form a Sobolev orthogonal polynomial sys-
tem relative to (•,•).
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